| import torch |
| import torch.jit |
| import torch.nn as nn |
| import torch.nn.functional as F |
| from contextlib import contextmanager |
| from itertools import product, chain |
| import torch.jit.frontend |
| from torch.autograd import Variable, Function |
| from torch.autograd.function import traceable |
| from torch.testing import assert_allclose |
| from torch.onnx import OperatorExportTypes |
| from common import TestCase, run_tests, IS_WINDOWS, TEST_WITH_UBSAN, skipIfRocm |
| from textwrap import dedent |
| import os |
| import io |
| import sys |
| import unittest |
| import inspect |
| import textwrap |
| import numpy as np |
| import tempfile |
| import shutil |
| import warnings |
| from test_autograd import method_tests, create_input, unpack_variables, \ |
| exclude_tensor_method, EXCLUDE_GRADCHECK, EXCLUDE_FUNCTIONAL |
| from copy import deepcopy |
| import random |
| |
| from torch.jit.frontend import NotSupportedError |
| from torch.jit import BatchTensor |
| |
| try: |
| import torchvision |
| HAS_TORCHVISION = True |
| except ImportError: |
| HAS_TORCHVISION = False |
| |
| |
| skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision") |
| |
| RUN_CUDA = torch.cuda.is_available() |
| RUN_CUDA_HALF = RUN_CUDA |
| if torch.cuda.is_available(): |
| CUDA_VERSION = torch._C._cuda_getCompiledVersion() |
| for d in range(torch.cuda.device_count()): |
| major = torch.cuda.get_device_capability(d)[0] |
| if (CUDA_VERSION < 8000 and major >= 6) or (CUDA_VERSION < 9000 and major >= 7): |
| RUN_CUDA = False |
| if (CUDA_VERSION < 9000 or major < 6): |
| RUN_CUDA_HALF = False |
| |
| RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1 |
| |
| PY2 = sys.version_info[0] == 2 |
| PY35 = sys.version_info >= (3, 5) |
| WINDOWS = sys.platform == 'win32' |
| |
| |
| # TODO: Replace all uses of this function with the literal "0" when the jit |
| # is able to support returning numbers (as opposed to only Tensors) |
| def FIXME_zerol(): |
| return torch.tensor([0]) |
| |
| |
| def LSTMCellF(input, hx, cx, *params): |
| return LSTMCell(input, (hx, cx), *params) |
| |
| |
| def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None): |
| hx, cx = hidden |
| gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh) |
| |
| ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) |
| ingate = torch.sigmoid(ingate) |
| forgetgate = torch.sigmoid(forgetgate) |
| cellgate = torch.tanh(cellgate) |
| outgate = torch.sigmoid(outgate) |
| |
| cy = (forgetgate * cx) + (ingate * cellgate) |
| hy = outgate * torch.tanh(cy) |
| return hy, cy |
| |
| |
| def LSTMCellC(*args, **kwargs): |
| hy, cy = LSTMCellF(*args, **kwargs) |
| return torch.cat((hy, cy)) |
| |
| |
| def canonical(graph): |
| return str(torch._C._jit_pass_canonicalize(graph)) |
| |
| |
| def get_lstm_inputs(device): |
| input = torch.randn(3, 10, dtype=torch.float, device=device) |
| hx = torch.randn(3, 20, dtype=torch.float, device=device) |
| cx = torch.randn(3, 20, dtype=torch.float, device=device) |
| module = nn.LSTMCell(10, 20).to(device, torch.float) # Just to allocate weights with correct sizes |
| return (input, hx, cx) + tuple(p.requires_grad_(False) for p in module.parameters()) |
| |
| |
| def get_fn(file_name, script_path): |
| import importlib.util |
| spec = importlib.util.spec_from_file_location(file_name, script_path) |
| module = importlib.util.module_from_spec(spec) |
| spec.loader.exec_module(module) |
| fn = module.fn |
| return fn |
| |
| |
| # Python equivalents for the empty list construction builtins. We need |
| # these otherwise the tests won't execute in regular Python mode. |
| def _construct_empty_int_list(): |
| return [] |
| |
| |
| def _construct_empty_float_list(): |
| return [] |
| |
| |
| def _construct_empty_tensor_list(): |
| return [] |
| |
| |
| class JitTestCase(TestCase): |
| _do_cuda_memory_leak_check = True |
| |
| def getExportImportCopy(self, m): |
| # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile |
| # opens the file, and it cannot be opened multiple times in Windows. To support Windows, |
| # close the file after creation and try to remove it manually |
| f = tempfile.NamedTemporaryFile(delete=False) |
| try: |
| f.close() |
| m.save(f.name) |
| imported = torch.jit.load(f.name) |
| finally: |
| os.unlink(f.name) |
| return imported |
| |
| def assertExpectedONNXGraph(self, trace, *args, **kwargs): |
| torch.onnx._optimize_trace(trace, operator_export_type=OperatorExportTypes.ONNX) |
| self.assertExpectedGraph(trace, *args, **kwargs) |
| |
| def assertExpectedGraph(self, trace, *args, **kwargs): |
| if isinstance(trace, torch._C.Graph): |
| graph = trace |
| else: |
| graph = trace.graph() |
| |
| torch._C._jit_pass_lint(graph) |
| torch._C._jit_pass_dce(graph) |
| torch._C._jit_pass_lint(graph) |
| graph = torch._C._jit_pass_canonicalize(graph) |
| torch._C._jit_pass_lint(graph) |
| self.assertExpected(str(graph), *args, **kwargs) |
| |
| def run_pass(self, name, trace): |
| if isinstance(trace, torch._C.Graph): |
| graph = trace |
| set_graph = False |
| else: |
| set_graph = True |
| graph = trace.graph() |
| |
| torch._C._jit_pass_lint(graph) |
| result = getattr(torch._C, '_jit_pass_' + name)(graph) |
| if result is not None: |
| graph = result |
| torch._C._jit_pass_lint(graph) |
| |
| if set_graph: |
| trace.set_graph(graph) |
| return graph |
| |
| def checkTrace(self, func, reference_tensors, input_tensors=None, |
| optimize=True, drop=None, allow_unused=False, |
| verbose=False, inputs_require_grads=True): |
| # TODO: check gradients for parameters, not just inputs |
| def allSum(vs): |
| # drop allows us to remove some values from ever being used |
| # to test unused outputs |
| if drop is not None: |
| vs = vs[:-drop] |
| # we don't want all the grad for all the outputs to be the same |
| # so we multiply each by a constant |
| return sum([(i + 1) * v.sum() for i, v in enumerate(vs) if v is not None]) |
| if input_tensors is None: |
| input_tensors = reference_tensors |
| |
| nograd_inputs = reference_tensors |
| if inputs_require_grads: |
| recording_inputs = [t.clone().requires_grad_() for t in reference_tensors] |
| else: |
| recording_inputs = reference_tensors |
| |
| if isinstance(func, torch._C.Graph): |
| ge = torch._C.GraphExecutor(func, optimize) |
| else: |
| ge = torch.jit.trace(*input_tensors, optimize=optimize)(func) |
| |
| if verbose: |
| print(ge.graph) |
| |
| # test no gradients case |
| outputs = func(*nograd_inputs) |
| outputs_ge = ge(*nograd_inputs) |
| self.assertEqual(outputs, outputs_ge) |
| |
| # test single grad case |
| outputs = func(*recording_inputs) |
| if inputs_require_grads: |
| grads = torch.autograd.grad(allSum(outputs), recording_inputs, |
| allow_unused=allow_unused) |
| |
| outputs_ge = ge(*recording_inputs) |
| if inputs_require_grads: |
| grads_ge = torch.autograd.grad(allSum(outputs_ge), recording_inputs, |
| allow_unused=allow_unused) |
| self.assertEqual(outputs, outputs_ge) |
| if inputs_require_grads: |
| self.assertEqual(grads, grads_ge) |
| |
| # test the grad grad case |
| |
| outputs = func(*recording_inputs) |
| l1 = allSum(outputs) |
| if inputs_require_grads: |
| grads = torch.autograd.grad(l1, recording_inputs, create_graph=True, |
| allow_unused=allow_unused) |
| if inputs_require_grads: |
| l2 = (allSum(grads) * l1) |
| grads2 = torch.autograd.grad(l2, recording_inputs, allow_unused=allow_unused) |
| |
| if inputs_require_grads: |
| recording_inputs = [Variable(t, requires_grad=True) |
| for t in reference_tensors] |
| |
| outputs_ge = ge(*recording_inputs) |
| l1_ge = allSum(outputs_ge) |
| if inputs_require_grads: |
| grads_ge = torch.autograd.grad( |
| l1_ge, recording_inputs, create_graph=True, allow_unused=allow_unused) |
| |
| if inputs_require_grads: |
| l2_ge = (allSum(grads_ge) * l1_ge) |
| grads2_ge = torch.autograd.grad(l2_ge, recording_inputs, allow_unused=allow_unused) |
| |
| self.assertEqual(outputs, outputs_ge) |
| if inputs_require_grads: |
| self.assertEqual(grads, grads_ge) |
| for g2, g2_ge in zip(grads2, grads2_ge): |
| if g2 is None and g2_ge is None: |
| continue |
| self.assertTrue(torch.allclose(g2, g2_ge, atol=7e-4, rtol=1e-4)) |
| |
| return ge |
| |
| |
| class TestJit(JitTestCase): |
| def assertExportImport(self, trace, inputs): |
| m = torch.jit.ScriptModule() |
| m._create_method_from_graph("forward", trace.graph()) |
| m_import = self.getExportImportCopy(m) |
| |
| self.assertEqual(m.forward(*inputs), m_import.forward(*inputs)) |
| |
| def test_simple(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| y = torch.tensor([0.7], requires_grad=True) |
| |
| def f(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, y)) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x, y)) |
| |
| def test_peephole(self): |
| a = torch.tensor([0.4], requires_grad=True) |
| b = torch.tensor([0.7], requires_grad=True) |
| c = torch.tensor([0], dtype=torch.int32) |
| |
| def f(x, y): |
| return x.type_as(y) |
| |
| trace, z = torch.jit.get_trace_graph(f, (a, b)) |
| self.run_pass('peephole', trace) |
| self.assertExpectedGraph(trace) |
| trace, z = torch.jit.get_trace_graph(f, (a, c)) |
| s = str(trace) |
| self.run_pass('peephole', trace) |
| self.assertEqual(s, str(trace)) |
| |
| def test_peephole_dynamic(self): |
| def f(x, y): |
| return x.type_as(y) |
| |
| fn = torch.jit.script(f) |
| s = str(fn.graph) |
| torch._C._jit_pass_peephole(fn.graph) |
| self.assertEqual(s, str(fn.graph)) |
| |
| @unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA") |
| def test_peephole_cuda(self): |
| a = torch.tensor([0.4], requires_grad=True, device='cpu') |
| b = torch.tensor([0.7], requires_grad=True, device='cuda') |
| c = torch.tensor([0.7], requires_grad=True, device='cuda') |
| |
| def f(x, y): |
| return x.type_as(y) |
| |
| trace, z = torch.jit.get_trace_graph(f, (a, c)) |
| s = str(trace) |
| self.run_pass('peephole', trace) |
| self.assertEqual(s, str(trace)) |
| trace, z = torch.jit.get_trace_graph(f, (b, c)) |
| self.run_pass('peephole', trace) |
| self.assertExpectedGraph(trace, subname="same_device") |
| |
| def test_index(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| y = torch.tensor([0], dtype=torch.int64) |
| |
| def fn(x, y): |
| return x[y] |
| |
| fn_traced = torch.jit.trace(x, y)(fn) |
| |
| self.assertEqual(fn(x, y), fn_traced(x, y)) |
| |
| # Backwards tracing was broken for indexing by a constant, |
| # because it's internally implemented using as_strided, |
| # and we attempted to trace its derivative (which is not |
| # currently supported.) It currently works because |
| # slice() is now not marked as traceable. |
| def test_index_constant(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| |
| def fn(x): |
| return x[0] |
| |
| def run(f): |
| y = f(x) |
| grad = torch.autograd.grad(y, x)[0].clone() |
| return y, grad |
| |
| traced_fn = torch.jit.trace(torch.ones(1))(fn) |
| self.assertEqual(run(fn), run(traced_fn)) |
| |
| def test_scopes(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| y = torch.tensor([0.7], requires_grad=True) |
| |
| def f(x, y): |
| out = x + y |
| with torch.jit.scope('Foo'): |
| out = x * out |
| with torch.jit.scope('Bar'): |
| out = torch.tanh(out) |
| out = torch.sigmoid(out) |
| return out |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, y)) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x, y)) |
| |
| def test_scopes_intermediate_node(self): |
| |
| class Net(nn.Module): |
| def forward(self, x): |
| return F.log_softmax(x, dim=0) |
| |
| net = Net() |
| t = torch.ones(2, requires_grad=True) |
| trace, _ = torch.jit.get_trace_graph(net, (t,)) |
| self.assertExportImport(trace, (t,)) |
| self.assertExpectedONNXGraph(trace) |
| |
| def test_scopes_identity_node(self): |
| |
| class Net(nn.Module): |
| |
| def __init__(self): |
| super(Net, self).__init__() |
| self.features = nn.Sequential( |
| nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
| nn.ReLU(inplace=True), |
| nn.MaxPool2d(kernel_size=3, stride=2), |
| ) |
| |
| def forward(self, x): |
| x = self.features(x) |
| return x |
| |
| model = Net() |
| |
| t = torch.ones(1, 3, 227, 227, requires_grad=True) |
| |
| with torch.onnx.set_training(model, False): |
| trace, _ = torch.jit.get_trace_graph(model, (t,)) |
| |
| self.assertExportImport(trace, (t,) + tuple(model.parameters())) |
| self.assertExpectedONNXGraph(trace) |
| |
| # TODO: Fuser doesn't work at all when inputs require grad. Fix that |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_lstm_fusion_cuda(self): |
| inputs = get_lstm_inputs('cuda') |
| ge = self.checkTrace(LSTMCellF, inputs) |
| self.assertExpectedGraph(ge.graph_for(*inputs)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746") |
| def test_lstm_fusion_cpu(self): |
| inputs = get_lstm_inputs('cpu') |
| try: |
| ge = self.checkTrace(LSTMCellF, inputs) |
| self.assertExpectedGraph(ge.graph_for(*inputs)) |
| except RuntimeError as e: |
| if 'Failed to compile' in e.args[0]: |
| warnings.warn('CPU fuser test has failed! This is not a hard failure, ' |
| 'because the kernels sometimes trigger bugs in compilers ' |
| '(most notably GCC 7.2).') |
| raise unittest.SkipTest('Failed to compile') |
| else: |
| raise |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_lstm_fusion_concat(self): |
| inputs = get_lstm_inputs('cuda') |
| ge = self.checkTrace(LSTMCellC, inputs) |
| self.assertExpectedGraph(ge.graph_for(*inputs)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_concat_fusion(self): |
| hx = torch.randn(3, 20, dtype=torch.float, device='cuda') |
| cx = torch.randn(3, 20, dtype=torch.float, device='cuda') |
| |
| def foo(hx, cx): |
| return torch.cat((hx + cx, hx * cx)) |
| |
| ge = self.checkTrace(foo, (hx, cx)) |
| self.assertExpectedGraph(ge.graph_for(hx, cx)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_concat_fusion_invariant_cuda(self): |
| # Invariant: the output of prim::FusedConcat may |
| # not be an input to any node inside the FusionGroup. |
| def fn(x, y, z): |
| x1 = x + y |
| y1 = x - y |
| w = torch.cat([x1, y1]) |
| return w + z |
| |
| x = torch.randn(2, 2, dtype=torch.float, device='cuda') |
| y = torch.randn(2, 2, dtype=torch.float, device='cuda') |
| z = torch.randn(4, 2, dtype=torch.float, device='cuda') |
| ge = self.checkTrace(fn, (x, y, z)) |
| self.assertExpectedGraph(ge.graph_for(x, y, z)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_fusion_distribute(self): |
| def f(x, y): |
| z1, z2 = (x + y).chunk(2, dim=1) |
| return z1 * z2 |
| |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(f, (x, y)) |
| self.assertExpectedGraph(ge.graph_for(x, y)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_fusion_rand(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['d'] |
| |
| def __init__(self): |
| self.d = torch.device('cuda') |
| |
| @torch.jit.script_method |
| def create(self, x): |
| return x * x + x + torch.rand_like(x) |
| |
| x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda') |
| m = M() |
| out1 = m.create(x) |
| out2 = m.create(x) |
| self.assertNotEqual(out1, out2) |
| self.assertTrue(torch.all(out1 >= 0)) |
| self.assertTrue(torch.all(out1 < 1)) |
| self.assertTrue(torch.all(out2 >= 0)) |
| self.assertTrue(torch.all(out2 < 1)) |
| |
| @staticmethod |
| def fn_test_comparison_gt_lt(x, y): |
| mask = (x > 0).type_as(x) |
| z = x * mask + y |
| mask = (x < 0).type_as(x) |
| z = z * mask + y |
| return z |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_comparison_gt_lt(self): |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_comparison_ge_le(self): |
| def f(x, y): |
| mask = (x >= 0).type_as(x) |
| z = x * mask + y |
| mask = (x <= 0).type_as(x) |
| z = z * mask + y |
| return z |
| |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(f, (x, y)) |
| |
| @staticmethod |
| def fn_test_relu(x, y): |
| return F.relu(x + .5 * y) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_relu(self): |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(self.fn_test_relu, (x, y)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| def test_small_constant(self): |
| def fn_test_small_constant(x, y): |
| return (1e-8 * x + 5e-9 * y) * 1e8 |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(fn_test_small_constant, (x, y)) |
| |
| @staticmethod |
| def fn_test_exp(x, y): |
| return (x + .5 * y).exp() |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @skipIfRocm |
| def test_exp(self): |
| x = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.float, device='cuda') |
| |
| ge = self.checkTrace(self.fn_test_exp, (x, y)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "fuser requires CUDA") |
| @unittest.skipIf(not RUN_CUDA_HALF, "no half support") |
| def test_cuda_half(self): |
| x = torch.randn(4, 4, dtype=torch.half, device='cuda') |
| y = torch.randn(4, 4, dtype=torch.half, device='cuda') |
| |
| funcs = [ |
| self.fn_test_comparison_gt_lt, |
| self.fn_test_relu, |
| self.fn_test_exp |
| ] |
| |
| # Note: Non fused inputs must be float to prevent loss of precision |
| inputs = (x.float(), y.float()) |
| fusion_inputs = (x, y) |
| for fn in funcs: |
| local_inputs = [t.clone().requires_grad_() for t in inputs] |
| local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs] |
| |
| # Verifies outputs |
| fusion = torch.jit.trace(*local_fusion_inputs, optimize=True)(fn) |
| outputs = fn(*local_inputs) |
| fusion_outputs = fusion(*local_fusion_inputs) |
| outputs_half = [t.half() for t in outputs] |
| self.assertEqual(outputs_half, fusion_outputs) |
| |
| # Verifies gradients |
| for output, fusion_output in zip(outputs_half, fusion_outputs): |
| grads = torch.autograd.grad( |
| output.float().sum(), local_inputs, allow_unused=True, retain_graph=True) |
| fusion_grads = torch.autograd.grad( |
| fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True) |
| grads_half = [t.half() for t in grads] |
| self.assertEqual(grads_half, fusion_grads) |
| |
| # TODO: adapt this test to check that GraphExecutor treats them differently |
| @unittest.skip("Need to be adjusted to Graph Executor") |
| def test_arg_configurations(self): |
| """Different arg configurations should trigger different traces""" |
| x = Variable(torch.FloatTensor(4, 4).uniform_()) |
| x_double = Variable(x.data.double()) |
| x_grad = Variable(x.data.clone(), requires_grad=True) |
| y = Variable(torch.randn(4)) |
| |
| configurations = [ |
| (x,), |
| (x_double,), |
| (x_grad,), |
| (y,), |
| ([x, x],), |
| ([x, y],), |
| ] |
| if torch.cuda.is_available(): |
| x_cuda = Variable(x.data.cuda()) |
| configurations += [ |
| (x_cuda,), |
| ([x, x_cuda],), |
| ([x_cuda, x],), |
| ([[x_cuda, x]],), |
| ] |
| if torch.cuda.device_count() > 1: |
| x_cuda_1 = Variable(x.data.cuda(1)) |
| configurations += [ |
| (x_cuda_1,), |
| ([x_cuda, x_cuda_1],), |
| ] |
| |
| @torch.jit.compile(nderivs=0) |
| def fn(*args): |
| in_vars, _ = torch._C._jit_flatten(args) |
| return in_vars[0] + 1 |
| |
| for i, config in enumerate(configurations): |
| self.assertFalse(fn.has_trace_for(*config)) |
| fn(*config) |
| self.assertTrue(fn.has_trace_for(*config)) |
| for unk_config in configurations[i + 1:]: |
| self.assertFalse(fn.has_trace_for(*unk_config)) |
| self.assertEqual(fn.hits, 0) |
| |
| def test_cse(self): |
| x = torch.tensor([0.4, 0.3], requires_grad=True) |
| y = torch.tensor([0.7, 0.5], requires_grad=True) |
| |
| def fn(x, y): |
| w = (x + y) * (x + y) * (x + y) |
| t = torch.tanh(w) + torch.tanh(w) |
| z = (x + y) * (x + y) * (x + y) + t |
| return z |
| |
| trace, _ = torch.jit.get_trace_graph(fn, (x, y)) |
| self.run_pass('cse', trace) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x, y)) |
| |
| def test_scalar(self): |
| # NB: must not require grad; if it requires grad, it's always a Tensor |
| x = torch.tensor(2.) |
| y = torch.tensor(3.) |
| |
| def fn(x, y): |
| return x - y |
| trace, _ = torch.jit.get_trace_graph(fn, (x, y)) |
| |
| def test_shape_analysis_broadcast(self): |
| def broadcast(a, b): |
| return a + b |
| |
| x = torch.randn(3, 1, 5, requires_grad=True) |
| y = torch.randn(4, 1, 8, 5, requires_grad=True) |
| |
| graph = torch.jit.script(broadcast).graph |
| torch._C._jit_pass_shape_analysis(graph, (x, y), False) |
| self.assertExpectedGraph(graph) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device") |
| def test_fuse_last_device(self): |
| device = 'cuda:' + str(1) |
| x = torch.tensor([0.4], dtype=torch.float, device=device) |
| y = torch.tensor([0.7], dtype=torch.float, device=device) |
| |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y) + x)) |
| |
| ge = self.checkTrace(doit, (x, y)) |
| self.assertExpectedGraph(ge.graph_for(x, y)) |
| |
| # TODO: update verify to work with GraphExecutors |
| @unittest.skip("verify needs to be updated to work with GraphExecutors") |
| def test_verify(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| y = torch.tensor([0.7], requires_grad=True) |
| |
| @torch.jit.compile |
| def f(x, y): |
| z = torch.sigmoid(x * (x + y)) |
| w = torch.abs(x * x * x + y) + Variable(torch.ones(1)) |
| return z, w |
| |
| torch.jit.verify(f, (x, y), loss_fn=lambda z, w: z * w, devices=[]) |
| |
| def test_constant(self): |
| x = torch.randn(2, 2, requires_grad=True) |
| |
| def f(x): |
| return x.matmul(torch.diag(torch.tensor([2., 2.]))) |
| |
| self.checkTrace(f, (x,), (torch.ones(2, 2, requires_grad=True),)) |
| |
| def test_legacy_fail(self): |
| class MyLegacyFn(Function): |
| def forward(self, x): |
| return x |
| |
| def backward(self, grad_output): |
| return grad_output |
| |
| x = torch.tensor([0.], requires_grad=True) |
| with self.assertRaisesRegex(RuntimeError, "MyLegacyFn"): |
| torch.jit.get_trace_graph(lambda x: MyLegacyFn()(x), (x,)) |
| |
| def test_inplace_transplant(self): |
| x = torch.tensor([0.], requires_grad=True) |
| |
| def fn(x): |
| y = x.clone() |
| y.add_(2) |
| y.add_(3) |
| return y |
| |
| trace, _ = torch.jit.get_trace_graph(fn, (x,)) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x,)) |
| |
| def test_inplace_flags(self): |
| class InplaceFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| ctx.mark_dirty(x) |
| return x.add_(1) |
| |
| @staticmethod |
| def backward(ctx, go): |
| return go |
| |
| class RegularFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x.add(1) |
| |
| @staticmethod |
| def backward(ctx, go): |
| return go |
| |
| x = torch.tensor([0.], requires_grad=True) |
| |
| def fn(x): |
| y = RegularFn.apply(x) |
| y = InplaceFn.apply(y) |
| y = InplaceFn.apply(y) |
| y = RegularFn.apply(y) |
| return y |
| |
| trace, _ = torch.jit.get_trace_graph(fn, (x,)) |
| self.run_pass('dce', trace) |
| ops = [n for n in trace.graph().nodes()] |
| for op in ops: |
| self.assertTrue(op.hasAttribute('inplace')) |
| inplace_flags = [False, True, True, False] |
| for op, is_inplace in zip(ops, inplace_flags): |
| self.assertEqual(op.i('inplace'), is_inplace) |
| |
| def test_inplace_check(self): |
| class MyInplaceFn(Function): |
| @staticmethod |
| def forward(self, x): |
| x.add_(1) |
| self.mark_dirty(x) |
| return x |
| |
| @staticmethod |
| def backward(self, grad): |
| return grad |
| |
| def fn(x): |
| return MyInplaceFn.apply(x) |
| |
| x = torch.randn(5, 5) |
| ge = torch._C.GraphExecutor(fn, (x,)) |
| with self.assertRaisesRegex(RuntimeError, 'inplace MyInplaceFn'): |
| ge(x) |
| |
| def do_trace_size(self, requires_grad): |
| def fn(x): |
| return x.view(x.shape[1] * 2, x.size(0), 2) |
| |
| x = torch.randn(5, 2, 4, requires_grad=requires_grad) |
| y = torch.randn(4, 8, 4, requires_grad=requires_grad) |
| |
| # Check that it behaves as expected |
| traced_fn = torch.jit.trace(x)(fn) |
| self.assertEqual(traced_fn(y), fn(y)) |
| self.assertEqual(traced_fn(x), fn(x)) |
| |
| # Check that the trace looks ok |
| trace, _ = torch.jit.get_trace_graph(fn, (x,)) |
| self.assertExpectedGraph(trace) |
| |
| def test_trace_size(self): |
| self.do_trace_size(False) |
| |
| # test the different graph_executor path that happens when |
| # gradients are required and sizes are involved |
| def test_trace_size_with_grad(self): |
| self.do_trace_size(True) |
| |
| # TODO: implement |
| @unittest.expectedFailure |
| def test_output_unflatten(self): |
| """Check that outputs of traced functions retain the original structure and nesting""" |
| def fn(x): |
| return (x * 2, (x ** 2, x + 4, (x + 2,), ), x * 4) |
| |
| self.checkTrace(fn, (torch.randn(2, 2),)) |
| |
| # TODO: implement |
| @unittest.expectedFailure |
| def test_input_flatten(self): |
| """Check that inputs to traced functions are flattened""" |
| |
| def fn(x, t): |
| y, z = t |
| return x * y * z |
| |
| inputs = (torch.randn(1), (torch.randn(1), torch.randn(1))) |
| self.checkTrace(fn, inputs) |
| |
| # TODO: adapt to a GraphExecutor test |
| @unittest.skip("Need to instrument GraphExecutors a bit more") |
| def test_flags(self): |
| x, y = torch.randn(2, 2) |
| y = Variable(torch.randn(2, 2)) |
| |
| @torch.jit.compile |
| def fn(x, y): |
| return (x * x + y * y + x * y).sum() |
| |
| grads = {} |
| for rx, ry in product((True, False), repeat=2): |
| x.requires_grad = rx |
| y.requires_grad = ry |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| out = fn(x, y) |
| |
| self.assertFalse(fn.has_trace_for(x, y)) |
| for v, name, compute in [(x, 'x', rx), (y, 'y', ry)]: |
| if not compute: |
| continue |
| grad_v, = torch.autograd.grad(out, v, retain_graph=True) |
| expected_grad = grads.setdefault(name, grad_v) |
| self.assertEqual(grad_v, expected_grad) |
| self.assertEqual(fn.has_trace_for(x, y), rx or ry) |
| |
| def test_python_ir(self): |
| x = torch.tensor([0.4], requires_grad=True) |
| y = torch.tensor([0.7], requires_grad=True) |
| |
| def doit(x, y): |
| return torch.sigmoid(torch.tanh(x * (x + y))) |
| |
| trace, _ = torch.jit.get_trace_graph(doit, (x, y)) |
| self.run_pass('dce', trace) |
| self.run_pass('canonicalize', trace) |
| g = trace.graph() |
| g2 = torch._C.Graph() |
| g_to_g2 = {} |
| for node in g.inputs(): |
| g_to_g2[node] = g2.addInput() |
| for node in g.nodes(): |
| n_ = g2.createClone(node, lambda x: g_to_g2[x]) |
| g2.appendNode(n_) |
| for o, no in zip(node.outputs(), n_.outputs()): |
| g_to_g2[o] = no |
| |
| for node in g.outputs(): |
| g2.registerOutput(g_to_g2[node]) |
| |
| t_node = g2.create("prim::TensorTest").t_("a", torch.ones([2, 2])) |
| self.assertEqual(t_node.attributeNames(), ["a"]) |
| g2.appendNode(t_node) |
| self.assertTrue(torch.equal(torch.ones(2, 2), t_node.t("a"))) |
| self.assertExpected(str(g2)) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "cpp tests require CUDA") |
| @skipIfRocm |
| def test_cpp(self): |
| # rather than rebuild assertExpected in cpp, |
| # just glob all the cpp outputs into one file for now |
| self.assertExpected(torch._C._jit_run_cpp_tests()) |
| |
| def test_batchnorm(self): |
| x = torch.ones(2, 2, 2, 2) |
| trace, _ = torch.jit.get_trace_graph(nn.BatchNorm2d(2), x) |
| self.assertExpectedGraph(trace) |
| |
| def test_dropout(self): |
| x = torch.ones(2, 2) |
| trace, _ = torch.jit.get_trace_graph(nn.Dropout(0.6), x) |
| self.assertExpectedGraph(trace) |
| |
| def test_conv(self): |
| x = torch.ones(20, 16, 50, 40) |
| trace, _ = torch.jit.get_trace_graph(nn.Conv2d(16, 13, 3, bias=False), x) |
| self.assertExpectedGraph(trace) |
| |
| def test_repeated_input(self): |
| def fn(a, b): |
| return a + b |
| |
| ge = self.checkTrace(fn, [torch.randn(2, 2)] * 2) |
| self.assertExpectedGraph(ge.graph) |
| |
| def test_repeated_output(self): |
| def fn(a, b): |
| z = a + b |
| return z, z |
| |
| ge = self.checkTrace(fn, [torch.randn(2, 2) for _ in range(2)]) |
| self.assertExpectedGraph(ge.graph) |
| |
| @skipIfNoTorchVision |
| def test_alexnet(self): |
| x = torch.ones(1, 3, 224, 224) |
| trace, _ = torch.jit.get_trace_graph(torchvision.models.AlexNet(), x) |
| self.run_pass('cse', trace) |
| self.assertExpectedGraph(trace) |
| |
| # Inplace copies don't work with tracer yet. |
| # This is actually somewhat important to support correctly |
| # as all backwards functions of views are implemented |
| # as a zero filled tensor with a gradient fill on the |
| # viewed portion. |
| @unittest.expectedFailure |
| def test_inplace_copy(self): |
| x = torch.randn(4, 4, requires_grad=True) |
| |
| def f(x): |
| out = Variable(torch.zeros(x.size())) |
| out.copy_(x) |
| return out |
| |
| trace, z = torch.jit.get_trace_graph(f, (x, )) |
| self.run_pass('dce', trace) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x,)) |
| |
| def test_shared_param(self): |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| self.b = self.a = nn.Parameter(torch.randn(2, 2)) |
| |
| def forward(self, x): |
| return x * self.a + self.b |
| |
| m = MyModule() |
| trace, _ = torch.jit.get_trace_graph(m, (torch.randn(2, 2),)) |
| self.assertEqual(len(list(trace.graph().inputs())), 2) |
| self.assertExpectedGraph(trace) |
| |
| def test_nested_inplace(self): |
| x = torch.randn(2, 2) |
| trace, _ = torch.jit.get_trace_graph(lambda x: F.threshold(x, 0, 0, inplace=True), (x,)) |
| self.assertExpectedGraph(trace) |
| self.assertExportImport(trace, (x,)) |
| |
| def run_ge_tests(self, optimize, use_cuda): |
| def rand(*args): |
| t = torch.rand(*args).float() |
| if use_cuda: |
| t = t.cuda() |
| return t |
| self.checkTrace(lambda a, b: a * b + b, |
| [rand(1), rand(1)], [rand(2, 3), rand(2, 3)], |
| optimize=optimize) |
| # trivial identity |
| self.checkTrace(lambda a, b: ( |
| b, a), [rand(1), rand(1)], optimize=optimize) |
| |
| def foo(a): |
| t = a * a |
| return t * t, 4 * t |
| self.checkTrace(foo, [rand(1)], optimize=optimize) |
| # unused input |
| self.checkTrace( |
| lambda a, b: a * a, [rand(1), rand(1)], optimize=optimize, |
| allow_unused=True) |
| # test outputs that do not get used in grad |
| self.checkTrace(foo, [rand(1)], drop=1, optimize=optimize) |
| # test autograd fallback |
| self.checkTrace(lambda a, b: a * b / |
| (a - 2 * b) + b, [rand(1), rand(1)], |
| optimize=optimize) |
| |
| def test_ge_unoptimized(self): |
| self.run_ge_tests(False, False) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| def test_ge_optimized(self): |
| self.run_ge_tests(True, False) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "requires CUDA") |
| @skipIfRocm |
| def test_ge_cuda(self): |
| self.run_ge_tests(True, True) |
| |
| # more manual test of graph executor that can be used as a scratchpad |
| def test_ge(self): |
| def foo(a, b): |
| return a * b / (a - b) + b |
| V = Variable |
| a, b = V(torch.rand(1)), V(torch.rand(1)) |
| ge = torch._C.GraphExecutor(foo, (a, b)) |
| a, b = V(torch.rand(1), requires_grad=True), V( |
| torch.rand(1), requires_grad=True) |
| r, = ge(a, b) |
| da, db = torch.autograd.grad(r + 3, [a, b], create_graph=True) |
| |
| l2 = (da * db + db * db) |
| g2result = torch.autograd.grad(l2, [da, db]) |
| |
| r = foo(a, b) |
| da2, db2 = torch.autograd.grad(r + 3, [a, b], create_graph=True) |
| self.assertEqual(da, da2) |
| self.assertEqual(db, db2) |
| l3 = (da2 * db2 + db2 * db2) |
| g2result2 = torch.autograd.grad(l3, [da2, db2]) |
| self.assertEqual(g2result, g2result2) |
| |
| def test_trace_annotation(self): |
| @torch.jit.trace(torch.rand(1)) |
| def foo(a): |
| return a + a + a |
| |
| x = torch.randn(5, 5) |
| self.assertEqual(foo(x), x + x + x) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| @unittest.skipIf(not RUN_CUDA, "calls .cuda()") |
| @skipIfRocm |
| def test_traced_module(self): |
| class Model(nn.Module): |
| def __init__(self, num_features, num_layers): |
| super(Model, self).__init__() |
| self.num_layers = num_layers |
| layers = [[nn.Linear(num_features, num_features), nn.Sigmoid()] |
| for _ in range(num_layers)] |
| self.submodule = nn.Sequential(*chain(*layers)) |
| |
| def forward(self, x): |
| for i in range(self.num_layers): |
| x = self.submodule[i](x) + x |
| return x |
| |
| model = Model(5, 3) |
| x = torch.randn(2, 5) |
| traced_model = torch.jit.trace(x)(model) |
| |
| # We're missing some attributes these modules had initially. Make sure we can |
| # still get the __repr__() |
| model.__repr__() |
| |
| # XXX: indexing sequentials is broken |
| linear_submodule = next(iter(traced_model.submodule._modules.values())) |
| |
| # All attributes that aren't parameters should raise |
| with self.assertRaises(AttributeError): |
| linear_submodule.in_features |
| linear_submodule.weight |
| with self.assertRaises(RuntimeError): |
| traced_model.asdf = 4 |
| linear_submodule.weight = nn.Parameter(torch.randn(linear_submodule.weight.shape)) |
| with self.assertRaises(RuntimeError): |
| del linear_submodule.weight |
| |
| # Submodules can't be called |
| with self.assertRaises(RuntimeError): |
| linear_submodule(x) |
| |
| # Type casts |
| linear_submodule.cuda() |
| traced_model.float().cuda() |
| cuda_out = traced_model(x.float().cuda()) |
| traced_model.cpu() |
| cpu_out = traced_model(x.float()) |
| self.assertEqual(cpu_out, cuda_out) |
| traced_model.double() |
| |
| # state_dict + load_state_dict |
| state = {k: v.clone() for k, v in traced_model.state_dict().items()} |
| new_state = {k: v.clone().fill_(1) for k, v in state.items()} |
| out = traced_model(x) |
| traced_model.load_state_dict(new_state) |
| out_ones = traced_model(x) |
| traced_model.load_state_dict(state) |
| out_state = traced_model(x) |
| self.assertEqual(out, out_state) |
| self.assertNotEqual(out, out_ones) |
| |
| def test_python_function(self): |
| class MyFn(Function): |
| @staticmethod |
| def forward(ctx, x): |
| return x + 1 |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| return grad_output |
| |
| @torch.jit.trace(torch.zeros(2)) |
| def fn(x): |
| return MyFn.apply(x + 2) + 3 |
| |
| x = torch.tensor([1., 2., 3.]) |
| y = torch.randn(2, 2, requires_grad=True) |
| fn(x) |
| fn(y) |
| |
| def test_decompose_addmm(self): |
| @torch.jit.script |
| def addmm(mat, mat1, mat2, alpha, beta): |
| a = mat.addmm(mat1, mat2) |
| b = mat.addmm(mat1, mat2, alpha=1.0, beta=1.0) |
| c = mat.addmm(mat1, mat2, alpha=4.20, beta=2.0) |
| d = mat.addmm(mat1, mat2, alpha=int(alpha), beta=int(beta)) |
| |
| return a + b + c + d |
| |
| mat = torch.randn(2, 2) |
| mat1 = torch.randn(2, 4) |
| mat2 = torch.randn(4, 2) |
| alpha = torch.FloatTensor([123.0]) |
| beta = torch.FloatTensor([321.0]) |
| |
| out_ref = addmm(mat, mat1, mat2, alpha, beta) |
| self.run_pass('decompose_addmm', addmm.graph) |
| out_test = addmm(mat, mat1, mat2, alpha, beta) |
| self.assertEqual(out_ref, out_test) |
| self.assertExpected(canonical(addmm.graph)) |
| |
| def test_index_put(self): |
| ten = torch.zeros(3, 3) |
| mask = torch.Tensor([[True, True, True], |
| [True, False, False], |
| [True, True, False]]).byte() |
| |
| def test_fn(ten, mask): |
| ten[mask] = torch.ones(6) |
| return ten |
| |
| traced_test_fn = torch.jit.trace(ten, mask)(test_fn) |
| |
| ten = torch.rand(3, 3) |
| self.assertEqual(test_fn(ten, mask), traced_test_fn(ten, mask)) |
| |
| def test_constant_prop_simple(self): |
| @torch.jit.script |
| def constant_prop(input_tensor): |
| a = 2 * 3 |
| b = a + 2 |
| return b + input_tensor |
| |
| x = torch.tensor(2) |
| out_ref = constant_prop(x) |
| self.run_pass('constant_propagation', constant_prop.graph) |
| out_test = constant_prop(torch.tensor(2)) |
| self.assertEqual(out_ref, out_test) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| def test_constant_prop_nested(self): |
| @torch.jit.script |
| def constant_prop(a): |
| b = 2 + 1 |
| if a < 2: |
| c = b + 2 |
| else: |
| c = b - 2 |
| return c |
| |
| out_ref = constant_prop(torch.tensor(2)) |
| self.run_pass('constant_propagation', constant_prop.graph) |
| out_test = constant_prop(torch.tensor(2)) |
| self.assertEqual(out_ref, out_test) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| def test_constant_prop_print(self): |
| @torch.jit.script |
| def constant_prop(input_tensor): |
| a = 2 * 3 + FIXME_zerol() |
| print(a) |
| b = a + 2 |
| return b + input_tensor |
| |
| self.run_pass('constant_propagation', constant_prop.graph) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| def test_constant_prop_rand(self): |
| @torch.jit.script |
| def constant_prop(): |
| a = torch.randn([3]) |
| b = a + 2 |
| return b |
| |
| self.run_pass('constant_propagation', constant_prop.graph) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| # TODO: implement |
| @unittest.expectedFailure |
| def test_constant_prop_if_constant(self): |
| @torch.jit.script |
| def constant_prop(): |
| b = 3 |
| if True: |
| b = 1 |
| if False: |
| b = 2 |
| return b |
| |
| self.run_pass('constant_propagation', constant_prop.graph) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| # TODO: implement |
| @unittest.expectedFailure |
| def test_constant_prop_loop_constant(self): |
| @torch.jit.script |
| def constant_prop(): |
| b = 0 |
| while True: |
| b = 1 |
| while False: |
| b = 2 |
| return b |
| |
| self.run_pass('constant_propagation', constant_prop.graph) |
| self.assertExpected(canonical(constant_prop.graph)) |
| |
| |
| class TestBatched(TestCase): |
| # generate random examples and create an batchtensor with them |
| def rand_batch(self, *dims): |
| dims = [dim for dim in dims if dim != ()] |
| xs = [torch.rand(1, *(random.randint(1, size) if b else size for b, size in dims[1:]), |
| requires_grad=True) for i in range(dims[0])] |
| xb = BatchTensor(xs, torch.tensor([b for b, d in dims[1:]]).byte()) |
| return xs, xb |
| |
| def test_create_batchtensor(self): |
| # create from tensorlist |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2), (True, 5)) |
| self.assertEqual(xs, batch.examples()) |
| # create from data, mask, dims |
| batch2 = BatchTensor(batch.get_data(), batch.get_mask(), batch.get_dims()) |
| self.assertEqual(xs, batch2.examples()) |
| # expand a tensor to a batchtensor given batch_size |
| xs = torch.rand(3, 4, 5) |
| batch3 = BatchTensor(xs, 2) |
| xs = xs.unsqueeze(0) |
| self.assertEqual([xs, xs], batch3.examples()) |
| |
| def test_batch_elementwise_unary(self): |
| @torch.jit.batch(batch_size=4) |
| def tanh(a): |
| return torch.tanh(a) |
| |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2)) |
| res_batch = tanh(batch) |
| res = [torch.tanh(xs[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_elementwise_binary(self): |
| @torch.jit.batch(batch_size=4) |
| def add(a, b): |
| return a + b |
| |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2)) |
| xs2, batch2 = xs, batch |
| res_batch = add(batch, batch2) |
| res = [torch.add(xs[j], xs2[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| # test broadcast |
| xs, batch = self.rand_batch(4, (False, 3), (False, 2)) |
| b = torch.rand(3, 2) |
| res_batch = add(batch, b) |
| res = [torch.add(xs[j], b) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_mm(self): |
| @torch.jit.batch(batch_size=4) |
| def mm(a, b): |
| return torch.mm(a, b) |
| |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 2), (True, 3)) |
| res_batch = mm(batch, batch2) |
| res = [torch.mm(xs[j].squeeze(0), xs2[j].squeeze(0)).unsqueeze(0) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| # test broadcast |
| b = torch.rand(2, 4) |
| res_batch = mm(batch, b) |
| res = [torch.mm(xs[j].squeeze(0), b).unsqueeze(0) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_matmul(self): |
| @torch.jit.batch(batch_size=4) |
| def matmul(a, b): |
| return torch.matmul(a, b) |
| |
| def matmul_test(xs, batch, xs2, batch2): |
| ys = [torch.matmul(xs[j].squeeze(0), xs2[j].squeeze(0)).unsqueeze(0) for j in range(4)] |
| ybs = matmul(batch, batch2) |
| self.assertEqual(ys, ybs.examples()) |
| |
| # 1 dimension * 1 dimension |
| xs, batch = self.rand_batch(4, (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 2)) |
| matmul_test(xs, batch, xs2, batch2) |
| # 1 dimension * 2 dimension |
| xs, batch = self.rand_batch(4, (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 2), (True, 3)) |
| matmul_test(xs, batch, xs2, batch2) |
| # 2 dimension * 1 dimensions |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 2)) |
| matmul_test(xs, batch, xs2, batch2) |
| # 2 dimension * 2 dimension |
| xs, batch = self.rand_batch(4, (True, 3), (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 2), (True, 3)) |
| matmul_test(xs, batch, xs2, batch2) |
| |
| def test_batch_select(self): |
| @torch.jit.batch(batch_size=4) |
| def select(x): |
| return torch.select(x, 1, 0) |
| |
| xs, batch = self.rand_batch(4, (True, 3), (True, 2)) |
| res_batch = select(batch) |
| res = [torch.select(xs[j], 1, 0) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| xs, batch = self.rand_batch(4, (False, 3), (True, 2)) |
| res_batch = select(batch) |
| res = [torch.select(xs[j], 1, 0) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_index_select(self): |
| @torch.jit.batch(batch_size=4) |
| def index_select(x, ind): |
| return x.index_select(1, ind) |
| |
| xs, batch = self.rand_batch(4, (False, 5), (True, 2)) |
| ind = [torch.randint(0, 4, (1,), dtype=torch.long) for i in range(4)] |
| ind_batch = BatchTensor(ind, torch.tensor([]).byte()) |
| res_batch = index_select(batch, ind_batch) |
| res = [torch.index_select(xs[j], 1, ind[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_where(self): |
| @torch.jit.batch(batch_size=4) |
| def where(c, a, b): |
| return torch.where(c, a, b) |
| |
| xs, batch = self.rand_batch(4, (False, 3), (False, 2)) |
| xs2, batch2 = self.rand_batch(4, (False, 3), (False, 2)) |
| |
| dims = [4, (False, 3), (False, 2)] |
| xs_cond = [torch.rand(1, 3, 2).byte() for i in range(dims[0])] |
| batch_cond = BatchTensor(xs_cond, torch.tensor([b for b, d in dims[1:]])) |
| |
| res_batch = where(batch_cond, batch, batch2) |
| res = [torch.where(xs_cond[j], xs[j], xs2[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_argmax(self): |
| @torch.jit.batch(batch_size=4) |
| def argmax(a): |
| return torch.argmax(a, 1) |
| |
| xs, batch = self.rand_batch(4, (True, 5), (True, 6)) |
| res_batch = argmax(batch) |
| res = [torch.argmax(xs[j], 1) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| @torch.jit.batch(batch_size=4) |
| def argmax(a): |
| return torch.argmax(a, 1, False) |
| |
| res_batch = argmax(batch) |
| res = [torch.argmax(xs[j], 1, False) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_topk(self): |
| @torch.jit.batch(batch_size=4) |
| def topk(a): |
| return torch.topk(a, 3, 1) |
| |
| xs, batch = self.rand_batch(4, (False, 5), (True, 6)) |
| |
| # along static dim |
| res_batch = topk(batch) |
| res = [torch.topk(xs[j], 3, 1)[0] for j in range(4)] |
| res_idx = [torch.topk(xs[j], 3, 1)[1] for j in range(4)] |
| self.assertEqual(res, res_batch[0].examples()) |
| self.assertEqual(res_idx, res_batch[1].examples()) |
| |
| @torch.jit.batch(batch_size=4) |
| def topk(a): |
| return torch.topk(a, 1, 2) |
| |
| # along dynamic dim |
| res_batch = topk(batch) |
| res = [torch.topk(xs[j], 1, 2)[0] for j in range(4)] |
| res_idx = [torch.topk(xs[j], 1, 2)[1] for j in range(4)] |
| self.assertEqual(res, res_batch[0].examples()) |
| self.assertEqual(res_idx, res_batch[1].examples()) |
| |
| def test_batch_softmax(self): |
| @torch.jit.batch(batch_size=4) |
| def softmax(a): |
| return torch.softmax(a, 1) |
| |
| xs, batch = self.rand_batch(4, (False, 5), (True, 6)) |
| |
| # along static dim |
| res_batch = softmax(batch) |
| res = [torch.softmax(xs[j], 1) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| @torch.jit.batch(batch_size=4) |
| def softmax(a): |
| return torch.softmax(a, 2) |
| |
| # along dynamic dim |
| res_batch = softmax(batch) |
| res = [torch.softmax(xs[j], 2) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_view(self): |
| @torch.jit.batch(batch_size=4) |
| def view(a): |
| return a.view([4, -1, 3]) |
| |
| xs, batch = self.rand_batch(4, (True, 5), (False, 3)) |
| res_batch = view(batch) |
| res = [xs[j].view([1, -1, 3]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_cat(self): |
| @torch.jit.batch(batch_size=4) |
| def cat2(a, b): |
| return torch.cat([a, b], 2) |
| |
| xs, batch = self.rand_batch(4, (True, 5), (False, 3)) |
| xs2, batch2 = xs, batch |
| res_batch = cat2(batch, batch2) |
| res = [torch.cat([xs[j], xs2[j]], 2) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_batch_sum(self): |
| @torch.jit.batch(batch_size=4) |
| def batch_sum(a): |
| return a.sum() |
| |
| xs, batch = self.rand_batch(4, (True, 5), (False, 3)) |
| res_batch = batch_sum(batch) |
| res = [xs[j].sum().unsqueeze(0) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| def test_if_else(self): |
| def single_if(a, b): |
| if a > b: |
| a = a + b |
| else: |
| a = a - b |
| return a |
| |
| batch_if = torch.jit.batch(batch_size=4)(single_if) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b, batch_b = self.rand_batch(4, ()) |
| res_batch = batch_if(batch_a, batch_b) |
| res = [single_if(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_if = torch.jit.script(single_if) |
| graph = torch.to_batch_graph(script_if.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_if_else_with_scalar(self): |
| def single_if(a, b): |
| if a > 0.1: |
| a = a + b |
| else: |
| a = a - b |
| return a |
| |
| batch_if = torch.jit.batch(batch_size=4)(single_if) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b, batch_b = self.rand_batch(4, ()) |
| res_batch = batch_if(batch_a, batch_b) |
| res = [single_if(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_if = torch.jit.script(single_if) |
| graph = torch.to_batch_graph(script_if.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_if_noelse(self): |
| def single_if(a, b): |
| if a > b: |
| a = a + b |
| return a |
| |
| batch_if = torch.jit.batch(batch_size=4)(single_if) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b, batch_b = self.rand_batch(4, ()) |
| res_batch = batch_if(batch_a, batch_b) |
| res = [single_if(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_if = torch.jit.script(single_if) |
| graph = torch.to_batch_graph(script_if.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_if_noelse_with_scalar(self): |
| def single_if(a, b): |
| if a > 0.1: |
| a = a + b |
| return a |
| |
| batch_if = torch.jit.batch(batch_size=4)(single_if) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b, batch_b = self.rand_batch(4, ()) |
| res_batch = batch_if(batch_a, batch_b) |
| res = [single_if(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_if = torch.jit.script(single_if) |
| graph = torch.to_batch_graph(script_if.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_while(self): |
| def single_while(a, b): |
| while a > b: |
| a = a - b |
| return a |
| |
| batch_while = torch.jit.batch(batch_size=4)(single_while) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b = [torch.abs(torch.rand(1)) for i in range(4)] |
| batch_b = BatchTensor(b, torch.tensor([]).byte()) |
| res_batch = batch_while(batch_a, batch_b) |
| res = [single_while(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_while = torch.jit.script(single_while) |
| graph = torch.to_batch_graph(script_while.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_for(self): |
| def single_for(x, y): |
| for _ in range(10): |
| x = x + y |
| return x |
| |
| batch_for = torch.jit.batch(batch_size=4)(single_for) |
| |
| a, batch_a = self.rand_batch(4, ()) |
| b, batch_b = self.rand_batch(4, ()) |
| res_batch = batch_for(batch_a, batch_b) |
| res = [single_for(a[j], b[j]) for j in range(4)] |
| self.assertEqual(res, res_batch.examples()) |
| |
| script_for = torch.jit.script(single_for) |
| graph = torch.to_batch_graph(script_for.graph) |
| self.assertExpected(str(graph)) |
| |
| def test_lstm(self): |
| def LSTM(x_all, h, c, w_xi, w_xf, w_xo, w_xc, w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c): |
| for i in range(x_all.size(1)): |
| x = x_all.select(1, i) |
| i_t = torch.matmul(x, w_xi) + torch.matmul(h, w_hi) + b_i |
| f_t = torch.matmul(x, w_xf) + torch.matmul(h, w_hf) + b_f |
| o_t = torch.matmul(x, w_xo) + torch.matmul(h, w_ho) + b_o |
| # activations |
| i_t = torch.sigmoid(i_t) |
| f_t = torch.sigmoid(f_t) |
| o_t = torch.sigmoid(o_t) |
| # cell computations |
| c_t = torch.matmul(x, w_xc) + torch.matmul(h, w_hc) + b_c |
| c_t = torch.tanh(c_t) |
| c_t = torch.mul(c_t, f_t) + torch.mul(i_t, c_t) |
| h_t = torch.mul(o_t, torch.tanh(c_t)) |
| h = h_t |
| c = c_t |
| return h |
| |
| LSTM_batch = torch.jit.batch(batch_size=4)(LSTM) |
| |
| batch_size, input_size, hidden_size = 4, 3, 2 |
| xs, batch = self.rand_batch(batch_size, (True, 4), (False, input_size)) |
| hx, h_batch = self.rand_batch(batch_size, (False, hidden_size)) |
| cx, c_batch = self.rand_batch(batch_size, (False, hidden_size)) |
| |
| # input to hidden weights |
| w_xi = torch.rand(input_size, hidden_size) |
| w_xf = torch.rand(input_size, hidden_size) |
| w_xo = torch.rand(input_size, hidden_size) |
| w_xc = torch.rand(input_size, hidden_size) |
| # hidden to hidden weights |
| w_hi = torch.rand(hidden_size, hidden_size) |
| w_hf = torch.rand(hidden_size, hidden_size) |
| w_ho = torch.rand(hidden_size, hidden_size) |
| w_hc = torch.rand(hidden_size, hidden_size) |
| # bias terms |
| b_i = torch.rand(hidden_size) |
| b_f = torch.rand(hidden_size) |
| b_o = torch.rand(hidden_size) |
| b_c = torch.rand(hidden_size) |
| |
| ys = [LSTM(xs[j], hx[j], cx[j], w_xi, w_xf, w_xo, w_xc, |
| w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c) for j in range(batch_size)] |
| ybs = LSTM_batch(batch, h_batch, c_batch, w_xi, w_xf, w_xo, w_xc, |
| w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c) |
| self.assertEqual(ys, ybs.examples()) |
| |
| def test_greedy_search(self): |
| def greedy(x, h, c, embed, w_xi, w_xf, w_xo, w_xc, w_hi, w_hf, w_ho, w_hc, |
| b_i, b_f, b_o, b_c, w_hs, b_s, iter_num): |
| iter_count = torch.zeros_like(iter_num) |
| while(iter_count < iter_num): |
| iter_count += 1 |
| # LSTM Cell |
| i_t = torch.matmul(x, w_xi) + torch.matmul(h, w_hi) + b_i |
| f_t = torch.matmul(x, w_xf) + torch.matmul(h, w_hf) + b_f |
| o_t = torch.matmul(x, w_xo) + torch.matmul(h, w_ho) + b_o |
| # activations |
| i_t = torch.sigmoid(i_t) |
| f_t = torch.sigmoid(f_t) |
| o_t = torch.sigmoid(o_t) |
| # cell computations |
| c_t = torch.matmul(x, w_xc) + torch.matmul(h, w_hc) + b_c |
| c_t = torch.tanh(c_t) |
| c_t = torch.mul(c_t, f_t) + torch.mul(i_t, c_t) |
| h_t = torch.mul(o_t, torch.tanh(c_t)) |
| h = h_t |
| c = c_t |
| # calculate feature with max probability |
| s_t = torch.matmul(h_t, w_hs) + b_s |
| p_t = torch.softmax(s_t, 1) |
| i_t = torch.argmax(p_t, 1) |
| x = embed.index_select(1, i_t).squeeze(1) |
| return h |
| |
| greedy_batch = torch.jit.batch(batch_size=4)(greedy) |
| |
| batch_size, input_size, hidden_size, vocab_size = 4, 6, 8, 7 |
| xs, batch = self.rand_batch(batch_size, (False, input_size)) |
| hx, h_batch = self.rand_batch(batch_size, (False, hidden_size)) |
| cx, c_batch = self.rand_batch(batch_size, (False, hidden_size)) |
| embed, embed_batch = self.rand_batch(batch_size, (False, vocab_size), (False, input_size)) |
| iter_num = [torch.randint(2, 5, (1,)) for i in range(batch_size)] |
| iter_num_batch = BatchTensor(iter_num, torch.tensor([]).byte()) |
| |
| # input to hidden weights |
| w_xi = torch.rand(input_size, hidden_size) |
| w_xf = torch.rand(input_size, hidden_size) |
| w_xo = torch.rand(input_size, hidden_size) |
| w_xc = torch.rand(input_size, hidden_size) |
| # hidden to hidden weights |
| w_hi = torch.rand(hidden_size, hidden_size) |
| w_hf = torch.rand(hidden_size, hidden_size) |
| w_ho = torch.rand(hidden_size, hidden_size) |
| w_hc = torch.rand(hidden_size, hidden_size) |
| # bias terms |
| b_i = torch.rand(hidden_size) |
| b_f = torch.rand(hidden_size) |
| b_o = torch.rand(hidden_size) |
| b_c = torch.rand(hidden_size) |
| # hidden to vocab weights, bias |
| w_hs = torch.rand(hidden_size, vocab_size) |
| b_s = torch.rand(vocab_size) |
| |
| ys = [greedy(xs[j], hx[j], cx[j], embed[j], w_xi, w_xf, w_xo, w_xc, |
| w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c, w_hs, b_s, iter_num[j]) for j in range(batch_size)] |
| ybs = greedy_batch(batch, h_batch, c_batch, embed_batch, w_xi, w_xf, w_xo, w_xc, |
| w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c, w_hs, b_s, iter_num_batch) |
| self.assertEqual(ys, ybs.examples()) |
| |
| def test_beam_search(self): |
| def beam(x, h, c, embed, w_xi, w_xf, w_xo, w_xc, w_hi, w_hf, w_ho, w_hc, |
| b_i, b_f, b_o, b_c, w_hs, b_s, iter_num, idx): |
| k = 5 |
| vocab_size = embed.size(1) |
| iter_count = torch.zeros_like(iter_num) |
| max_len = idx.size(2) |
| while(iter_count < iter_num): |
| iter_count += 1 |
| # LSTM Cell |
| i_t = torch.matmul(x, w_xi) + torch.matmul(h, w_hi) + b_i |
| f_t = torch.matmul(x, w_xf) + torch.matmul(h, w_hf) + b_f |
| o_t = torch.matmul(x, w_xo) + torch.matmul(h, w_ho) + b_o |
| # activations |
| i_t = torch.sigmoid(i_t) |
| f_t = torch.sigmoid(f_t) |
| o_t = torch.sigmoid(o_t) |
| # cell computations |
| c_t = torch.matmul(x, w_xc) + torch.matmul(h, w_hc) + b_c |
| c_t = torch.tanh(c_t) |
| c_t = torch.mul(c_t, f_t) + torch.mul(i_t, c_t) |
| h_t = torch.mul(o_t, torch.tanh(c_t)) |
| h = h_t |
| c = c_t |
| # calculate features with max probability |
| s_t = torch.matmul(h_t, w_hs) + b_s |
| s_t = s_t.view([1, s_t.size(1) * s_t.size(2)]) |
| p_t = torch.softmax(s_t, 1) |
| prob_t, idx_t = torch.topk(p_t, k, 1) |
| if(int(idx_t.dim()) > 1): |
| idx_t_tmp = idx_t.squeeze(0) |
| else: |
| idx_t_tmp = idx_t |
| new_y = torch.fmod(idx_t_tmp, vocab_size) |
| pre_y = idx_t_tmp / vocab_size |
| x = embed.index_select(1, new_y) |
| h = h_t.index_select(1, pre_y) |
| c = c_t.index_select(1, pre_y) |
| iter = int(iter_count[0]) |
| idx = torch.cat([idx.narrow(2, 0, iter).index_select(1, pre_y), |
| torch.fmod(idx_t, vocab_size).unsqueeze(-1), |
| idx.narrow(2, iter, max_len - iter)], 2) |
| idx = idx.narrow(2, 0, max_len) |
| return idx |
| |
| beam_batch = torch.jit.batch(batch_size=4)(beam) |
| |
| k = 5 |
| batch_size, input_size, hidden_size, vocab_size = 4, 6, 8, 7 |
| max_len = 5 |
| xs, batch = self.rand_batch(batch_size, (False, 1), (False, input_size)) |
| hx, h_batch = self.rand_batch(batch_size, (False, 1), (False, hidden_size)) |
| cx, c_batch = self.rand_batch(batch_size, (False, 1), (False, hidden_size)) |
| embed, embed_batch = self.rand_batch(batch_size, (False, vocab_size), (False, input_size)) |
| iter_num = [torch.randint(2, max_len + 1, (1,)) for i in range(batch_size)] |
| iter_num_batch = BatchTensor(iter_num, torch.tensor([]).byte()) |
| |
| # input to hidden weights |
| w_xi = torch.rand(input_size, hidden_size) |
| w_xf = torch.rand(input_size, hidden_size) |
| w_xo = torch.rand(input_size, hidden_size) |
| w_xc = torch.rand(input_size, hidden_size) |
| # hidden to hidden weights |
| w_hi = torch.rand(hidden_size, hidden_size) |
| w_hf = torch.rand(hidden_size, hidden_size) |
| w_ho = torch.rand(hidden_size, hidden_size) |
| w_hc = torch.rand(hidden_size, hidden_size) |
| # bias terms |
| b_i = torch.rand(1, hidden_size) |
| b_f = torch.rand(1, hidden_size) |
| b_o = torch.rand(1, hidden_size) |
| b_c = torch.rand(1, hidden_size) |
| # hidden to vocab weights, bias |
| w_hs = torch.rand(hidden_size, vocab_size) |
| b_s = torch.rand(1, vocab_size) |
| |
| idx_batch = torch.jit.BatchTensor(torch.zeros([batch_size, k, max_len], dtype=torch.long), |
| torch.zeros([batch_size, 1, max_len]).byte(), |
| torch.tensor([0, 1]).byte()) |
| idx = [torch.zeros([1, k, max_len], dtype=torch.long) for _ in range(batch_size)] |
| |
| ys = [beam(xs[j], hx[j], cx[j], embed[j], w_xi, w_xf, w_xo, w_xc, w_hi, w_hf, w_ho, w_hc, |
| b_i, b_f, b_o, b_c, w_hs, b_s, iter_num[j], idx[j]).narrow(2, 0, int(iter_num[j])) |
| for j in range(batch_size)] |
| ybs = beam_batch(batch, h_batch, c_batch, embed_batch, w_xi, w_xf, w_xo, w_xc, |
| w_hi, w_hf, w_ho, w_hc, b_i, b_f, b_o, b_c, w_hs, b_s, iter_num_batch, idx_batch) |
| self.assertEqual(ys, ybs.examples()) |
| |
| |
| class TestScript(JitTestCase): |
| @contextmanager |
| def capture_stdout(self): |
| # No idea how to capture stdout from C++ on Windows |
| if WINDOWS: |
| yield [''] |
| return |
| import os |
| import fcntl |
| import errno |
| sys.stdout.flush() |
| stdout_fd = os.dup(1) |
| r, w = os.pipe() |
| try: |
| # Override stdout with r - dup is guaranteed to return the lowest free fd |
| os.close(1) |
| os.dup(w) |
| |
| captured_stdout = [''] |
| yield captured_stdout |
| sys.stdout.flush() # Make sure that Python hasn't buffered anything |
| |
| # Do the ugly dance to read all the data that was written into the pipe |
| fcntl.fcntl(r, fcntl.F_SETFL, os.O_NONBLOCK) |
| total_stdout = '' |
| while True: |
| try: |
| total_stdout += os.read(r, 1000).decode('ascii') |
| except OSError as e: |
| if e.errno != errno.EAGAIN: |
| raise |
| break |
| captured_stdout[0] = total_stdout |
| finally: |
| # Revert the change, and clean up all fds |
| os.close(1) |
| os.dup(stdout_fd) |
| os.close(stdout_fd) |
| os.close(r) |
| os.close(w) |
| |
| def checkScriptRaisesRegex(self, script, inputs, exception, regex, |
| optimize=True, outputs=None, capture_output=False): |
| """ |
| Checks that a given function will throw the correct exception, |
| when executed with normal python, the string frontend, and the AST frontend |
| """ |
| # normal python |
| with self.assertRaisesRegex(exception, regex): |
| script(*inputs) |
| # string frontend |
| with self.assertRaisesRegex(exception, regex): |
| source = textwrap.dedent(inspect.getsource(script)) |
| cu = torch.jit.CompilationUnit(source, optimize) |
| ge = getattr(cu, script.__name__) |
| ge(*inputs) |
| # python AST frontend |
| with self.assertRaisesRegex(exception, regex): |
| ge = torch.jit.script(script, optimize) |
| ge(*inputs) |
| |
| def checkScript(self, script, inputs, optimize=True, outputs=None, name='func', capture_output=False, frames_up=1): |
| if isinstance(script, str): |
| cu = torch.jit.CompilationUnit(script, optimize, _frames_up=frames_up) |
| ge = getattr(cu, name) |
| else: |
| if capture_output: |
| with self.capture_stdout() as captured: |
| outputs = script(*inputs) |
| else: |
| outputs = script(*inputs) |
| # Check the string frontend first |
| source = textwrap.dedent(inspect.getsource(script)) |
| self.checkScript(source, inputs, optimize, outputs, script.__name__, capture_output, frames_up=2) |
| # Continue checking the Python frontend |
| ge = torch.jit.script(script, optimize, _frames_up=1) |
| |
| if capture_output: |
| with self.capture_stdout() as captured: |
| outputs_ge = ge(*inputs) |
| if not WINDOWS: |
| self.assertExpected(captured[0], subname='stdout') |
| else: |
| outputs_ge = ge(*inputs) |
| self.assertEqual(outputs, outputs_ge) |
| |
| def test_script_cu(self): |
| cu = torch.jit.CompilationUnit(''' |
| def foo(a): |
| b = a |
| return b |
| ''') |
| a = Variable(torch.rand(1)) |
| self.assertEqual(a, cu.foo(a)) |
| |
| # because the compilation unit ingests python strings |
| # to use an escape sequence escape the backslash (\\n = \n) |
| def test_string_cu(self): |
| cu = torch.jit.CompilationUnit(''' |
| def foo(a): |
| print(a, """a\\n\tb\\n""", 2, "a\ |
| a") |
| return a |
| ''') |
| self.assertExpected(str(cu.foo.graph)) |
| |
| def test_string_new_line(self): |
| with self.assertRaisesRegex(RuntimeError, "expected a valid token*"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a): |
| print(" |
| a") |
| return a |
| ''') |
| |
| def test_string_single_escape(self): |
| with self.assertRaisesRegex(RuntimeError, "expected a valid token*"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a): |
| print("\\") |
| return a |
| ''') |
| |
| def test_script_annotation(self): |
| @torch.jit.script |
| def foo(a): |
| return a + a + a |
| s = Variable(torch.rand(2)) |
| self.assertEqual(s + s + s, foo(s)) |
| |
| def test_add(self): |
| def func(a, b): |
| c = a + b |
| c += a |
| return c |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| self.checkScript(func, (a, b), optimize=True) |
| |
| def test_mul(self): |
| def func(a, b): |
| return a * b |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| self.checkScript(func, (a, b), optimize=True) |
| |
| @unittest.skipIf(not PY35, "Python 3.5 needed") |
| def test_matmul_py3(self): |
| code = dedent(""" |
| def fn(a, b): |
| return a @ b |
| """) |
| |
| with tempfile.TemporaryDirectory() as tmp_dir: |
| script_path = os.path.join(tmp_dir, 'script.py') |
| with open(script_path, 'w') as f: |
| f.write(code) |
| fn = get_fn('test_matmul_py3', script_path) |
| |
| a = torch.rand(4, 3, requires_grad=True) |
| b = torch.rand(3, 2, requires_grad=True) |
| self.checkScript(fn, (a, b), optimize=True) |
| |
| def test_pow(self): |
| def func(a, b): |
| return a ** b |
| |
| def func2(a, b, c, d): |
| return c + a ** b ** d |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| c = torch.rand(1, requires_grad=True) |
| d = torch.rand(1, requires_grad=True) |
| self.checkScript(func, (a, b), optimize=True) |
| self.checkScript(func2, (a, b, c, d), optimize=True) |
| |
| def test_triple(self): |
| def func(x): |
| return 3. * x |
| |
| x = torch.rand(1, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def test_slice(self): |
| def func(x): |
| return x[:5] |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def func2(x): |
| return x[5:] |
| |
| self.checkScript(func2, [x], optimize=True) |
| |
| def test_gather(self): |
| def func(x): |
| return x[0] |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| self.checkScript(func, [x], optimize=True) |
| |
| def test_keyword(self): |
| @torch.jit.script |
| def func(x): |
| return torch.sum(x, dim=0) |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| y = func(x) |
| y2 = torch.sum(x, dim=0) |
| self.assertEqual(y, y2) |
| |
| # TODO: renable when we support passing literals to script fns |
| @unittest.expectedFailure |
| def test_literal_xfail(self): |
| def func4(a, b): |
| c = 0, (0, 0) |
| x = True |
| while x: |
| x = False |
| c = a, (a, b) |
| d, e = c |
| f, g = e |
| return d + f + g |
| |
| self.checkScript(func4, (a, b), optimize=True) |
| |
| def test_literal(self): |
| def func1(a, b): |
| c = a, b |
| d, e = c |
| return d + e |
| |
| def func2(a, b): |
| c = a, (a, b) |
| d, e = c |
| f, g = e |
| return d + f + g |
| |
| a = torch.rand(1, requires_grad=True) |
| b = torch.rand(1, requires_grad=True) |
| self.checkScript(func1, (a, b), optimize=True) |
| self.checkScript(func2, (a, b), optimize=True) |
| |
| def test_expand(self): |
| @torch.jit.script |
| def func(x, y): |
| return x + y |
| |
| x = torch.rand(2, 3, dtype=torch.float, requires_grad=True) |
| y = torch.rand(3, dtype=torch.float, requires_grad=True) |
| out = func(x, y) |
| self.assertEqual(func(x, y), x + y) |
| |
| grad = torch.randn(2, 3, dtype=torch.float) |
| out.backward(grad) |
| self.assertEqual(x.grad, grad) |
| self.assertEqual(y.grad, grad.sum(dim=0)) |
| |
| def test_sum(self): |
| @torch.jit.script |
| def func(x): |
| return x.sum(dim=[4]) |
| |
| @torch.jit.script |
| def func2(x): |
| return x.sum(dim=4) |
| |
| self.assertExpected(canonical(func.graph), subname='1') |
| # test that shape analysis is written correctly for sum with IntList[1] dim argument |
| torch._C._jit_pass_shape_analysis( |
| func2.graph, (torch.zeros(1, 1, 1, 1, 4),), False) |
| self.assertExpected(canonical(func2.graph), subname='2') |
| |
| def test_cat(self): |
| @torch.jit.script |
| def func(x): |
| return torch.cat((x, x), dim=0) |
| |
| x = torch.rand(10, dtype=torch.float, requires_grad=True) |
| self.assertEqual(func(x), torch.cat((x, x), dim=0)) |
| |
| with self.assertRaisesRegex(RuntimeError, "expected at most"): |
| @torch.jit.script |
| def func(x): |
| return torch.cat((x, x), x, dim=0) |
| |
| def test_cat_lifts(self): |
| @torch.jit.script |
| def foo(x): |
| return torch.cat([x, x], dim=1) |
| |
| @torch.jit.script |
| def foo2(x): |
| return torch.cat(_construct_empty_tensor_list(), dim=1) |
| |
| @torch.jit.script |
| def foo3(x): |
| return torch.cat([x], dim=1) |
| |
| self.assertExpected( |
| canonical(foo.graph) + |
| canonical(foo2.graph) + |
| canonical(foo3.graph)) |
| |
| def test_list_literal(self): |
| def reassign(): |
| x = [1] |
| if True: |
| x = [2, 3] |
| return |
| self.checkScript(reassign, (), optimize=True) |
| |
| def reassign_arity_change(): |
| x = [1] |
| if True: |
| x = [1, 2, 3] |
| return |
| self.checkScript(reassign_arity_change, (), optimize=True) |
| |
| def reassign_from_empty_literal(): |
| x = [] |
| if True: |
| x = [1, 2, 3] |
| return |
| with self.assertRaisesRegex(RuntimeError, "Empty list literals not allowed"): |
| self.checkScript(reassign_from_empty_literal, (), optimize=True) |
| |
| def reassign_from_empty_builtin(): |
| x = _construct_empty_int_list() |
| if True: |
| x = [1, 2, 3] |
| y = _construct_empty_float_list() |
| if True: |
| y = [1.0, 2.0, 3.0] |
| z = _construct_empty_tensor_list() |
| if True: |
| z = [torch.randn([1])] |
| return |
| self.checkScript(reassign_from_empty_builtin, (), optimize=True) |
| |
| def reassign_bad_type(): |
| x = [1] |
| if True: |
| x = [1.0] |
| return |
| with self.assertRaisesRegex(RuntimeError, "previously has type"): |
| self.checkScript(reassign_bad_type, (), optimize=True) |
| |
| def reassign_nested(): |
| x = _construct_empty_int_list() |
| if True: |
| x = [1, 2, 3] |
| if True: |
| x = [1.0] |
| return |
| with self.assertRaisesRegex(RuntimeError, "previously has type"): |
| self.checkScript(reassign_nested, (), optimize=True) |
| |
| def test_list_gather(self): |
| def index(): |
| a = [1, 2, 3] |
| return a[1] |
| |
| self.checkScript(index, ()) |
| |
| def negative_index(): |
| a = [1, 2, 3] |
| return a[-1] |
| |
| self.checkScript(negative_index, ()) |
| |
| def bad_index(): |
| a = [1, 2, 3] |
| return a[4] |
| |
| self.checkScriptRaisesRegex(bad_index, (), IndexError, |
| "list index out of range") |
| |
| def bad_negative_index(): |
| a = [1, 2, 3] |
| return a[-5] |
| |
| self.checkScriptRaisesRegex(bad_negative_index, (), IndexError, |
| "list index out of range") |
| |
| def test_list_len(self): |
| def func(): |
| a = [1, 2, 3] |
| return len(a) == 3 |
| |
| self.checkScript(func, ()) |
| |
| def func2(): |
| a = _construct_empty_tensor_list() |
| return len(a) == 0 |
| |
| self.checkScript(func2, ()) |
| |
| def test_list_ops(self): |
| def test_equality(): |
| a = [1, 2, 3] |
| b = [1, 2, 3] |
| return a == b |
| |
| self.checkScript(test_equality, (), optimize=True) |
| |
| def test_non_equality(): |
| a = [1, 2, 3] |
| b = [3] |
| return a == b |
| |
| self.checkScript(test_non_equality, (), optimize=True) |
| |
| def test_list_add(): |
| a = [1, 2, 3] |
| b = [2] |
| c = a + b |
| return c == [1, 2, 3, 2] |
| |
| self.checkScript(test_list_add, (), optimize=True) |
| |
| def test_list_add_empty(): |
| a = [1, 2, 3] |
| b = _construct_empty_int_list() |
| c = a + b |
| return c == [1, 2, 3] |
| |
| self.checkScript(test_list_add_empty, (), optimize=True) |
| |
| def test_tensor_list_equality(): |
| t1 = torch.ones([1, 1]) |
| t2 = torch.ones([1, 1]) |
| x = [t1, t2] |
| y = [t2, t1] |
| return x == y |
| |
| self.checkScript(test_tensor_list_equality, (), optimize=True) |
| |
| def test_invalid_list_equality(): |
| t1 = torch.ones([2, 2]) |
| t2 = torch.ones([2, 2]) |
| x = [t1, t2] |
| y = [t2, t1] |
| # will throw since the tensors have more than one element |
| return x == y |
| |
| self.checkScriptRaisesRegex( |
| test_invalid_list_equality, |
| (), |
| RuntimeError, |
| "bool value of Tensor") |
| |
| def test_list_slice(self): |
| def test_regular_slice(): |
| a = [0, 1, 2, 3, 4] |
| return a[2:3] == [2] |
| self.checkScript(test_regular_slice, ()) |
| |
| def test_open_ended_slice(): |
| a = [0, 1, 2, 3, 4] |
| return a[2:] == [2, 3, 4] |
| self.checkScript(test_open_ended_slice, ()) |
| |
| def test_open_ended_slice2(): |
| a = [0, 1, 2, 3, 4] |
| return a[:2] == [0, 1] |
| self.checkScript(test_open_ended_slice2, ()) |
| |
| def test_negative_slice(): |
| a = [0, 1, 2, 3, 4] |
| return a[:-1] == [0, 1, 2, 3] |
| self.checkScript(test_negative_slice, ()) |
| |
| def test_negative_slice2(): |
| a = [0, 1, 2, 3, 4] |
| return a[-3:-1] == [2, 3] |
| self.checkScript(test_negative_slice2, ()) |
| |
| def test_backward_slice(): |
| a = [0, 1, 2, 3, 4] |
| return a[3:2] == _construct_empty_int_list() |
| self.checkScript(test_backward_slice, ()) |
| |
| def test_over_slice(): |
| a = [0, 1, 2, 3, 4] |
| return a[3:10] == [3, 4] |
| self.checkScript(test_backward_slice, ()) |
| |
| def test_func_call(self): |
| script = ''' |
| def add(a, b): |
| return a + b |
| |
| def mul(a, x): |
| return a * x |
| |
| def func(alpha, beta, x, y): |
| return add(mul(alpha, x), mul(beta, y)) |
| ''' |
| alpha = torch.rand(1, dtype=torch.float, requires_grad=True) |
| beta = torch.rand(1, dtype=torch.float, requires_grad=True) |
| x = torch.rand(3, dtype=torch.float, requires_grad=True) |
| y = torch.rand(3, dtype=torch.float, requires_grad=True) |
| outputs = alpha * x + beta * y |
| # NOTE: cannot optimize yet because broadcasts are not inserted before the fuser runs |
| self.checkScript(script, [alpha, beta, x, y], optimize=False, outputs=outputs) |
| |
| def test_view_shape_prop(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_view_shape_prop(a): |
| return view(a, size=[-1]) |
| ''') |
| inputs = [torch.zeros(10, 10)] |
| outputs = torch.zeros(100) |
| |
| real_outs = cu.test_view_shape_prop(*inputs) |
| self.assertEqual(real_outs, outputs) |
| |
| def test_integral_shape_inference(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_integral_shape_inference(a): |
| return a / a |
| ''') |
| inputs = [torch.ones(10, 10).type(torch.LongTensor)] |
| outputs = torch.ones(10, 10) |
| |
| self.assertEqual(cu.test_integral_shape_inference(*inputs), outputs) |
| |
| def test_fuser_multiple_blocks(self): |
| cu = torch.jit.CompilationUnit(''' |
| def test_fuser_multiple_blocks(this, that, theother, meme): |
| i = 0 |
| while i < 20: |
| this = cat([this, meme], dim=0) |
| that = cat([that, meme], dim=0) |
| theother = cat([theother, meme], dim=0) |
| i = i + 1 |
| return this, that, theother |
| ''') |
| |
| inputs = [torch.ones(0, 10, 10)] * 3 |
| inputs += [torch.ones(1, 10, 10)] |
| outputs = [torch.ones(20, 10, 10)] * 3 |
| |
| self.assertEqual(cu.test_fuser_multiple_blocks(*inputs), outputs) |
| |
| def test_dropout_script(self): |
| |
| eg = torch.zeros(1, 2, 3, requires_grad=True) |
| |
| @torch.jit.trace(eg) |
| def foo(x): |
| x = torch.neg(x) |
| return F.dropout(x) |
| |
| class MyDrop(nn.Module): |
| def forward(self, x): |
| return foo(x) |
| |
| f = io.BytesIO() |
| torch.onnx.export(MyDrop(), (eg,), f, verbose=False) |
| |
| @unittest.skip("RuntimeError: VariableType::ID() not implemented") |
| def test_cast(self): |
| script = ''' |
| def to_int(x): |
| return int(x) |
| ''' |
| x = Variable(torch.FloatTensor([1.1, 2.3]), requires_grad=True) |
| out = Variable(torch.IntTensor([1, 2]), requires_grad=True) |
| self.checkScript(script, [x], optimize=True, outputs=[out], func='to_int') |
| |
| def test_python_frontend(self): |
| def fn(x, y, z): |
| q = None |
| q = x + y - z.sigmoid() |
| print(q) |
| w = -z |
| if not x and not y and z: |
| m = x if not z else y |
| while x < y > z: |
| q = x |
| return x |
| |
| ast = torch.jit.frontend.get_jit_ast(fn) |
| self.assertExpected(str(ast)) |
| |
| def _make_scalar_vars(self, arr, dtype): |
| return [torch.tensor(val, dtype=dtype) for val in arr] |
| |
| def test_string_print(self): |
| def func(a): |
| print(a, "a" 'b' '''c''' """d""", 2, 1.5) |
| return a |
| |
| inputs = self._make_scalar_vars([1], torch.int64) |
| self.checkScript(func, inputs, capture_output=True) |
| |
| def test_while(self): |
| def func(a, b, max): |
| while a < max: |
| a = a + 1 |
| b = b + 1 |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([1, 1, 10], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_fibb(self): |
| def func(lim): |
| first = 1 |
| second = 1 |
| i = 1 |
| somenum = 5 |
| dontmutateme = 3 |
| third = 0 |
| while i < lim: |
| third = first + second |
| first = second |
| second = third |
| j = 0 |
| while j < 10: |
| somenum = somenum * 2 |
| j = j + 1 |
| i = i + j |
| i = i + dontmutateme |
| |
| st = second + third |
| fs = first + second |
| zero = FIXME_zerol() |
| return third + zero, st + zero, fs + zero |
| |
| inputs = self._make_scalar_vars([10], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if(self): |
| def func(a, b): |
| zero = FIXME_zerol() |
| d = 3 |
| if a > 10: |
| a = zero + 3 + d |
| else: |
| b = zero + 3 + d |
| d = 4 |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([1, -1], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if_for_in_range(self): |
| def func(a, b): |
| d = FIXME_zerol() + 3 |
| for _ in range(20): |
| if a > 10: |
| a = 3 + d |
| else: |
| b = 3 + d |
| d = FIXME_zerol() + 4 |
| c = a + b |
| return d |
| inputs = self._make_scalar_vars([1, -1], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_if_noelse(self): |
| def func(a, b): |
| if a > 10: |
| a = 3 + b |
| c = a + b |
| return c |
| |
| inputs = self._make_scalar_vars([-1, 1], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_while_nonexistent_value(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value x"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a, b): |
| while a < 10: |
| a = a + x |
| b = b + 1 |
| return a + b |
| ''') |
| |
| def test_while_nonexistent_cond_value(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value x"): |
| torch.jit.CompilationUnit(''' |
| def test_while(a, b): |
| while a < x: |
| a = a + 1 |
| b = b + 1 |
| return a + b |
| ''') |
| |
| def test_while_write_outer_then_read(self): |
| def func(a, b): |
| while a < 10: |
| a = a + 1 |
| b = a + 1 |
| return a + b |
| |
| inputs = self._make_scalar_vars([42, 1337], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_while_nest_if(self): |
| def func(a, b): |
| c = FIXME_zerol() |
| while a < 10: |
| a = a + 1 |
| b = b + 1 |
| if a > b: |
| c = -a |
| else: |
| c = -b |
| return c + 1 |
| |
| inputs = self._make_scalar_vars([-1234, 4321], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_math_schema(self): |
| # This should use the add(Tensor, Tensor) schema. |
| # Also tests to see if alpha={1} is lifted correctly. |
| def fn(x, y): |
| return x + y |
| |
| graph = torch.jit.script(fn).graph |
| self.assertExpectedGraph(graph) |
| |
| def test_math_tensor_number(self): |
| # Test that 7 is casted to tensor, then casted to the |
| # correct type, and finally added to x. |
| def fn(x): |
| return x + 7 |
| |
| graph = torch.jit.script(fn).graph |
| self.assertExpectedGraph(graph) |
| |
| def test_math_numbers(self): |
| # Test that the numbers are casted to tensor, |
| # added, and then casted back. |
| def fn1(x): |
| c = 7 + 8 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| def fn2(x): |
| c = 1.1 + 3.1 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| graph1 = torch.jit.script(fn1).graph |
| self.assertExpectedGraph(graph1, subname="int") |
| graph2 = torch.jit.script(fn2).graph |
| self.assertExpectedGraph(graph2, subname="float") |
| |
| def test_if_nest_while(self): |
| def func(a, b): |
| c = FIXME_zerol() |
| if a > b: |
| while a > b: |
| b = b + 1 |
| c = -b |
| return c |
| |
| inputs = self._make_scalar_vars([4321, 1234], torch.int64) |
| self.checkScript(func, inputs, optimize=True) |
| |
| def test_script_for_in_range(self): |
| def fn(): |
| c = FIXME_zerol() |
| for i in range(100): |
| c += i |
| return c |
| self.checkScript(fn, (), outputs=4950, optimize=True) |
| |
| def test_script_for_in_range_dynamic(self): |
| def fn(): |
| c = FIXME_zerol() |
| for i in range(100): |
| # FIXME: i should really be IntType and not DynamicType in the frontend |
| # In addition, i should be a scalar tensor (it has size (1,) atm) |
| acc = FIXME_zerol() |
| for j in range(i): |
| acc += j |
| c += acc |
| return c |
| self.checkScript(fn, (), optimize=False) |
| |
| def test_script_for_in_range_ast(self): |
| @torch.jit.script |
| def test_script_for_in_range_ast(): |
| c = FIXME_zerol() |
| for i in range(100): |
| acc = FIXME_zerol() |
| for j in range(i): |
| acc += j |
| c += acc |
| return c |
| |
| self.assertEqual(test_script_for_in_range_ast(), 161700) |
| |
| def test_script_for_in_range_if_ast(self): |
| @torch.jit.script |
| def test_script_for_in_range_if_ast(x): |
| output = FIXME_zerol() |
| for i in range(20): |
| if i == 0: |
| output = x.unsqueeze(0) |
| else: |
| output = torch.cat((output, x.unsqueeze(0)), dim=0) |
| return output |
| inputs = self._make_scalar_vars([0], torch.int64) |
| |
| self.assertEqual(test_script_for_in_range_if_ast(*inputs).shape[0], 20) |
| |
| def test_script_None(self): |
| def func(x): |
| output = None |
| output = x |
| return output |
| |
| self.checkScript(func, [torch.arange(0, 2)], optimize=True) |
| |
| def test_script_clamp_none(self): |
| # TODO: could not enable default/optional argument for None in JIT |
| # result from Aten native python_default_init for clamp, it is used |
| # in Aten but not in JIT, need to fix type/default arg system in ATen |
| def test_script_clamp_max_none(x): |
| return torch.clamp(x, min=None, max=2) |
| |
| def test_script_clamp_min_none(x): |
| return torch.clamp(x, min=2, max=None) |
| |
| input = [torch.arange(0, 3)] |
| self.checkScript(test_script_clamp_max_none, input, optimize=True) |
| self.checkScript(test_script_clamp_min_none, input, optimize=True) |
| |
| def test_script_bool_constant(self): |
| script = ''' |
| def test_script_bool_constant(): |
| a = True |
| return a |
| ''' |
| outputs = [1] |
| self.checkScript(script, [], outputs[0], True, 'test_script_bool_constant') |
| |
| def test_ternary(self): |
| def func(a, b): |
| c = 3 |
| c = a + b if a > 3 else b |
| return c |
| |
| inputs_true = self._make_scalar_vars([5, 2], torch.int64) |
| inputs_false = self._make_scalar_vars([1, 0], torch.int64) |
| self.checkScript(func, inputs_true, optimize=True) |
| self.checkScript(func, inputs_false, optimize=True) |
| |
| def test_print(self): |
| def func(x, y): |
| q = (x + y).sigmoid() |
| print(q) |
| w = -q |
| return w * w |
| |
| x = torch.arange(4., requires_grad=True) |
| y = torch.arange(0., 8, 2, requires_grad=True) |
| self.checkScript(func, [x, y], optimize=True, capture_output=True) |
| |
| def test_type_cast(self): |
| def test_int_to_float(): |
| b = float(2) |
| return b + 1.0 |
| |
| def test_float_to_int(): |
| b = int(2.0) |
| return b + 1 |
| |
| graph1 = torch.jit.script(test_int_to_float).graph |
| self.assertExpectedGraph(graph1, subname="int_to_float") |
| graph2 = torch.jit.script(test_float_to_int).graph |
| self.assertExpectedGraph(graph2, subname="float_to_int") |
| |
| def test_multiple_assignment(self): |
| def outer_func(x): |
| return x * 2, x + 2 |
| |
| @torch.jit.script |
| def func(x): |
| y, z = outer_func(x) |
| return y + z |
| |
| x = torch.arange(4) |
| self.assertEqual(func(x), x * 2 + x + 2) |
| |
| def test_literals(self): |
| def func(a): |
| return a.view(size=[1, 2, 3]) |
| |
| a = torch.randn(6) |
| self.checkScript(func, [a], optimize=True) |
| |
| def test_return(self): |
| def no_return(a): |
| a + 1 |
| |
| def void_return(a): |
| return |
| |
| def one_return(a): |
| return a + 1. |
| |
| def multiple_returns(a): |
| return a * 1., a * 2., a * 3. |
| |
| a = torch.randn(1, dtype=torch.float) |
| self.checkScript(no_return, [a], optimize=True) |
| self.checkScript(void_return, [a], optimize=True) |
| self.checkScript(one_return, [a], optimize=True) |
| self.checkScript(multiple_returns, [a], optimize=True) |
| |
| def test_error(self): |
| @torch.jit.script |
| def foo(a): |
| return a.t() |
| s = Variable(torch.rand(10)) |
| # XXX: this should stay quiet in stay propagation and only fail in the interpreter |
| with self.assertRaisesRegex(RuntimeError, "failed in interpreter"): |
| foo(s) |
| |
| @torch.jit.script |
| def bar(c, b): |
| return c / b |
| |
| with self.assertRaisesRegex(RuntimeError, "failed in interpreter"): |
| bar(Variable(torch.rand(10), requires_grad=True), Variable(torch.rand(9), requires_grad=True)) |
| |
| def test_binop_unsupported_error(self): |
| with self.assertRaisesRegex(NotSupportedError, "unsupported binary operator:"): |
| @torch.jit.script |
| def binop(x, y): |
| # Replace this with another unsupported op when/if it gets supported |
| return x << y |
| |
| def test_number_math(self): |
| template = (''' |
| # int, int -> int |
| def func1(): |
| c = 8 {op} 2 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| def func2(): |
| c = 2 {op} 2 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| # float, float -> float |
| def func3(): |
| c = 3.14 {op} 0.125 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| def func4(): |
| c = 3.14 {op} 3.14 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| ''') |
| ops = ['+', '-', '*', '<', '<=', '>', '>=', '==', '!='] |
| # TODO: turn this on for py3 (and add PY3 division semantics) |
| ops_py2_only = ['/'] |
| if PY2: |
| ops.extend(ops_py2_only) |
| |
| for op in ops: |
| code = template.format(op=op) |
| scope = {} |
| exec(code, globals(), scope) |
| cu = torch.jit.CompilationUnit(code) |
| |
| self.assertEqual(cu.func1(), scope['func1']()) |
| self.assertEqual(cu.func2(), scope['func2']()) |
| self.assertEqual(cu.func3(), scope['func3']()) |
| self.assertEqual(cu.func4(), scope['func4']()) |
| |
| def test_number_neg(self): |
| # int -> int |
| def func1(): |
| c = -8 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| # float -> float |
| def func2(): |
| c = -3.14 |
| # FIXME: return number instead of tensor |
| return torch.full([1], c) |
| |
| self.checkScript(func1, (), optimize=True) |
| self.checkScript(func2, (), optimize=True) |
| |
| def _test_tensor_number_math(self, device='cpu'): |
| template = (''' |
| def func(t): |
| return {lhs} {op} {rhs} |
| ''') |
| |
| def test(op, const, swap_args): |
| args = ('t', const) |
| if swap_args: |
| args = (const, 't') |
| |
| code = template.format(lhs=args[0], rhs=args[1], op=op) |
| scope = {} |
| exec(code, globals(), scope) |
| cu = torch.jit.CompilationUnit(code) |
| self.assertEqual(cu.func(tensor), scope['func'](tensor)) |
| |
| var_int = 2 |
| var_float = 1.4321 |
| |
| ops = ['+', '-', '*', '<', '<=', '>', '>=', '==', '!='] |
| # TODO: turn this on for py3 (and add PY3 division semantics) |
| ops_py2_only = ['/'] |
| if PY2: |
| ops.extend(ops_py2_only) |
| |
| float_tensor = torch.randn(5, 5, device=device) |
| double_tensor = torch.randn(5, 5, dtype=torch.double, device=device) |
| long_tensor = torch.randint(-5, 5, (5, 5), dtype=torch.long, device=device) |
| long_tensor[long_tensor == 0] = 2 |
| |
| tensors = [float_tensor, double_tensor, long_tensor] |
| consts = [var_int, var_float] |
| |
| for op, tensor, const, swap_args in product(ops, tensors, consts, [True, False]): |
| # FIXME: things like 2 / long_tensor are not implemented correctly |
| # Look in torch/tensor.py to see how pytorch implements it. |
| if op == '/' and tensor.data_ptr() == long_tensor.data_ptr(): |
| continue |
| |
| test(op, const, swap_args) |
| |
| def test_tensor_number_math(self): |
| self._test_tensor_number_math() |
| |
| @unittest.skipIf(not RUN_CUDA, "No CUDA") |
| @skipIfRocm |
| def test_tensor_number_math_cuda(self): |
| self._test_tensor_number_math(device='cuda') |
| |
| def test_python_call(self): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| cu = torch.jit.CompilationUnit(''' |
| def other_func(a): |
| return a + a |
| |
| def test_call_python(a): |
| b = pyfunc(a) |
| b = other_func(b) |
| i = 0 |
| step = 1 |
| while i < 10: |
| b = pyfunc(b) |
| if b > 3.0: |
| b = pyfunc(b) |
| i = 11 |
| return b |
| ''') |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([54], torch.float) |
| |
| self.assertEqual(cu.test_call_python(*inputs), outputs[0]) |
| |
| def test_python_call_failure(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value pyfunc2"): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| cu = torch.jit.CompilationUnit(''' |
| def other_func(a): |
| return a + a |
| |
| def test_call_python(a): |
| b = pyfunc(a) |
| b = other_func(b) |
| i = 0 |
| step = 1 |
| while i < 10: |
| b = pyfunc2(b) |
| if b > 3.0: |
| b = pyfunc(b) |
| i = 11 |
| return b |
| ''') |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([54], torch.float) |
| |
| self.assertEqual(cu.test_call_python(*inputs), outputs) |
| |
| def test_python_call_annotation(self): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| @torch.jit.script |
| def foo(a): |
| return pyfunc(a) + pyfunc(a) |
| |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([6], torch.float) |
| self.assertEqual(foo(*inputs), outputs[0]) |
| |
| def test_python_call_annoytation_failure(self): |
| with self.assertRaisesRegex(RuntimeError, "undefined value pyfunc2"): |
| def pyfunc(a): |
| return a * 3.0 |
| |
| @torch.jit.script |
| def foo(a): |
| return pyfunc2(a) + pyfunc(a) |
| |
| inputs = self._make_scalar_vars([1], torch.float) |
| outputs = self._make_scalar_vars([6], torch.float) |
| |
| self.assertEqual(foo(*inputs), outputs[0]) |
| |
| def test_desugar_module(self): |
| import torch.nn.functional as F |
| |
| def fn(x, slope): |
| a = torch.abs(x) |
| b = torch.nn.functional.prelu(x, slope) |
| c = F.prelu(x, slope) |
| return a, b, c |
| |
| x = torch.arange(-3., 4) |
| slope = torch.tensor([0.5]) |
| self.checkScript(fn, [x, slope], optimize=True) |
| |
| def test_script_docstring(self): |
| @torch.jit.script |
| def with_docstring(x): |
| """test str""" |
| y = x |
| """y is the same as x""" |
| return y |
| self.assertEqual(with_docstring.__doc__, 'test str') |
| |
| def test_script_method_docstring(self): |
| class A(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def with_docstring(self, x): |
| """test str""" |
| y = x |
| """y is the same as x""" |
| return y |
| a = A() |
| self.assertEqual(a.with_docstring.__doc__, 'test str') |
| |
| def test_script_module(self): |
| class M1(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M1, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class PModule(nn.Module): |
| def __init__(self): |
| super(PModule, self).__init__() |
| self.a = nn.Parameter(torch.randn(2, 3)) |
| |
| def forward(self, a): |
| return self.a.mm(a) |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(False) |
| # test submodule |
| self.sub = M1() |
| self.sub2 = PModule() |
| # test parameters |
| self.weight = nn.Parameter(torch.randn(2, 3)) |
| self.bias = nn.Parameter(torch.randn(2)) |
| # test defining a method from a string |
| self.define(""" |
| def hi(self, a): |
| return self.weight.mm(a) |
| """) |
| # test script methods |
| |
| @torch.jit.script_method |
| def doit(self, input): |
| # test use of parameter |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def doit2(self, input): |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| a = self.doit(input) |
| b = self.doit2(input) |
| c = self.hi(input) |
| d = self.sub2(input) |
| return a + b + self.bias + self.sub(a) + c + d |
| m2 = M2() |
| input = torch.randn(3, 2) |
| a = m2.weight.mm(input) |
| b = m2.weight.mm(input) |
| c = m2.weight.mm(input) |
| d = m2.sub2.a.mm(input) |
| ref = a + b + m2.bias + m2.sub.weight + a + c + d |
| self.assertEqual(ref, m2.forward(input)) |
| m2.weight = nn.Parameter(torch.zeros_like(m2.weight)) |
| m2.bias = nn.Parameter(torch.zeros_like(m2.bias)) |
| m2.sub.weight = nn.Parameter(torch.zeros_like(m2.sub.weight)) |
| m2.sub2.a.data.zero_() |
| self.assertEqual(torch.zeros(2, 2), m2.forward(torch.randn(3, 2))) |
| |
| def test_script_module_call_noscript(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.value = 1 |
| |
| def foo(self): |
| return torch.ones(2, 2) + self.value |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| return input + self.foo() |
| |
| m = M() |
| input = torch.randn(2, 2) |
| o = m(input) |
| self.assertEqual(o, input + torch.ones(2, 2) + 1) |
| # check that we can change python attributes |
| # and that those changes are picked up in script methods |
| m.value = 2 |
| o = m(input) |
| self.assertEqual(o, input + torch.ones(2, 2) + 2) |
| |
| def test_script_module_nochange_submodule(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.sub = nn.Linear(5, 5) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| return self.sub(input) |
| |
| m = M() |
| input = torch.randn(1, 5, 5) |
| o = m(input) |
| self.assertEqual(o, m.sub(input)) |
| with self.assertRaisesRegex(RuntimeError, "cannot re-assign"): |
| m.sub = nn.Linear(5, 5) |
| |
| def test_script_inline_trace_multiple_args(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| |
| def forward(self, input, input2): |
| return input + input2 |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(False) |
| self.m = torch.jit.trace(torch.zeros(4, 3), torch.zeros(4, 3))(M()) |
| |
| @torch.jit.script_method |
| def forward(self, inp): |
| return self.m(inp, inp) |
| |
| m2 = M2() |
| m2(torch.zeros(4, 3)) |
| |
| def test_script_module_const(self): |
| class M(torch.jit.ScriptModule): |
| |
| __constants__ = ['b', 'i', 'c'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = False |
| self.i = 1 |
| self.c = 3.5 |
| |
| @torch.jit.script_method |
| def forward(self): |
| return self.b, self.i, self.c |
| |
| m = M() |
| o0, o1, o2 = m() |
| self.assertEqual(o0, 0) |
| self.assertEqual(o1, 1) |
| self.assertEqual(o2, 3.5) |
| |
| def test_script_module_fail_const(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = False |
| |
| @torch.jit.script_method |
| def forward(self): |
| return self.b |
| with self.assertRaisesRegex(RuntimeError, "is not usable in a script method"): |
| M() |
| |
| def test_script_module_valid_consts(self): |
| class Foo(torch.jit.ScriptModule): |
| __constants__ = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'] |
| |
| def __init__(self): |
| super(Foo, self).__init__(False) |
| self.a = 1 |
| self.b = 1.2 |
| self.c = False |
| self.d = [nn.Linear(3, 4)] |
| self.e = lambda x: x |
| self.f = [3, 4, 5] |
| self.assertTrue(type(self.f) is tuple) |
| self.g = [3, (3, 4), 5] |
| with self.assertRaisesRegex(TypeError, "is not a valid constant"): |
| self.h = type(1) |
| with self.assertRaisesRegex(TypeError, "is not a valid constant"): |
| self.i = (3, 4, {}) |
| |
| def test_script_module_for(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['b'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.b = [1, 2, 3, 4] |
| |
| @torch.jit.script_method |
| def forward(self): |
| sum = FIXME_zerol() |
| for i in self.b: |
| sum += i |
| return sum |
| |
| m = M() |
| self.assertEqual(m(), 10) |
| |
| def test_script_module_for2(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['mods'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = nn.ModuleList([Sub() for i in range(10)]) |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| for m in self.mods: |
| v = m(v) |
| return v |
| |
| i = torch.Tensor(2) |
| m = M() |
| o = m(i) |
| v = i |
| for sub in m.mods: |
| v = sub(v) |
| self.assertEqual(o, v) |
| |
| def test_script_module_const_submodule_fail(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = [Sub() for _ in range(10)] |
| |
| @torch.jit.script_method |
| def forward(self): |
| for _ in self.mods: |
| print(1) |
| return 4 |
| |
| with self.assertRaisesRegex(RuntimeError, "did you forget to add it __constants__"): |
| M() |
| |
| def test_script_module_not_tuple(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['mods'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = 1 |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| for m in self.mods: |
| print(m) |
| return v |
| with self.assertRaisesRegex(RuntimeError, "cannot be used as a tuple"): |
| M() |
| |
| def test_script_sequential_for(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['mods'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.mods = nn.Sequential(Sub(), Sub(), Sub()) |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| for m in self.mods: |
| v = m(v) |
| return v |
| |
| @torch.jit.script_method |
| def forward2(self, v): |
| return self.mods(v) |
| |
| i = torch.Tensor(2) |
| m = M() |
| o = m(i) |
| v = i |
| for sub in m.mods: |
| v = sub(v) |
| self.assertEqual(o, v) |
| |
| o2 = m.forward2(i) |
| self.assertEqual(o2, v) |
| |
| def test_script_sequential_multi_output_fail(self): |
| class Sub(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sub, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class ReturnMulti(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ReturnMulti, self).__init__(False) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return x, x, x |
| |
| class HaveSequential(torch.jit.ScriptModule): |
| __constants__ = ['someseq'] |
| |
| def __init__(self): |
| super(HaveSequential, self).__init__(False) |
| self.someseq = nn.Sequential( |
| Sub(), |
| ReturnMulti(), |
| Sub() |
| ) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return self.someseq(x) |
| |
| with self.assertRaisesRegex(RuntimeError, "(Tensor, Tensor, Tensor)"): |
| hs = HaveSequential() |
| i = torch.Tensor(2) |
| hs(i) |
| |
| def test_constant_as_attr(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['dim'] |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.dim = 1 |
| |
| @torch.jit.script_method |
| def forward(self, v): |
| return torch.cat([v, v, v], dim=self.dim) |
| v = torch.zeros(1, 1) |
| self.assertEqual(torch.cat([v, v, v], dim=1), M()(v)) |
| |
| class StarTestSumStarred(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestSumStarred, self).__init__() |
| |
| def forward(self, *inputs): |
| output = inputs[0] |
| for i in range(1, len(inputs)): |
| output += inputs[i] |
| return output |
| |
| class StarTestReturnThree(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestReturnThree, self).__init__() |
| |
| def forward(self, rep): |
| return rep, rep, rep |
| |
| def test_script_star_expr(self): |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.m = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3))(TestScript.StarTestSumStarred()) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestReturnThree()) |
| |
| @torch.jit.script_method |
| def forward(self, rep): |
| tup = self.g(rep) |
| return self.m(*tup) |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| def test_script_star_expr_string(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.m = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3))(TestScript.StarTestSumStarred()) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestReturnThree()) |
| |
| self.define(''' |
| def forward(self, rep): |
| tup = self.g(rep) |
| return self.m(*tup) |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| class StarTestSumAndReturnThree(torch.nn.Module): |
| def __init__(self): |
| super(TestScript.StarTestSumAndReturnThree, self).__init__() |
| |
| def forward(self, *inputs): |
| output = inputs[0] |
| for i in range(1, len(inputs)): |
| output += inputs[i] |
| return output, output, output |
| |
| def test_script_star_assign(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.g = torch.jit.trace(torch.ones(4, 3))(TestScript.StarTestSumAndReturnThree()) |
| self.define(''' |
| def forward(self, rep): |
| head, *tail = self.g(rep) |
| return head |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.zeros(4, 3)), 3 * torch.zeros(4, 3)) |
| |
| def test_script_module_star_assign2(self): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| self.g = torch.jit.trace( |
| torch.ones(4, 3), torch.ones(4, 3), torch.ones(4, 3) |
| )( |
| TestScript.StarTestSumAndReturnThree() |
| ) |
| self.define(''' |
| def forward(self, rep): |
| *head, tail = self.g(rep, rep, rep) |
| return tail |
| ''') |
| |
| m = M2() |
| self.assertEqual(m(torch.ones(4, 3)), 3 * torch.ones(4, 3)) |
| |
| def test_script_module_star_assign_fail_pythonop(self): |
| |
| with self.assertRaisesRegex(RuntimeError, "cannot be used as a tuple"): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| |
| def myfunc(): |
| return torch.zeros(1, 2, 3), torch.zeros(1, 2, 3) |
| |
| self.define(''' |
| def forward(self, rep): |
| a, *b = myfunc() |
| return a |
| ''') |
| |
| m = M2() |
| m(torch.zeros(4, 3)) |
| |
| def test_script_module_star_assign_fail_builtin(self): |
| with self.assertRaisesRegex(RuntimeError, "cannot be used as a tuple"): |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(True) |
| |
| self.define(''' |
| def forward(self, rep): |
| a, *b = torch.neg(rep) |
| return a |
| ''') |
| |
| m = M2() |
| m(torch.zeros(4, 3)) |
| |
| def test_pack_padded_pad_packed_trace(self): |
| from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
| T, B, C = 3, 5, 7 |
| |
| class PadPackedWrapper(torch.nn.Module): |
| def __init__(self): |
| super(PadPackedWrapper, self).__init__() |
| |
| def forward(self, x, seq_lens): |
| x = pack_padded_sequence(x, seq_lens) |
| x, _ = pad_packed_sequence(x) |
| return x |
| |
| x = np.ones((T, B, C)) |
| seq_lens = np.array([3, 3, 2, 2, 1], dtype=np.int32) |
| # set padding value so we can test equivalence |
| for b in range(B): |
| if seq_lens[b] < T: |
| x[seq_lens[b]:, b, :] = 0 |
| seq_lens = torch.from_numpy(seq_lens) |
| x = torch.autograd.Variable(torch.from_numpy(x), requires_grad=True) |
| |
| m = PadPackedWrapper() |
| m_traced = torch.jit.trace(x, seq_lens)(m) |
| |
| y = m(x, seq_lens) |
| loss = torch.sum(y) |
| loss.backward() |
| grad = x.grad.clone() |
| x.grad.zero_() |
| |
| y_traced = m_traced(x, seq_lens) |
| loss_traced = torch.sum(y_traced) |
| loss_traced.backward() |
| grad_traced = x.grad.clone() |
| |
| self.assertEqual(y_traced, x) |
| self.assertEqual(y_traced, y) |
| self.assertEqual(grad, grad_traced) |
| |
| f = io.BytesIO() |
| torch.onnx._export(m, (x, seq_lens), f, verbose=False) |
| |
| def test_pack_padded_wrong_types(self): |
| from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
| |
| class PackPaddedWrapper(torch.nn.Module): |
| def __init__(self): |
| super(PackPaddedWrapper, self).__init__() |
| self.seq_lens = [3, 3, 3, 3] |
| |
| __constants__ = ['seq_lens'] |
| |
| def forward(self, x): |
| return pack_padded_sequence(x, self.seq_lens) |
| |
| m = PackPaddedWrapper() |
| |
| x = torch.rand(3, 4, 5) |
| f = io.BytesIO() |
| with self.assertRaisesRegex(RuntimeError, 'PackPadded requires `lengths` to be a Tensor'): |
| torch.onnx._export(m, (x,), f) |
| |
| def test_script_outputs(self): |
| with self.assertRaisesRegex(RuntimeError, "cannot be used as a tuple"): |
| @torch.jit.script |
| def foo(a): |
| c, d = a + a |
| return c + d |
| |
| @torch.jit.script |
| def return3(): |
| # FIXME: use number instead of tensor |
| return torch.full([1], 1), torch.full([1], 2), torch.full([1], 3) |
| |
| with self.assertRaisesRegex(RuntimeError, "too many values to unpack"): |
| @torch.jit.script |
| def bind2(): |
| a, b = return3() |
| print(a) |
| print(b) |
| |
| def test_script_chunk(self): |
| @torch.jit.script |
| def foo(a): |
| b, c = torch.chunk(a, dim=0, chunks=2) |
| return b |
| v = torch.rand(10, 3) |
| self.assertEqual(torch.chunk(v, dim=0, chunks=2)[0], foo(v)) |
| |
| with self.assertRaisesRegex(RuntimeError, "too many values to unpack"): |
| @torch.jit.script |
| def foo(a): |
| b, c = torch.chunk(a, dim=0, chunks=3) |
| return b |
| |
| def test_rnn_trace_override(self): |
| from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
| num_layers = 3 |
| T, B, C = 11, 5, 7 |
| |
| class RNNTraceWrapper(torch.nn.Module): |
| def __init__(self, cell_type): |
| super(RNNTraceWrapper, self).__init__() |
| if cell_type == 'RNN': |
| self.rnn = torch.nn.RNN(input_size=C, hidden_size=C, num_layers=num_layers) |
| elif cell_type == 'LSTM': |
| self.rnn = torch.nn.LSTM(input_size=C, hidden_size=C, num_layers=num_layers) |
| elif cell_type == 'GRU': |
| self.rnn = torch.nn.GRU(input_size=C, hidden_size=C, num_layers=num_layers) |
| |
| def forward(self, x, seq_lens): |
| x = pack_padded_sequence(x, seq_lens) |
| x, _ = self.rnn(x) |
| x, _ = pad_packed_sequence(x) |
| return x |
| |
| for cell_type in ['RNN', 'LSTM', 'GRU']: |
| x = torch.ones(T, B, C, requires_grad=True) |
| seq_lens = torch.from_numpy(np.array([11, 3, 2, 2, 1], dtype=np.int32)) |
| |
| m = RNNTraceWrapper(cell_type) |
| m_traced = torch.jit.trace(x, seq_lens)(m) |
| |
| y = m(x, seq_lens) |
| loss = torch.sum(y) |
| loss.backward() |
| grad = x.grad.clone() |
| x.grad.zero_() |
| |
| y_traced = m_traced(x, seq_lens) |
| loss_traced = torch.sum(y_traced) |
| loss_traced.backward() |
| grad_traced = x.grad.clone() |
| |
| self.assertEqual(y_traced, y) |
| self.assertEqual(grad, grad_traced) |
| |
| f = io.BytesIO() |
| torch.onnx._export(m, (x, seq_lens), f, verbose=False) |
| |
| def test_tuples(self): |
| @torch.jit.script |
| def foo(i): |
| a = torch.chunk(i, dim=0, chunks=2) |
| c = a |
| # some nonsense with if-statements and loops to check |
| # that tuple lowering doesn't fail |
| if True: |
| c = torch.chunk(i, dim=0, chunks=2) |
| t0, t1 = c |
| while False: |
| t0, t1 = c |
| c = torch.chunk(i, dim=0, chunks=2) |
| return t0 |
| |
| v = torch.rand(10, 3) |
| self.assertEqual(torch.chunk(v, dim=0, chunks=2)[0], foo(v)) |
| |
| with self.assertRaisesRegex(RuntimeError, r"variable 'a' previously has type \(Tensor, Tensor\)"): |
| @torch.jit.script |
| def mixtypes(x): |
| a = torch.chunk(x, dim=0, chunks=2) |
| if True: |
| a = 4 |
| |
| def test_type_annotations(self): |
| def fn(x, y): |
| # type: (Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor] |
| return x, x * 2, x * 3 |
| |
| with self.assertRaisesRegex(RuntimeError, r"need 4 values .* found only 3"): |
| @torch.jit.script |
| def script_fn(x): |
| x, y, z, w = fn(x, x) |
| |
| with self.assertRaisesRegex(RuntimeError, r"too many values .* need 2 but found 3"): |
| @torch.jit.script |
| def script_fn2(x): |
| x, y = fn(x, x) |
| |
| def fn_unpack(x): |
| y, z, w = fn(x, x) |
| return y |
| |
| def fn_index(x): |
| q = fn(x, x) |
| return x |
| |
| x = torch.ones(2, 2) |
| self.checkScript(fn_unpack, (x,), optimize=True) |
| self.checkScript(fn_index, (x,), optimize=True) |
| |
| def test_type_annotations_varargs(self): |
| def fn_varargs(x, *args): |
| return args[0] if args else x |
| |
| def fn1(x, y, z): |
| return fn_varargs(x) |
| |
| def fn2(x, y, z): |
| return fn_varargs(x, y) |
| |
| def fn3(x, y, z): |
| return fn_varargs(x, y, z) |
| |
| x, y, z = [torch.randn(2, 2) for _ in range(3)] |
| self.checkScript(fn1, (x, y, z), optimize=True) |
| self.checkScript(fn2, (x, y, z), optimize=True) |
| self.checkScript(fn3, (x, y, z), optimize=True) |
| |
| @unittest.skipIf(not PY35, "Python 3.5 needed") |
| def test_type_annotation_py3(self): |
| import importlib.util |
| |
| code = dedent(""" |
| import torch |
| from torch import Tensor |
| from typing import Tuple |
| |
| def fn(x : torch.Tensor, y : Tensor, z) -> Tuple[Tensor, Tensor, Tensor]: |
| return (x, y + z, z) |
| """) |
| |
| with tempfile.TemporaryDirectory() as tmp_dir: |
| script_path = os.path.join(tmp_dir, 'script.py') |
| with open(script_path, 'w') as f: |
| f.write(code) |
| fn = get_fn('test_type_annotation_py3', script_path) |
| |
| with self.assertRaisesRegex(RuntimeError, r"expected a value of type Tensor for argument" |
| r" '0' but found \(Tensor, Tensor\)"): |
| @torch.jit.script |
| def bad_fn(x): |
| x, y = fn((x, x), x, x) |
| return y |
| |
| with self.assertRaisesRegex(RuntimeError, r"too many values .* need 2 but found 3"): |
| @torch.jit.script |
| def bad_fn2(x): |
| x, y = fn(x, x, x) |
| return y |
| |
| with self.assertRaisesRegex(RuntimeError, r"need 4 values .* found only 3"): |
| @torch.jit.script |
| def bad_fn3(x): |
| x, y, z, w = fn(x, x, x) |
| return y |
| |
| def good_fn(x): |
| y, z, w = fn(x, x, x) |
| return y, z, w |
| |
| self.checkScript(good_fn, (torch.ones(2, 2),), optimize=True) |
| |
| def test_type_annotation_module(self): |
| class BaseModule(torch.jit.ScriptModule): |
| def foo(self, x): |
| # type: (Tensor) -> Tensor |
| return x + 1 |
| |
| def bar(self, x, y): |
| # type: (Tensor, Tensor) -> Tuple[Tensor, Tensor] |
| return x + y, y |
| |
| def baz(self, x, y): |
| return x |
| |
| class ModuleTooMany(BaseModule): |
| @torch.jit.script_method |
| def method(self, x): |
| return self.foo(x, x) |
| |
| class ModuleTooFew(BaseModule): |
| @torch.jit.script_method |
| def method(self, x): |
| return self.bar(x) |
| |
| class ModuleTooManyAssign(BaseModule): |
| @torch.jit.script_method |
| def method(self, x): |
| y, z, w = self.bar(x, x) |
| return x |
| |
| class ModuleDefault(BaseModule): |
| @torch.jit.script_method |
| def method(self, x): |
| y = self.baz(x) |
| return x |
| |
| with self.assertRaisesRegex(RuntimeError, "expected at most 1 arguments but found 2"): |
| ModuleTooMany() |
| with self.assertRaisesRegex(RuntimeError, "argument 1 not provided"): |
| ModuleTooFew() |
| with self.assertRaisesRegex(RuntimeError, "need 3 values .* found only 2"): |
| ModuleTooManyAssign() |
| with self.assertRaisesRegex(RuntimeError, "argument 1 not provided."): |
| ModuleDefault() |
| |
| def test_script_define_order(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| pass |
| |
| @torch.jit.script_method |
| def call_foo(self, input): |
| return self.foo(input) |
| |
| @torch.jit.script_method |
| def foo(self, input): |
| return input + 1 |
| m = M() |
| self.assertEqual(2, m.call_foo(torch.ones((), dtype=torch.int64))) |
| |
| def test_script_define_order_recursive_fail(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| pass |
| |
| @torch.jit.script_method |
| def call_foo(self, input): |
| return self.foo(input) |
| |
| @torch.jit.script_method |
| def foo(self, input): |
| self.call_foo(input) |
| |
| with self.assertRaisesRegex(RuntimeError, 'called recursively involving'): |
| M() |
| |
| # TODO: Use this when we support passing literals to script fns |
| @unittest.expectedFailure |
| def test_script_kwargs_fn_call(self): |
| class M(torch.jit.ScriptModule): |
| def __init__(self): |
| pass |
| |
| @torch.jit.script_method |
| def call_foo(self, input): |
| return self.foo(input=input, bar=1) |
| |
| @torch.jit.script_method |
| def foo(self, bar, input): |
| return input + bar |
| m = M() |
| self.assertEqual(2, m.call_foo(torch.ones((), dtype=torch.int64))) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| def test_trace_of_script(self): |
| @torch.jit.script |
| def foo(a, c): |
| b = 0.0 |
| if a == 0.0: |
| b = 1.0 |
| return b + c |
| |
| a = torch.ones(1, dtype=torch.float) |
| |
| @torch.jit.trace(torch.zeros(1, dtype=torch.float)) |
| def use(b): |
| return foo(b - 1.0, a) + 1.0 |
| |
| # test we propagated shapes through the function |
| self.assertTrue("Dynamic" not in str(use.graph)) |
| |
| self.assertEqual(3, use(torch.ones(1, dtype=torch.float))) |
| self.assertEqual(2, use(torch.zeros(1, dtype=torch.float))) |
| |
| def test_if_define(self): |
| @torch.jit.script |
| def foo(a): |
| if a == 0: |
| b = 1 |
| else: |
| b = 0 |
| return FIXME_zerol() + (b + 1) |
| |
| @torch.jit.script |
| def foo2(a): |
| b = 0 |
| if a == 0: |
| b = 1 |
| return FIXME_zerol() + (b + 1) |
| |
| @torch.jit.script |
| def foo3(a): |
| b = 1 |
| if a == 0: |
| c = 4 |
| else: |
| b = 0 |
| return FIXME_zerol() + (b + 1) |
| |
| a = torch.ones(1, dtype=torch.long) |
| b = torch.zeros(1, dtype=torch.long) |
| self.assertEqual(1, foo(a)) |
| self.assertEqual(2, foo(b)) |
| self.assertEqual(1, foo2(a)) |
| self.assertEqual(2, foo2(b)) |
| self.assertEqual(1, foo3(a)) |
| self.assertEqual(2, foo3(b)) |
| |
| def test_script_module_export_submodule(self): |
| class M1(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M1, self).__init__(False) |
| self.weight = nn.Parameter(torch.randn(2)) |
| |
| @torch.jit.script_method |
| def forward(self, thing): |
| return self.weight + thing |
| |
| class M2(torch.jit.ScriptModule): |
| def __init__(self): |
| super(M2, self).__init__(False) |
| # test submodule |
| self.sub = M1() |
| self.weight = nn.Parameter(torch.randn(2, 3)) |
| self.bias = nn.Parameter(torch.randn(2)) |
| self.define(""" |
| def hi(self, a): |
| return self.weight.mm(a) |
| """) |
| |
| @torch.jit.script_method |
| def doit(self, input): |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def doit2(self, input): |
| return self.weight.mm(input) |
| |
| @torch.jit.script_method |
| def doit3(self, input): |
| return input + torch.ones([1], dtype=torch.double) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| a = self.doit(input) |
| b = self.doit2(input) |
| c = self.hi(input) |
| return a + b + self.bias + c |
| |
| m_orig = M2() |
| m_import = self.getExportImportCopy(m_orig) |
| |
| input = torch.randn(3, 2) |
| self.assertEqual(m_orig.doit(input), m_import.doit(input)) |
| self.assertEqual(m_orig.hi(input), m_import.hi(input)) |
| self.assertEqual(m_orig.doit3(input), m_import.doit3(input)) |
| self.assertEqual(m_orig.forward(input), m_import.forward(input)) |
| |
| @skipIfNoTorchVision |
| def test_script_module_export_resnet18(self): |
| x = torch.ones(1, 3, 224, 224) |
| m_orig = torch.jit.trace(torch.ones(1, 3, 224, 224))(torchvision.models.resnet18()) |
| m_import = self.getExportImportCopy(m_orig) |
| |
| input = torch.randn(1, 3, 224, 224, requires_grad=True) |
| output_orig = m_orig(input) |
| output_orig.sum().backward() |
| grad_orig = input.grad.clone() |
| input.grad.zero_() |
| |
| output_import = m_import(input) |
| output_import.sum().backward() |
| grad_import = input.grad.clone() |
| |
| self.assertEqual(output_orig, output_import) |
| self.assertEqual(grad_orig, grad_import) |
| |
| def test_script_module_export_tensor_type(self): |
| class M(torch.jit.ScriptModule): |
| |
| def __init__(self, type): |
| super(M, self).__init__(False) |
| self.param = torch.nn.Parameter(torch.zeros((5, 5), dtype=type).random_()) |
| |
| @torch.jit.script_method |
| def foo(self): |
| return self.param |
| |
| for type in [torch.float, torch.double]: |
| m_orig = M(type) |
| m_import = self.getExportImportCopy(m_orig) |
| self.assertEqual(m_orig.foo(), m_import.foo()) |
| self.assertTrue(m_orig.foo().dtype == m_import.foo().dtype) |
| |
| @unittest.skipIf(not RUN_CUDA, "testing cuda tensors require CUDA") |
| def test_script_module_export_tensor_cuda(self): |
| class M(torch.jit.ScriptModule): |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.param = torch.nn.Parameter(torch.zeros((5, 5), device='cuda').random_()) |
| |
| @torch.jit.script_method |
| def foo(self): |
| return self.param |
| |
| m_orig = M() |
| m_import = self.getExportImportCopy(m_orig) |
| self.assertTrue(m_import.foo().device == torch.device('cpu')) |
| self.assertEqual(m_orig.foo(), m_import.foo()) |
| self.assertTrue(m_orig.foo().dtype == m_import.foo().dtype) |
| |
| def test_script_module_export_shared_storage(self): |
| class M(torch.jit.ScriptModule): |
| |
| def __init__(self): |
| super(M, self).__init__(False) |
| self.param1 = torch.nn.Parameter(torch.rand(5, 5)) |
| self.param2 = torch.nn.Parameter(self.param1[3]) |
| self.param3 = torch.nn.Parameter(torch.rand(5, 5)) |
| |
| @torch.jit.script_method |
| def foo(self): |
| return self.param1 + self.param2 + self.param3 |
| |
| m_orig = M() |
| m_import = self.getExportImportCopy(m_orig) |
| |
| self.assertEqual(m_orig.foo(), m_import.foo()) |
| self.assertTrue(m_import.param1.storage().data_ptr() == m_import.param2.storage().data_ptr()) |
| self.assertTrue(m_import.param1.storage().data_ptr() != m_import.param3.storage().data_ptr()) |
| |
| def test_onnx_export_script_module(self): |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| y = x - x |
| return x + x |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3)) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.zeros(1, 2, 3),), None, verbose=False, |
| example_outputs=outputs)) |
| |
| def test_onnx_export_script_python_fail(self): |
| class ModuleToInline(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToInline, self).__init__() |
| |
| def forward(self, x): |
| return torch.neg(x) |
| |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| self.mod = ModuleToInline() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| y = self.mod(x) |
| return y + y |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3)) |
| f = io.BytesIO() |
| with self.assertRaisesRegex(RuntimeError, "Couldn't export Python operator"): |
| torch.onnx._export(mte, (torch.zeros(1, 2, 3),), f, verbose=False, |
| example_outputs=outputs) |
| |
| def test_onnx_export_script_inline_trace(self): |
| class ModuleToInline(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToInline, self).__init__() |
| |
| def forward(self, x): |
| return torch.neg(x) |
| |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| self.mod = torch.jit.trace(torch.zeros(1, 2, 3))(ModuleToInline()) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| y = self.mod(x) |
| return y + y |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3)) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.zeros(1, 2, 3),), None, verbose=False, |
| example_outputs=outputs)) |
| |
| def test_onnx_export_script_inline_script(self): |
| class ModuleToInline(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToInline, self).__init__() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.neg(x) |
| |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| self.mod = ModuleToInline() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| y = self.mod(x) |
| return y + y |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3)) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.zeros(1, 2, 3),), None, verbose=False, |
| example_outputs=outputs)) |
| |
| def test_onnx_export_script_module_loop(self): |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| for _ in range(100): |
| x = x + x |
| return x |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3)) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.zeros(1, 2, 3),), None, verbose=False, |
| example_outputs=outputs)) |
| |
| def test_onnx_export_script_module_if(self): |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| if torch.sum(x) > 0: |
| x = torch.neg(x) |
| return x |
| |
| mte = ModuleToExport() |
| outputs = mte(torch.zeros(1, 2, 3, dtype=torch.long)) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.zeros(1, 2, 3),), None, verbose=False, |
| example_outputs=outputs)) |
| |
| def test_onnx_export_script_inline_params(self): |
| class ModuleToInline(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToInline, self).__init__() |
| self.m = torch.nn.Parameter(torch.ones(3, 3)) |
| self.unused = torch.nn.Parameter(torch.ones(1, 2, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, self.m) |
| |
| class ModuleToExport(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ModuleToExport, self).__init__() |
| self.mod = ModuleToInline() |
| self.param = torch.nn.Parameter(torch.ones(3, 4)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| y = self.mod(x) |
| return torch.mm(y, self.param) |
| |
| mte = ModuleToExport() |
| result = mte(torch.zeros(2, 3)) |
| reference = torch.mm(torch.mm(torch.zeros(2, 3), torch.ones(3, 3)), torch.ones(3, 4)) |
| self.assertEqual(result, reference) |
| self.assertExpected(torch.onnx.export_to_pretty_string( |
| mte, (torch.ones(2, 3),), None, verbose=False, |
| example_outputs=result, propagate=True)) |
| |
| def test_trace_with_size(self): |
| @torch.jit.trace(torch.zeros(1, 1)) |
| def foo(x): |
| return x + 1 |
| |
| @torch.jit.script |
| def bar(x): |
| y = foo(x) |
| if True: |
| # FIXME: use number instead of tensor |
| y = torch.full([1], 7) |
| return y + 1 |
| |
| self.assertEqual(8, bar(torch.ones(1, 1))) |
| |
| def test_index_select_shape_prop(self): |
| |
| @torch.jit.script |
| def foo(x, y): |
| return torch.index_select(x, index=y, dim=1) |
| |
| a = torch.zeros(2, 2) |
| b = torch.zeros(4, dtype=torch.long) |
| foo.graph.propagate_shapes((a, b), False) |
| self.assertExpected(canonical(foo.graph)) |
| |
| def test_onnx_export_speculate(self): |
| |
| class Foo(torch.jit.ScriptModule): |
| def __init__(self, m): |
| super(Foo, self).__init__() |
| self.m = m |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| x += x |
| if True: |
| if True: |
| y = self.m(x) |
| else: |
| y = self.m(x) |
| else: |
| y = self.m(x) |
| return y |
| |
| linear = torch.jit.trace(torch.zeros(1, 10, dtype=torch.float))(nn.Linear(10, 20).float()) |
| |
| @torch.jit.script |
| def transpose(x): |
| return x.t() |
| |
| f1 = Foo(transpose) |
| outputs_f1 = f1(torch.ones(1, 10, dtype=torch.float)) |
| f2 = Foo(linear) |
| outputs_f2 = f2(torch.ones(1, 10, dtype=torch.float)) |
| |
| onnx_ish = torch.onnx.export_to_pretty_string( |
| f1, |
| (torch.ones(1, 10, dtype=torch.float), ), |
| None, verbose=False, example_outputs=outputs_f1) |
| self.assertExpected(onnx_ish, subname='f1') |
| onnx_ish = torch.onnx.export_to_pretty_string( |
| f2, |
| (torch.ones(1, 10, dtype=torch.float), ), |
| None, verbose=False, example_outputs=outputs_f2) |
| self.assertExpected(onnx_ish, subname='f2') |
| |
| def test_onnx_export_shape_reshape(self): |
| class Foo(torch.nn.Module): |
| def forward(self, x): |
| import torch.onnx.operators |
| x = x.repeat(5, 1, 1) |
| shape = torch.onnx.operators.shape_as_tensor(x) |
| reshaped = torch.onnx.operators.reshape_from_tensor_shape(x, shape) |
| return reshaped |
| |
| foo = torch.jit.trace(torch.zeros(1, 2, 3))(Foo()) |
| outputs = foo(torch.zeros(1, 2, 3)) |
| f = io.BytesIO() |
| s = torch.onnx.export_to_pretty_string(foo, (torch.zeros(1, 2, 3)), f, |
| example_outputs=outputs) |
| self.assertExpected(s) |
| |
| def test_shape_analysis_loop(self): |
| def foo(a, b, x): |
| c = a |
| # on the first iteration of the loop it appears that |
| # c should have a expand to the size of b |
| # but on the second+ iterations, there is no broadcast and the |
| # sizes are different. |
| # previously this would cause the compiler to (1) enter an infinite |
| # loop trying to compute the shape, and (2) insert invalid |
| # broadcasts. |
| # this test ensure we don't regress on these issues |
| for _ in range(2): |
| a = c + b |
| c = x |
| b = x |
| return a |
| |
| self.checkScript(foo, (torch.zeros(1), torch.zeros(4), torch.zeros(5)), optimize=False) |
| |
| def test_intlist_args(self): |
| def func_1(x): |
| return torch.nn.functional.adaptive_avg_pool1d(x, 1) |
| |
| def func_2(x): |
| return torch.nn.functional.adaptive_avg_pool1d(x, output_size=1) |
| |
| def func_3(x): |
| return torch.nn.functional.adaptive_avg_pool1d(x, output_size=[1]) |
| |
| x = torch.randn(8, 8, 8) |
| self.checkScript(func_1, [x], optimize=True) |
| self.checkScript(func_2, [x], optimize=True) |
| self.checkScript(func_3, [x], optimize=True) |
| |
| def test_wrong_implicit_expand(self): |
| |
| @torch.jit.trace(torch.zeros(3), torch.zeros(1)) |
| def foo(a, b): |
| return a + b |
| |
| a = torch.rand(4) |
| b = torch.rand(4) |
| self.assertEqual(a + b, foo(a, b)) |
| |
| def test_builtin_args_fails(self): |
| |
| with self.assertRaisesRegex(RuntimeError, 'expected at most'): |
| @torch.jit.script |
| def f0(a): |
| torch.sum(a, a, a, a) |
| |
| with self.assertRaisesRegex(RuntimeError, 'unknown keyword argument'): |
| @torch.jit.script |
| def f1(a): |
| torch.sum(foo=4) |
| |
| with self.assertRaisesRegex(RuntimeError, 'specified twice'): |
| @torch.jit.script |
| def f2(a): |
| torch.sum(a, self=a) |
| |
| with self.assertRaisesRegex(RuntimeError, 'not provided'): |
| @torch.jit.script |
| def f3(a): |
| torch.sum(dim=4) |
| |
| with self.assertRaisesRegex(RuntimeError, 'for argument \'tensors\' but found Tensor'): |
| @torch.jit.script |
| def f4(a): |
| torch.cat(a) |
| |
| with self.assertRaisesRegex(RuntimeError, 'argument \'tensors\' but found Tensor[][]'): |
| @torch.jit.script |
| def f5(a): |
| torch.cat([[a]]) |
| |
| with self.assertRaisesRegex(RuntimeError, 'Lists must contain only a single type'): |
| @torch.jit.script |
| def f6(a): |
| a.expand(size=[3, [4]]) |
| |
| with self.assertRaisesRegex(RuntimeError, 'xpected a value of type Tensor for argument \'self\''): |
| @torch.jit.script |
| def f7(a): |
| torch.sum([4]) |
| |
| def test_builtin_args(self): |
| |
| def t0(a): |
| # default arg dim |
| return torch.cat([a, a]) |
| |
| self.checkScript(t0, (torch.zeros(1, 1),)) |
| |
| def t1(a): |
| # keywords out of order |
| return torch.cat(dim=1, tensors=[a, a]) |
| |
| self.checkScript(t1, (torch.zeros(1, 1, 2),)) |
| |
| def t2(a): |
| # mix const/non-const attributes |
| if True: |
| b = 1 |
| else: |
| b = 0 |
| return torch.sum(a, dim=b, keepdim=False) |
| |
| self.checkScript(t2, (torch.zeros(1, 1, 2),)) |
| |
| def test_gather_dynamic_index(self): |
| def t(x): |
| gather1 = x[0] |
| idx = 0 + 1 |
| gather2 = x[idx] |
| return gather1 + gather2 |
| |
| self.checkScript(t, (torch.zeros(3, 2, 3),)) |
| |
| def test_slice_dynamic_index(self): |
| def t(x): |
| slice1 = x[0:1] |
| zero = 0 |
| one = zero + 1 |
| slice2 = x[zero:one] |
| return slice1 + slice2 |
| |
| self.checkScript(t, (torch.zeros(3, 2, 3),)) |
| |
| def test_addmm_grad(self): |
| """ This test checks several things: |
| 1. An expand node was inserted before the addmm operating on the |
| bias term. |
| 2. The fused form of addmm appears in the ultimate graph that's |
| executed. |
| 3. A sum op was emitted for accumulating gradients along the 0th |
| (expanded) dimension of the bias term. |
| 4. The correct symbolic representation for the backward pass of the |
| mm operator was emitted (x.t() -> mm) |
| |
| TODO: we should actually check these conditions once we have a way |
| to dump the GraphExecutor state. Namely the processed forward graph |
| and the backward graph. |
| """ |
| @torch.jit.script |
| def addmm_grad_test(b, x, w): |
| return torch.addmm(b, x, w) |
| |
| # Initialize param and input values |
| w_init = torch.rand(2, 5) |
| b_init = torch.rand(5) |
| x = torch.rand(3, 2) |
| |
| # Clone trainable params |
| b = b_init.clone() |
| b.requires_grad_() |
| w = w_init.clone() |
| w.requires_grad_() |
| |
| # Test symbolic differentiation |
| y = addmm_grad_test(b, x, w) |
| y.sum().backward() |
| |
| # clone params for autograd reference |
| b_ref = b_init.clone() |
| b_ref.requires_grad_() |
| w_ref = w_init.clone() |
| w_ref.requires_grad_() |
| y_ref = torch.addmm(b_ref, x, w_ref) |
| y_ref.sum().backward() |
| |
| self.assertEqual(w.grad, w_ref.grad) |
| self.assertEqual(b.grad, b_ref.grad) |
| |
| def test_zeros(self): |
| class M(torch.jit.ScriptModule): |
| __constants__ = ['d'] |
| |
| def __init__(self): |
| self.d = torch.device('cpu') |
| |
| @torch.jit.script_method |
| def create(self): |
| return torch.zeros([1, 1, 2], dtype=torch.float, device=self.d, layout=torch.strided) |
| |
| r = M().create() |
| self.assertEqual(r.dtype, torch.float) |
| self.assertEqual(torch.zeros([1, 1, 2], dtype=torch.float), r) |
| |
| @unittest.skipIf(IS_WINDOWS, "NYI: fuser support for Windows") |
| def test_rand(self): |
| |
| def test_rand(): |
| a = torch.rand([3, 4]) |
| return a + 1.0 - a |
| |
| self.checkScript(test_rand, ()) |
| |
| def test_erase_number_types(self): |
| def func(a): |
| b = 7 + 1 + 3 |
| c = a + b |
| c += b |
| return c |
| |
| graph = torch.jit.script(func).graph |
| self.run_pass('erase_number_types', graph) |
| self.assertExpectedGraph(graph) |
| |
| def test_loop_unrolling(self): |
| def fn(x): |
| y = FIXME_zerol() |
| for i in range(int(x)): |
| y += i |
| return y |
| |
| graph = torch.jit.script(fn).graph |
| self.run_pass('loop_unrolling', graph) |
| self.assertExpectedGraph(graph) |
| self.checkScript(fn, (torch.tensor(10),)) |
| |
| def test_loop_unrolling_const(self): |
| def fn(): |
| y = FIXME_zerol() |
| for i in range(10): |
| y += 1 |
| return y |
| |
| def fn2(): |
| y = FIXME_zerol() |
| for i in range(10): |
| y += i |
| return y |
| |
| def check(fn, name): |
| graph = torch.jit.script(fn).graph |
| self.run_pass('loop_unrolling', graph) |
| self.assertExpectedGraph(graph, subname=name) |
| self.checkScript(fn, ()) |
| |
| check(fn, 'add_const') |
| check(fn2, 'add_iter') |
| |
| def test_loop_unrolling_nested(self): |
| def fn(x): |
| y = FIXME_zerol() |
| for i in range(10): |
| for j in range(int(x)): |
| y += j |
| return y |
| |
| graph = torch.jit.script(fn).graph |
| self.run_pass('loop_unrolling', graph) |
| self.assertExpectedGraph(graph) |
| self.checkScript(fn, (torch.tensor(10),)) |
| |
| def test_loop_unroll_unused_counter(self): |
| def fn(x): |
| y = FIXME_zerol() |
| for i in range(int(x)): |
| y += 1 |
| return y |
| |
| graph = torch.jit.script(fn).graph |
| self.run_pass('loop_unrolling', graph) |
| self.assertExpectedGraph(graph) |
| |
| def test_loop_unroll_negative(self): |
| def fn(x): |
| y = FIXME_zerol() |
| for i in range(int(x)): |
| y += 1 |
| return y |
| |
| self.checkScript(fn, (torch.tensor(-20),)) |
| self.checkScript(fn, (torch.tensor(-2),)) |
| self.checkScript(fn, (torch.tensor(-1),)) |
| self.checkScript(fn, (torch.tensor(0),)) |
| self.checkScript(fn, (torch.tensor(1),)) |
| self.checkScript(fn, (torch.tensor(2),)) |
| |
| def test_where(self): |
| def fn(x, y): |
| return torch.where(x > 0.0, x, y) |
| |
| self.checkScript(fn, (torch.randn(3, 2, dtype=torch.float), torch.ones(3, 2, dtype=torch.float))) |
| |
| def test_reassign_module_lhs(self): |
| with self.assertRaisesRegex(RuntimeError, 'Cannot re-assign \'self\' because it has type value and self is' |
| ' not a first-class value. Only reassignments to first-class values are allowed'): |
| class ReassignSelfLHS(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def forward(self, x): |
| for i in range(20): |
| self = x |
| return self |
| |
| ReassignSelfLHS() |
| |
| def test_reassign_module_rhs(self): |
| with self.assertRaisesRegex(RuntimeError, 'Cannot re-assign \'x\' to a value of type module because x is not a' |
| ' first-class value. Only reassignments to first-class values are allowed'): |
| class ReassignSelfRHS(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def forward(self, x): |
| for i in range(20): |
| x = self |
| return self |
| |
| ReassignSelfRHS() |
| |
| def test_chunk_non_constant(self): |
| with self.assertRaisesRegex(RuntimeError, 'argument \'chunks\' must be a constant'): |
| @torch.jit.script |
| def chunk_non_constant(x, y): |
| return x.chunk(int(y)) |
| |
| def test_unknown_builtin(self): |
| with self.assertRaisesRegex(RuntimeError, 'unknown builtin op'): |
| @torch.jit.script |
| def unknown_builtin(x): |
| return x.splork(3) |
| |
| def test_return_tuple(self): |
| with self.assertRaisesRegex(RuntimeError, 'only supported return types'): |
| @torch.jit.script |
| def return_tuple(x): |
| a = (x, x) |
| return a, x |
| |
| def test_method_no_self(self): |
| with self.assertRaisesRegex(RuntimeError, 'methods must have a self argument'): |
| class MethodNoSelf(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def forward(): |
| return torch.zeros(3, 4) |
| |
| MethodNoSelf() |
| |
| def test_return_stmt_not_at_end(self): |
| with self.assertRaisesRegex(RuntimeError, 'return statements can appear only at the end of the function body'): |
| @torch.jit.script |
| def return_stmt_wrong(x): |
| if x > 3: |
| return 3 |
| else: |
| return x |
| |
| def test_for_range_no_arg(self): |
| with self.assertRaisesRegex(RuntimeError, 'range\(\) expects 1 argument but got 0'): |
| @torch.jit.script |
| def range_no_arg(x): |
| for i in range(): |
| x += 1 |
| return x |
| |
| def test_list_iterables(self): |
| with self.assertRaisesRegex(RuntimeError, 'List of iterables is not supported currently'): |
| cu = torch.jit.CompilationUnit(''' |
| def list_iterables(x): |
| for i, j in [2, 3, 4], [5, 6, 7]: |
| x += i |
| x += j |
| return x |
| ''') |
| |
| def test_for_tuple_unpack(self): |
| with self.assertRaisesRegex(RuntimeError, 'Iteration variable unpacking is not supported'): |
| cu = torch.jit.CompilationUnit(''' |
| def for_tuple_unpack(x, y): |
| for i, j in [[3, 4], [5, 6], [7, 8]]: |
| x += i |
| y += j |
| return x, y |
| ''') |
| |
| def test_single_starred_lhs(self): |
| with self.assertRaisesRegex(RuntimeError, 'A Starred expression may only appear on the lhs within the presence' |
| ' of another non-starred expression'): |
| cu = torch.jit.CompilationUnit(''' |
| def single_starred_lhs(x): |
| a = (x, x, x) |
| *b = a |
| return b |
| ''') |
| |
| def test_multi_reduction(self): |
| with self.assertRaisesRegex(RuntimeError, 'reductions are only allowed when there is a single variable on' |
| ' the left-hand side'): |
| cu = torch.jit.CompilationUnit(''' |
| def multi_reduction(x): |
| a, b += x |
| return a, b |
| ''') |
| |
| def test_invalid_call_arguments(self): |
| with self.assertRaisesRegex(RuntimeError, 'arguments for call are not valid'): |
| @torch.jit.script |
| def invalid_call_arguments(x): |
| return torch.unsqueeze(3, 4, 5, 6, 7, 8) |
| |
| def test_invalid_lhs_assignment(self): |
| with self.assertRaisesRegex(RuntimeError, 'lhs of assignment must be a variable or starred expression'): |
| cu = torch.jit.CompilationUnit(''' |
| def invalid_lhs_assignment(x): |
| x + 1 = x |
| return x |
| ''') |
| |
| def test_multi_starred_expr_lhs(self): |
| with self.assertRaisesRegex(RuntimeError, 'Only one starred expression is allowed on the lhs'): |
| cu = torch.jit.CompilationUnit(''' |
| def multi_starred_expr_lhs(): |
| a, *b, *c = [1, 2, 3, 4, 5, 6] |
| return a |
| ''') |
| |
| def test_pack_tuple_into_non_var(self): |
| with self.assertRaisesRegex(RuntimeError, 'Cannot pack a tuple into a non-variable'): |
| cu = torch.jit.CompilationUnit(''' |
| def pack_tuple_into_non_var(x): |
| a, *1 = (3, 4, 5) |
| return x |
| ''') |
| |
| def test_print_kwargs(self): |
| with self.assertRaisesRegex(RuntimeError, 'print doesn\'t accept any keyword arguments'): |
| cu = torch.jit.CompilationUnit(''' |
| def print_kwargs(x): |
| print(x, flush=True) |
| return x |
| ''') |
| |
| def test_builtin_use_as_value(self): |
| with self.assertRaisesRegex(RuntimeError, 'builtin cannot be used as a value'): |
| @torch.jit.script |
| def builtin_use_as_value(x): |
| return x.unsqueeze |
| |
| def test_wrong_use_as_tuple(self): |
| with self.assertRaisesRegex(RuntimeError, 'cannot be used as a tuple'): |
| def test_fn(): |
| return 3 |
| |
| @torch.jit.script |
| def wrong_use_as_tuple(self): |
| a, b = test_fn |
| return a |
| |
| def test_wrong_attr_lookup(self): |
| with self.assertRaisesRegex(RuntimeError, 'attribute lookup is not defined on builtin'): |
| @torch.jit.script |
| def wrong_attr_lookup(self, x): |
| a = x.unsqueeze.myattr |
| return a |
| |
| def test_wrong_use_as_callable(self): |
| with self.assertRaisesRegex(RuntimeError, 'cannot call a value'): |
| @torch.jit.script |
| def wrong_use_as_callable(x): |
| return x(3, 4, 5) |
| |
| def test_python_val_doesnt_have_attr(self): |
| with self.assertRaisesRegex(RuntimeError, 'object has no attribute abcd'): |
| def test_fn(): |
| return 3 |
| |
| @torch.jit.script |
| def python_val_doesnt_have_attr(): |
| return test_fn.abcd |
| |
| def test_wrong_module_attr_lookup(self): |
| with self.assertRaisesRegex(RuntimeError, 'python value of type \'type\' cannot be used as a value:'): |
| import io |
| |
| @torch.jit.script |
| def wrong_module_attr_lookup(): |
| return io.BytesIO |
| |
| def test_wrong_method_call_inputs(self): |
| with self.assertRaisesRegex(RuntimeError, 'argument y not provided'): |
| class SomeModule(torch.jit.ScriptModule): |
| |
| @torch.jit.script_method |
| def foo(self, x, y): |
| return x |
| |
| @torch.jit.script_method |
| def forward(self, x, y): |
| return self.foo(x) |
| SomeModule() |
| |
| def test_single_starred_expr_for_loop(self): |
| with self.assertRaisesRegex(RuntimeError, 'Starred unpacking is currently not supported for for loops'): |
| cu = torch.jit.CompilationUnit(''' |
| def test(): |
| x = 0 |
| for *a in [1, 2, 3]: |
| x = x + 1 |
| return x |
| ''') |
| |
| def test_duplicate(self): |
| with self.assertRaisesRegex(RuntimeError, 'Method \'test\' already defined'): |
| cu = torch.jit.CompilationUnit(''' |
| def test(): |
| return 1 |
| |
| def test(): |
| return 2 |
| ''') |
| |
| def test_call_ge(self): |
| with self.assertRaisesRegex(RuntimeError, 'expected at most 1 arguments but found 3'): |
| @torch.jit.trace(torch.zeros(1, 2, 3)) |
| def foo(x): |
| return x |
| |
| @torch.jit.script |
| def test_fn(): |
| return foo(torch.full([1], 1), torch.full([1], 2), torch.full([1], 3)) |
| |
| def test_wrong_return_type(self): |
| with self.assertRaisesRegex(RuntimeError, 'Python functions can currently only return Tensors'): |
| def somefunc(): |
| # type: () -> Tuple[Tuple[Tensor, Tensor]] |
| return torch.zeros(3, 4), torch.zeros(4, 5) |
| |
| @torch.jit.script |
| def wrong_return_type(): |
| return somefunc() |
| |
| # Tests for calling between different front-end modes |
| def test_call_python_fn_from_tracing_fn(self): |
| def python_fn(x): |
| return torch.neg(x) |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return python_fn(x) + 1 |
| |
| # The neg op in the python function should be properly inlined to the |
| # graph |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_python_mod_from_tracing_fn(self): |
| class PythonMod(torch.nn.Module): |
| def __init__(self): |
| super(PythonMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| pm = PythonMod() |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return pm(x) + 1 |
| |
| # Note: the parameter self.param from the Python module is inlined |
| # into the graph |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_traced_fn_from_tracing_fn(self): |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn1(x): |
| return torch.neg(x) |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return traced_fn1(x) + 1 |
| |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_traced_mod_from_tracing_fn(self): |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return tm(x) + 1 |
| |
| # Note: the parameter self.param from the Python module is inlined |
| # into the graph |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_script_fn_from_tracing_fn(self): |
| @torch.jit.script |
| def script_fn(x): |
| return torch.neg(x) |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return script_fn(x) + 1 |
| |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_script_mod_from_tracing_fn(self): |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| sm = ScriptMod() |
| |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return sm(x) + 1 |
| |
| self.assertExpected(canonical(traced_fn.graph)) |
| |
| def test_call_python_fn_from_traced_module(self): |
| def python_fn(x): |
| return torch.neg(x) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| def forward(self, x): |
| return torch.mm(python_fn(x), self.param) |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| # Note: parameter self.param from the traced module should appear as |
| # an input to the graph and the neg op from the Python function should |
| # be properly inlined |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_python_mod_from_traced_module(self): |
| class PythonModule(torch.nn.Module): |
| def __init__(self): |
| super(PythonModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(5, 7)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 5)) |
| self.mod = PythonModule() |
| |
| def forward(self, x): |
| return self.mod(torch.mm(x, self.param)) + 1 |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| # Note: the parameters from both modules should appear in the flattened |
| # inputs of the graph. All ops from both modules should be inlined. |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_traced_fn_from_traced_module(self): |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return torch.neg(x) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 5)) |
| |
| def forward(self, x): |
| return traced_fn(torch.mm(x, self.param)) |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| # Note: neg op from the traced function should be properly inlined |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_traced_module_from_traced_module(self): |
| class TracedModule1(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule1, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(5, 7)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 5)) |
| self.mod = torch.jit.trace(torch.rand(3, 5))(TracedModule1()) |
| |
| def forward(self, x): |
| return self.mod(torch.mm(x, self.param)) + 1 |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| # Note: the parameters from both modules should appear in the flattened |
| # inputs of the graph. All ops from both modules should be inlined. |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_script_fn_from_traced_module(self): |
| @torch.jit.script |
| def traced_fn(x): |
| return torch.neg(x) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 5)) |
| |
| def forward(self, x): |
| return traced_fn(torch.mm(x, self.param)) |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| # Note: neg op from the script function should be properly inlined |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_script_module_from_traced_module(self): |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(5, 7)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 5)) |
| self.mod = ScriptMod() |
| |
| def forward(self, x): |
| return self.mod(torch.mm(x, self.param)) + 1 |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| # Note: the parameters from both modules should appear in the flattened |
| # inputs of the graph. All ops from both modules should be inlined. |
| self.assertExpected(canonical(tm.graph)) |
| |
| def test_call_python_fn_from_script_fn(self): |
| def python_fn(x): |
| return torch.neg(x) |
| |
| @torch.jit.script |
| def script_fn(x): |
| return python_fn(x) + 1 |
| |
| # Note: the call to python_fn appears as `^python_fn()` and is called |
| # as a PythonOp in the interpreter |
| self.assertExpected(canonical(script_fn.graph)) |
| |
| def test_call_python_mod_from_script_fn(self): |
| class PythonModule(torch.nn.Module): |
| def __init__(self): |
| super(PythonModule, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(5, 7)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| pm = PythonModule() |
| |
| @torch.jit.script |
| def script_fn(x): |
| return pm(x) + 1 |
| |
| # Note: call to pm(x) appears as ^<python_value>() in the trace. |
| # Parameters are NOT inlined. |
| self.assertExpected(str(script_fn.graph)) |
| |
| def test_call_traced_fn_from_script_fn(self): |
| @torch.jit.trace(torch.rand(3, 4)) |
| def traced_fn(x): |
| return torch.neg(x) |
| |
| @torch.jit.script |
| def script_fn(x): |
| return traced_fn(x) + 1 |
| |
| # Note: the neg op from traced_fn should be properly inlined into the |
| # script function's graph |
| self.assertExpected(str(script_fn.graph)) |
| |
| def test_call_traced_mod_from_script_fn(self): |
| class TracedModule(torch.nn.Module): |
| def __init__(self): |
| super(TracedModule, self).__init__() |
| |
| def forward(self, x): |
| return torch.mm(x, torch.zeros(4, 3)) |
| |
| tm = torch.jit.trace(torch.rand(3, 4))(TracedModule()) |
| |
| @torch.jit.script |
| def script_fn(x): |
| return tm(x) + 1 |
| |
| self.assertExpected(str(script_fn.graph)) |
| |
| def test_call_script_fn_from_script_fn(self): |
| @torch.jit.script |
| def script_fn1(x): |
| return torch.neg(x) |
| |
| @torch.jit.script |
| def script_fn(x): |
| return script_fn1(x) + 1 |
| |
| # Note: the neg op from script_fn1 should be properly inlined into the |
| # graph of script_fn |
| self.assertExpected(str(script_fn.graph)) |
| |
| def test_call_script_mod_from_script_fn(self): |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, torch.zeros([4, 3])) |
| |
| sm = ScriptMod() |
| |
| @torch.jit.script |
| def script_fn(x): |
| return sm(x) + 1 |
| |
| self.assertExpected(str(script_fn.graph)) |
| |
| def test_call_python_fn_from_script_module(self): |
| def python_fn(x): |
| return torch.neg(x) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return python_fn(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| self.assertExpected(str(sm.__getattr__('forward').graph)) |
| |
| def test_call_python_mod_from_script_module(self): |
| class PythonMod(torch.nn.Module): |
| def __init__(self): |
| super(PythonMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(3, 5)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| self.pm = PythonMod() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return self.pm(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| # Note: the call into PythonMod appears as ^<python_value>(). Parameters |
| # are NOT inlined |
| self.assertExpected(str(sm.graph)) |
| |
| def test_call_tracing_fn_from_script_module(self): |
| @torch.jit.trace(torch.rand(3, 3)) |
| def traced_fn(x): |
| return torch.neg(x) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return traced_fn(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| self.assertExpected(str(sm.__getattr__('forward').graph)) |
| |
| def test_call_tracing_mod_from_script_module(self): |
| class TracedMod(torch.nn.Module): |
| def __init__(self): |
| super(TracedMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(3, 5)) |
| |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| self.tm = torch.jit.trace(torch.rand(3, 3))(TracedMod()) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return self.tm(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| # Note: the parameters from both modules should appear in the flattened |
| # input list to the graph. The mm op from TracedMod should be properly |
| # inlined |
| self.assertExpected(str(sm.graph)) |
| |
| def test_call_script_fn_from_script_module(self): |
| @torch.jit.script |
| def script_fn(x): |
| return torch.neg(x) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return script_fn(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| self.assertExpected(str(sm.__getattr__('forward').graph)) |
| |
| def test_call_script_mod_from_script_module(self): |
| class ScriptMod1(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod1, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(3, 5)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(4, 3)) |
| self.tm = ScriptMod1() |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return self.tm(torch.mm(x, self.param)) |
| |
| sm = ScriptMod() |
| # Note: the parameters from both modules should appear in the flattened |
| # input list to the graph. The mm op from ScriptMod1 should be properly |
| # inlined |
| self.assertExpected(str(sm.graph)) |
| |
| def test_module_with_params_called_fails(self): |
| with self.assertRaisesRegex(RuntimeError, "Attempted to inline a Module with parameters. Stateful " |
| "modules to be inlined must be submodules of the callee."): |
| class ScriptMod(torch.jit.ScriptModule): |
| def __init__(self): |
| super(ScriptMod, self).__init__() |
| self.param = torch.nn.Parameter(torch.rand(3, 3)) |
| |
| @torch.jit.script_method |
| def forward(self, x): |
| return torch.mm(x, self.param) |
| |
| sm = ScriptMod() |
| |
| @torch.jit.script |
| def some_func(x): |
| return sm(x) |
| |
| def test_index_put_trace_with_view(self): |
| @torch.jit.trace(torch.rand(100), torch.tensor([1, 2, 3, 4]), torch.rand(1, 1, 1, 4)) |
| def test_index_put(target, indices, rhs): |
| target[indices] = rhs |
| return target |
| |
| self.assertExpected(str(test_index_put.graph)) |
| |
| def test_index_put_trace_without_view(self): |
| @torch.jit.trace(torch.rand(100), torch.tensor([1, 2, 3, 4]), torch.rand(4)) |
| def test_index_put(target, indices, rhs): |
| target[indices] = rhs |
| return target |
| |
| self.assertExpected(str(test_index_put.graph)) |
| |
| def test_annotated_script_fn(self): |
| @torch.jit.script |
| def foo(x, y, z): |
| # type: (Tensor, Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tuple[Tensor, Tensor]]) -> Tensor |
| return x |
| |
| self.assertExpected(foo.__getattr__('forward').pretty_print_schema()) |
| |
| def test_annotated_script_method(self): |
| class SM(torch.jit.ScriptModule): |
| @torch.jit.script_method |
| def forward(self, x, y): |
| # type: (Tuple[Tensor, Tensor], Tensor) -> Tuple[Tensor, Tensor, Tensor] |
| return y, y, y |
| |
| sm = SM() |
| |
| self.assertExpected(sm.__getattr__('forward').pretty_print_schema()) |
| |
| def test_annotated_script_fn_return_mismatch(self): |
| with self.assertRaisesRegex(RuntimeError, r"Return value at position 0 was annotated as " |
| r"having type \(Tensor, Tensor\) but is " |
| r"actually of type Tensor"): |
| @torch.jit.script |
| def return_tup(x): |
| # type: (Tensor) -> Tuple[Tuple[Tensor, Tensor], Tensor] |
| return x, x |
| |
| def test_annotated_script_fn_arg_mismatch(self): |
| with self.assertRaisesRegex(RuntimeError, r"arguments for call are not valid"): |
| @torch.jit.script |
| def tuple_arg(x): |
| # type: (Tuple[Tensor, Tensor]) -> Tensor |
| return x + 1 |
| |
| def test_script_non_tensor_args_outputs(self): |
| @torch.jit.script |
| def fn(x, y): |
| # type: (Tensor, float) -> float |
| return float((x + y).sum()) |
| |
| x = torch.ones(2, 2) |
| z = fn(x, 1) |
| self.assertIsInstance(z, float) |
| self.assertEqual(z, 8.) |
| |
| @unittest.skip('https://github.com/pytorch/pytorch/issues/9595') |
| def test_inline_and_run_annotated_script_fn(self): |
| @torch.jit.script |
| def to_inline(x, y): |
| # type: (Tuple[Tensor, Tensor], Tensor) -> Tensor |
| return y |
| |
| @torch.jit.script |
| def some_func(x): |
| return to_inline((x, x), x) |
| |
| x = torch.rand(3, 4) |
| self.assertEqual(some_func(x), x) |
| |
| def test_file_format_serialization(self): |
| import tempfile |
| filename = tempfile.mktemp() |
| writer = torch._C.PyTorchFileWriter(filename) |
| import os |
| import random |
| buffers = [os.urandom(size) for size in [random.randint(1, 100) for i in range(20)]] |
| offsets = [] |
| for buf in buffers: |
| offsets.append(writer.write_record(buf, len(buf))) |
| import pickle |
| serialized_offsets = pickle.dumps(offsets) |
| writer.write_record(serialized_offsets, len(serialized_offsets)) |
| writer.write_end_of_file() |
| |
| reader = torch._C.PyTorchFileReader(filename) |
| serialized_offsets_read = reader.get_last_record() |
| parsed_serialized_offsets = pickle.loads(serialized_offsets) |
| |
| for i, offset in enumerate(parsed_serialized_offsets): |
| data = reader.get_record_with_key(offset) |
| assert(data == buffers[i]) |
| |
| |
| class TestEndToEndHybridFrontendModels(JitTestCase): |
| |
| def test_dcgan_models(self): |
| class DCGANGenerator(nn.Module): |
| def __init__(self, nz, ngf, nc): |
| super(DCGANGenerator, self).__init__() |
| self.main = nn.Sequential( |
| # input is Z, going into a convolution |
| nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), |
| nn.BatchNorm2d(ngf * 8), |
| nn.ReLU(True), |
| # state size. (ngf*8) x 4 x 4 |
| nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ngf * 4), |
| nn.ReLU(True), |
| # state size. (ngf*4) x 8 x 8 |
| nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ngf * 2), |
| nn.ReLU(True), |
| # state size. (ngf*2) x 16 x 16 |
| nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ngf), |
| nn.ReLU(True), |
| # state size. (ngf) x 32 x 32 |
| nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), |
| nn.Tanh() |
| # state size. (nc) x 64 x 64 |
| ) |
| |
| def forward(self, input): |
| return self.main(input) |
| |
| class DCGANDiscriminator(nn.Module): |
| def __init__(self, nc, ndf): |
| super(DCGANDiscriminator, self).__init__() |
| self.main = nn.Sequential( |
| # input is (nc) x 64 x 64 |
| nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), |
| nn.LeakyReLU(0.2, inplace=True), |
| # state size. (ndf) x 32 x 32 |
| nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ndf * 2), |
| nn.LeakyReLU(0.2, inplace=True), |
| # state size. (ndf*2) x 16 x 16 |
| nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ndf * 4), |
| nn.LeakyReLU(0.2, inplace=True), |
| # state size. (ndf*4) x 8 x 8 |
| nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), |
| nn.BatchNorm2d(ndf * 8), |
| nn.LeakyReLU(0.2, inplace=True), |
| # state size. (ndf*8) x 4 x 4 |
| nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), |
| nn.Sigmoid() |
| ) |
| |
| def forward(self, input): |
| return self.main(input).view(-1, 1).squeeze(1) |
| |
| bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10 |
| self.checkTrace(DCGANGenerator(nz, ngf, nc), (torch.rand(bs, nz, 1, 1),)) |
| example_input = DCGANGenerator(nz, ngf, nc)(torch.rand(bs, nz, 1, 1)) |
| self.checkTrace(DCGANDiscriminator(nc, ndf), (example_input,)) |
| |
| @unittest.skip('https://github.com/pytorch/pytorch/issues/8439 InstanceNormalization bug') |
| def test_neural_style(self): |
| class TransformerNet(torch.nn.Module): |
| def __init__(self): |
| super(TransformerNet, self).__init__() |
| # Initial convolution layers |
| self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1) |
| self.in1 = torch.nn.InstanceNorm2d(32, affine=True) |
| self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2) |
| self.in2 = torch.nn.InstanceNorm2d(64, affine=True) |
| self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2) |
| self.in3 = torch.nn.InstanceNorm2d(128, affine=True) |
| # Residual layers |
| self.res1 = ResidualBlock(128) |
| self.res2 = ResidualBlock(128) |
| self.res3 = ResidualBlock(128) |
| self.res4 = ResidualBlock(128) |
| self.res5 = ResidualBlock(128) |
| # Upsampling Layers |
| self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2) |
| self.in4 = torch.nn.InstanceNorm2d(64, affine=True) |
| self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2) |
| self.in5 = torch.nn.InstanceNorm2d(32, affine=True) |
| self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1) |
| # Non-linearities |
| self.relu = torch.nn.ReLU() |
| |
| def forward(self, X): |
| y = self.relu(self.in1(self.conv1(X))) |
| y = self.relu(self.in2(self.conv2(y))) |
| y = self.relu(self.in3(self.conv3(y))) |
| y = self.res1(y) |
| y = self.res2(y) |
| y = self.res3(y) |
| y = self.res4(y) |
| y = self.res5(y) |
| y = self.relu(self.in4(self.deconv1(y))) |
| y = self.relu(self.in5(self.deconv2(y))) |
| y = self.deconv3(y) |
| return y |
| |
| class ConvLayer(torch.nn.Module): |
| def __init__(self, in_channels, out_channels, kernel_size, stride): |
| super(ConvLayer, self).__init__() |
| reflection_padding = kernel_size // 2 |
| self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) |
| self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) |
| |
| def forward(self, x): |
| out = self.reflection_pad(x) |
| out = self.conv2d(out) |
| return out |
| |
| class ResidualBlock(torch.nn.Module): |
| """ResidualBlock |
| introduced in: https://arxiv.org/abs/1512.03385 |
| recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html |
| """ |
| |
| def __init__(self, channels): |
| super(ResidualBlock, self).__init__() |
| self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) |
| self.in1 = torch.nn.InstanceNorm2d(channels, affine=True) |
| self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) |
| self.in2 = torch.nn.InstanceNorm2d(channels, affine=True) |
| self.relu = torch.nn.ReLU() |
| |
| def forward(self, x): |
| residual = x |
| out = self.relu(self.in1(self.conv1(x))) |
| out = self.in2(self.conv2(out)) |
| out = out + residual |
| return out |
| |
| class UpsampleConvLayer(torch.nn.Module): |
| """UpsampleConvLayer |
| Upsamples the input and then does a convolution. This method gives better results |
| compared to ConvTranspose2d. |
| ref: http://distill.pub/2016/deconv-checkerboard/ |
| """ |
| |
| def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): |
| super(UpsampleConvLayer, self).__init__() |
| self.upsample = upsample |
| if upsample: |
| self.upsample_layer = torch.nn.Upsample(mode='nearest', scale_factor=upsample) |
| reflection_padding = kernel_size // 2 |
| self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) |
| self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) |
| |
| def forward(self, x): |
| x_in = x |
| if self.upsample: |
| x_in = self.upsample_layer(x_in) |
| out = self.reflection_pad(x_in) |
| out = self.conv2d(out) |
| return out |
| |
| self.checkTrace(TransformerNet(), (torch.rand(5, 3, 224, 224),)) |
| |
| def test_mnist(self): |
| class Net(nn.Module): |
| def __init__(self): |
| super(Net, self).__init__() |
| self.conv1 = nn.Conv2d(1, 10, kernel_size=5) |
| self.conv2 = nn.Conv2d(10, 20, kernel_size=5) |
| self.conv2_drop = nn.Dropout2d() |
| self.fc1 = nn.Linear(320, 50) |
| self.fc2 = nn.Linear(50, 10) |
| |
| def forward(self, x): |
| x = F.relu(F.max_pool2d(self.conv1(x), 2)) |
| x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) |
| x = x.view(-1, 320) |
| x = F.relu(self.fc1(x)) |
| x = F.dropout(x, training=self.training) |
| x = self.fc2(x) |
| return F.log_softmax(x, dim=1) |
| |
| # FIXME: eval() is present because it works around the issue described |
| # in https://github.com/pytorch/pytorch/issues/8448 |
| self.checkTrace(Net().eval(), (torch.rand(5, 1, 28, 28),)) |
| |
| def test_reinforcement_learning(self): |
| class Policy(nn.Module): |
| def __init__(self): |
| super(Policy, self).__init__() |
| self.affine1 = nn.Linear(4, 128) |
| self.affine2 = nn.Linear(128, 2) |
| |
| def forward(self, x): |
| x = F.relu(self.affine1(x)) |
| action_scores = self.affine2(x) |
| return F.softmax(action_scores, dim=1) |
| |
| self.checkTrace(Policy(), (torch.rand(1, 4),)) |
| |
| def test_snli(self): |
| # TODO: |
| # 1) nn.LSTM is called as a Python function https://github.com/pytorch/pytorch/issues/8449 |
| # 2) Dropout is called as a Python function https://github.com/pytorch/pytorch/issues/8450 |
| class Bottle(nn.Module): |
| |
| def forward(self, input): |
| if len(input.size()) <= 2: |
| return super(Bottle, self).forward(input) |
| size = input.size()[:2] |
| out = super(Bottle, self).forward(input.view(size[0] * size[1], -1)) |
| return out.view(size[0], size[1], -1) |
| |
| class Linear(Bottle, nn.Linear): |
| pass |
| |
| class Encoder(nn.Module): |
| |
| def __init__(self, config): |
| super(Encoder, self).__init__() |
| self.config = config |
| input_size = config.d_proj if config.projection else config.d_embed |
| dropout = 0 if config.n_layers == 1 else config.dp_ratio |
| self.rnn = nn.LSTM(input_size=input_size, hidden_size=config.d_hidden, |
| num_layers=config.n_layers, dropout=dropout, |
| bidirectional=config.birnn) |
| |
| def forward(self, inputs): |
| batch_size = inputs.size()[1] |
| state_shape = self.config.n_cells, batch_size, self.config.d_hidden |
| h0 = c0 = inputs.new_zeros(state_shape) |
| outputs, (ht, ct) = self.rnn(inputs, (h0, c0)) |
| return ht[-1] if not self.config.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1) |
| |
| class SNLIClassifier(nn.Module): |
| |
| def __init__(self, config): |
| super(SNLIClassifier, self).__init__() |
| self.config = config |
| self.embed = nn.Embedding(config.n_embed, config.d_embed) |
| self.projection = Linear(config.d_embed, config.d_proj) |
| self.encoder = Encoder(config) |
| self.dropout = nn.Dropout(p=config.dp_ratio) |
| self.relu = nn.ReLU() |
| seq_in_size = 2 * config.d_hidden |
| if self.config.birnn: |
| seq_in_size *= 2 |
| lin_config = [seq_in_size] * 2 |
| self.out = nn.Sequential( |
| Linear(*lin_config), |
| self.relu, |
| self.dropout, |
| Linear(*lin_config), |
| self.relu, |
| self.dropout, |
| Linear(*lin_config), |
| self.relu, |
| self.dropout, |
| Linear(seq_in_size, config.d_out)) |
| |
| def forward(self, premise, hypothesis): |
| prem_embed = self.embed(premise) |
| hypo_embed = self.embed(hypothesis) |
| if self.config.fix_emb: |
| prem_embed = prem_embed.detach() |
| hypo_embed = hypo_embed.detach() |
| if self.config.projection: |
| prem_embed = self.relu(self.projection(prem_embed)) |
| hypo_embed = self.relu(self.projection(hypo_embed)) |
| premise = self.encoder(prem_embed) |
| hypothesis = self.encoder(hypo_embed) |
| scores = self.out(torch.cat([premise, hypothesis], 1)) |
| return scores |
| |
| class Config: |
| n_embed = 100 |
| d_embed = 100 |
| d_proj = 300 |
| dp_ratio = 0.0 # For deterministic testing TODO: change by fixing seed in checkTrace? |
| d_hidden = 300 |
| birnn = True |
| d_out = 300 |
| fix_emb = True |
| projection = True |
| n_layers = 2 |
| n_cells = 4 # 2 * n_layers because birnn = True |
| |
| premise = torch.LongTensor(48, 128).random_(0, 100) |
| hypothesis = torch.LongTensor(24, 128).random_(0, 100) |
| |
| self.checkTrace(SNLIClassifier(Config()), (premise, hypothesis), inputs_require_grads=False) |
| |
| def test_super_resolution(self): |
| import torch.nn.init as init |
| |
| class Net(nn.Module): |
| |
| def __init__(self, upscale_factor): |
| super(Net, self).__init__() |
| |
| self.relu = nn.ReLU() |
| self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) |
| self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) |
| self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) |
| self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) |
| self.pixel_shuffle = nn.PixelShuffle(upscale_factor) |
| |
| def forward(self, x): |
| x = self.relu(self.conv1(x)) |
| x = self.relu(self.conv2(x)) |
| x = self.relu(self.conv3(x)) |
| x = self.pixel_shuffle(self.conv4(x)) |
| return x |
| |
| net = Net(upscale_factor=4) |
| self.checkTrace(net, (torch.rand(5, 1, 64, 64),)) |
| |
| def test_time_sequence_prediction(self): |
| class Sequence(torch.jit.ScriptModule): |
| def __init__(self): |
| super(Sequence, self).__init__() |
| self.lstm1 = nn.LSTMCell(1, 51) |
| self.lstm2 = nn.LSTMCell(51, 51) |
| self.linear = nn.Linear(51, 1) |
| |
| # TODO: could not pass tuple to a python Op and type annotations |
| # is not descending to python signature, hence the wrapper |
| # see https://github.com/pytorch/pytorch/issues/8778 |
| # and https://github.com/pytorch/pytorch/issues/8777 |
| def test_lstm1(self, input, hx, cx): |
| # type: (Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor] |
| return self.lstm1(input, (hx, cx)) |
| |
| def test_lstm2(self, input, hx, cx): |
| # type: (Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor] |
| return self.lstm2(input, (hx, cx)) |
| |
| # TODO: could not support tensor constructors in script |
| # see https://github.com/pytorch/pytorch/issues/8814 |
| def test_tensor(self): |
| return torch.tensor([], dtype=torch.double) |
| |
| @torch.jit.script_method |
| def forward(self, input): |
| # TODO: add future as input with default val |
| # see https://github.com/pytorch/pytorch/issues/8724 |
| outputs = self.test_tensor() |
| h_t = torch.zeros((3, 51), dtype=torch.double) |
| c_t = torch.zeros((3, 51), dtype=torch.double) |
| h_t2 = torch.zeros((3, 51), dtype=torch.double) |
| c_t2 = torch.zeros((3, 51), dtype=torch.double) |
| |
| output = torch.zeros([3, 51]) |
| future = 2 |
| |
| # TODO: chunk call should be input.chunk(input.size(1), dim=1) |
| # see https://github.com/pytorch/pytorch/issues/8775 |
| for input_t in input.chunk(4, dim=1): |
| h_t, c_t = self.test_lstm1(input_t, h_t, c_t) |
| h_t2, c_t2 = self.test_lstm2(h_t, h_t2, c_t2) |
| output = self.linear(h_t2) |
| outputs = torch.cat((outputs, output), 1) |
| for _ in range(future): # if we should predict the future |
| h_t, c_t = self.test_lstm1(output, h_t, c_t) |
| h_t2, c_t2 = self.test_lstm2(h_t, h_t2, c_t2) |
| output = self.linear(h_t2) |
| outputs = torch.cat((outputs, output), 1) |
| return outputs |
| |
| self.checkTrace(Sequence(), (torch.rand(3, 4),)) |
| |
| def test_vae(self): |
| class VAE(nn.Module): |
| def __init__(self): |
| super(VAE, self).__init__() |
| |
| self.fc1 = nn.Linear(784, 400) |
| self.fc21 = nn.Linear(400, 20) |
| self.fc22 = nn.Linear(400, 20) |
| self.fc3 = nn.Linear(20, 400) |
| self.fc4 = nn.Linear(400, 784) |
| |
| def encode(self, x): |
| h1 = F.relu(self.fc1(x)) |
| return self.fc21(h1), self.fc22(h1) |
| |
| def reparameterize(self, mu, logvar): |
| if self.training: |
| std = torch.exp(0.5 * logvar) |
| eps = torch.randn_like(std) |
| return eps.mul(std).add_(mu) |
| else: |
| return mu |
| |
| def decode(self, z): |
| h3 = F.relu(self.fc3(z)) |
| return torch.sigmoid(self.fc4(h3)) |
| |
| def forward(self, x): |
| mu, logvar = self.encode(x.view(-1, 784)) |
| z = self.reparameterize(mu, logvar) |
| return self.decode(z), mu, logvar |
| |
| # FIXME: this fails under training because of the call to `randn_like` |
| # https://github.com/pytorch/pytorch/issues/8443 |
| self.checkTrace(VAE().eval(), (torch.rand(128, 1, 28, 28),)) |
| |
| |
| # Smoke tests for export methods |
| class TestPytorchExportModes(JitTestCase): |
| class MyModel(nn.Module): |
| def __init__(self): |
| super(TestPytorchExportModes.MyModel, self).__init__() |
| |
| def forward(self, x): |
| return x.transpose(0, 1) |
| |
| def test_protobuf(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.PROTOBUF_FILE) |
| |
| def test_zipfile(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.ZIP_ARCHIVE) |
| |
| def test_compressed_zipfile(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| f = io.BytesIO() |
| torch.onnx._export(torch_model, (fake_input), f, verbose=False, |
| export_type=torch.onnx.ExportTypes.COMPRESSED_ZIP_ARCHIVE) |
| |
| def test_directory(self): |
| torch_model = TestPytorchExportModes.MyModel() |
| fake_input = Variable(torch.randn(1, 1, 224, 224), requires_grad=True) |
| d = tempfile.mkdtemp() |
| torch.onnx._export(torch_model, (fake_input), d, verbose=False, |
| export_type=torch.onnx.ExportTypes.DIRECTORY) |
| shutil.rmtree(d) |
| |
| def test_aten_fallback(self): |
| class ModelWithAtenNotONNXOp(nn.Module): |
| def forward(self, x, y): |
| abcd = x + y |
| defg = torch.qr(abcd) |
| return defg |
| |
| x = torch.rand(3, 4) |
| y = torch.rand(3, 4) |
| f = io.BytesIO() |
| exported = torch.onnx.export_to_pretty_string( |
| ModelWithAtenNotONNXOp(), (x, y), f, |
| operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK) |
| self.assertExpected(exported) |
| |
| |
| # known to be failing in tracer |
| EXCLUDE_TRACED = { |
| 'test_split_dim', |
| 'test_split_dim_neg0', |
| 'test_gesv', |
| 'test_inverse', |
| } |
| |
| # known to be failing in script |
| EXCLUDE_SCRIPT = { |
| # TODO: Fix var/std |
| # there are two schemas for var (and std): |
| # (1) var(Tensor, int, *, bool, bool, Tensor) |
| # (2) var(Tensor, *, bool) |
| # |
| # Right now, the following is happening: |
| # - Shorter schemas come before longer schemas |
| # - bool, int are treated as IntType rather than DynamicType like before |
| # So the schemas look like the following in operator: |
| # (2) var(DynamicType, IntType) |
| # (1) var(DynamicType, IntType, IntType, DynamicType) |
| # Now, when one calls torch.var(tensor, dim=1), the compiler mistakingly |
| # matches it with (2) instead of (1), which is a problem. |
| 'test_std_dim', |
| 'test_std_dim_1d', |
| 'test_std_dim_1d_neg0', |
| 'test_std_dim_neg0', |
| 'test_var_dim', |
| 'test_var_dim_1d', |
| 'test_var_dim_1d_neg0', |
| 'test_var_dim_neg0', |
| 'test_norm_inf', |
| 'test_renorm_norm_inf', |
| 'test_split', |
| 'test_split_size_list', |
| 'test_split_size_list_dim', |
| 'test_split_size_list_dim_neg0', |
| 'test_expand', |
| 'test_expand_1_element', |
| 'test_expand_new_dim', |
| 'test_expand_new_dim_front_old_front_1', |
| 'test_expand_scalar_to_dims', |
| 'test_expand_size', |
| 'test_permute', |
| 'test_permute_neg_dim', |
| 'test_repeat', |
| 'test_repeat_scalar', |
| 'test_repeat_single_number', |
| 'test_repeat_unsqueeze', |
| 'test_reshape', |
| 'test_reshape_1d', |
| 'test_reshape_scalar_to_1d', |
| 'test_reshape_size', |
| 'test_view', |
| 'test_view_1d', |
| 'test_view_scalar_to_1d', |
| 'test_view_size', |
| 'test_split_dim', |
| 'test_split_dim_neg0', |
| 'test_gesv', |
| 'test_inverse', |
| } |
| |
| |
| # make a new function where all non-tensor arguments in 'args' have been partially |
| # applied, and all tensor arguments remain. |
| # used to trace functions when some arguments are not tensors |
| def partial_apply_nontensors(fn, args, **kwargs): |
| source = ['t' if isinstance(arg, torch.Tensor) else 's' for arg in args] |
| |
| def new_fn(*tensors_): |
| tensors = iter(tensors_) |
| return fn(*(args[i] if s == 's' else next(tensors) for i, s in enumerate(source)), **kwargs) |
| |
| return new_fn, [arg for arg in args if isinstance(arg, torch.Tensor)] |
| |
| |
| def create_traced_fn(fn): |
| def traced_fn(*inputs, **kwargs): |
| fn_tensors, inputs_tensors = partial_apply_nontensors(fn, inputs, **kwargs) |
| traced = torch.jit.trace(*inputs_tensors)(fn_tensors) |
| return traced(*inputs_tensors) |
| return traced_fn |
| |
| script_template = ''' |
| def the_method({}): |
| return {} |
| ''' |
| |
| |
| def create_script_fn(method_name, is_functional, output_process_fn): |
| def script_fn(*args, **kwargs): |
| formals = [] |
| tensors = [] |
| actuals = [] |
| for arg in args: |
| if isinstance(arg, torch.Tensor): |
| name = 'i{}'.format(len(formals)) |
| formals.append(name) |
| actuals.append(name) |
| tensors.append(arg) |
| else: |
| actuals.append(str(arg)) |
| kwargs_str = '' |
| for k, v in kwargs.items(): |
| kwargs_str += ', ' + k + '=' + str(v) |
| if is_functional: |
| call = 'torch.{}({}{})'.format(method_name, ', '.join(actuals), kwargs_str) |
| else: |
| call = '{}.{}({}{})'.format(actuals[0], method_name, ', '.join(actuals[1:]), kwargs_str) |
| script = script_template.format(', '.join(formals), call) |
| CU = torch.jit.CompilationUnit(script) |
| return output_process_fn(CU.the_method(*tensors)) |
| return script_fn |
| |
| |
| def check_against_reference(self, func, reference_func, args, kwargs=None, allow_unused=True): |
| kwargs = kwargs if kwargs else {} |
| |
| def allSum(vs): |
| if isinstance(vs, torch.Tensor): |
| vs = (vs,) |
| return sum([(i + 1) * v.sum() |
| for i, v in enumerate(vs) |
| if v is not None and v.dtype.is_floating_point]) |
| |
| def clone_inputs(requires_grad): |
| inputs = [ |
| arg.detach().clone().requires_grad_(requires_grad and arg.requires_grad) |
| if isinstance(arg, torch.Tensor) else arg for arg in args |
| ] |
| return inputs, [input for input in inputs if isinstance(input, torch.Tensor) and input.requires_grad] |
| |
| nograd_inputs, nograd_tensors = clone_inputs(False) |
| recording_inputs, recording_tensors = clone_inputs(True) |
| |
| # test no gradients case |
| outputs = reference_func(*nograd_inputs, **kwargs) |
| outputs_test = func(*nograd_inputs, **kwargs) |
| self.assertEqual(outputs, outputs_test) |
| |
| # test single grad case |
| outputs = reference_func(*recording_inputs, **kwargs) |
| grads = torch.autograd.grad(allSum(outputs), recording_tensors, |
| allow_unused=allow_unused) |
| |
| outputs_test = func(*recording_inputs, **kwargs) |
| grads_test = torch.autograd.grad(allSum(outputs_test), recording_tensors, |
| allow_unused=allow_unused) |
| self.assertEqual(outputs, outputs_test) |
| self.assertEqual(grads, grads_test) |
| |
| # test the grad grad case |
| |
| outputs = reference_func(*recording_inputs, **kwargs) |
| l1 = allSum(outputs) |
| grads = torch.autograd.grad(l1, recording_tensors, create_graph=True, |
| allow_unused=allow_unused) |
| l2 = (allSum(grads) * l1) |
| grads2 = torch.autograd.grad(l2, recording_tensors, allow_unused=allow_unused) |
| |
| recording_inputs, recording_tensors = clone_inputs(True) |
| |
| outputs_test = func(*recording_inputs, **kwargs) |
| l1_test = allSum(outputs_test) |
| grads_test = torch.autograd.grad( |
| l1_test, recording_tensors, create_graph=True, allow_unused=allow_unused) |
| l2_test = (allSum(grads_test) * l1_test) |
| grads2_test = torch.autograd.grad(l2_test, recording_tensors, allow_unused=allow_unused) |
| |
| self.assertEqual(outputs, outputs_test) |
| self.assertEqual(grads, grads_test) |
| for g2, g2_test in zip(grads2, grads2_test): |
| if g2 is None and g2_ge is None: |
| continue |
| self.assertTrue(torch.allclose(g2, g2_test, atol=5e-4, rtol=1e-4)) |
| |
| |
| class TestJitGenerated(TestCase): |
| pass |
| |
| |
| class TestCustomOperators(TestCase): |
| |
| def test_dynamic_op_registry(self): |
| from torch._ops import _OpNamespace |
| self.assertTrue(hasattr(torch, 'ops')) |
| |
| torch.ops.__dict__.pop('aten') |
| |
| # Don't use `hasattr()` because it will call `__getattr__`. |
| self.assertNotIn('aten', torch.ops.__dict__) |
| torch.ops.aten |
| self.assertIn('aten', torch.ops.__dict__) |
| self.assertEqual(type(torch.ops.aten), _OpNamespace) |
| |
| self.assertNotIn('relu', torch.ops.aten.__dict__) |
| op = torch.ops.aten.relu |
| self.assertTrue(callable(op)) |
| self.assertIn('relu', torch.ops.aten.__dict__) |
| op2 = torch.ops.aten.relu |
| self.assertEqual(op, op2) |
| |
| def test_simply_calling_an_operator(self): |
| input = torch.randn(100) |
| output = torch.ops.aten.relu(input) |
| self.assertEqual(output, input.relu()) |
| |
| def test_default_arguments_are_used(self): |
| output = torch.ops.aten.leaky_relu(torch.tensor([-1.0, 1.0])) |
| self.assertEqual(output, torch.tensor([-0.01, 1])) |
| |
| def test_only_kwargs(self): |
| output = torch.ops.aten.leaky_relu(self=torch.tensor(-1.0)) |
| self.assertEqual(output, torch.tensor(-0.01)) |
| |
| def test_passing_too_many_args(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Expected at most 1 argument\(s\) for operator 'aten::relu', " + |
| "but received 2 argument\(s\). " + |
| "Schema: aten::relu\(Tensor self\) -> Tensor", |
| ): |
| torch.ops.aten.relu(1, 2) |
| |
| def test_passing_too_few_args(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Missing value for argument 'self' to operator 'aten::relu'. " + |
| "Schema: aten::relu\(Tensor self\) -> Tensor", |
| ): |
| torch.ops.aten.relu() |
| |
| def test_passing_one_positional_but_not_the_second(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Missing value for argument 'dim' to operator 'aten::log_softmax'" |
| ): |
| torch.ops.aten.log_softmax(torch.ones(5)) |
| |
| def test_passing_an_argument_both_as_positional_and_kwarg(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Argument 'self' specified both as positional and keyword argument" |
| ): |
| torch.ops.aten.leaky_relu(torch.ones(5), self=torch.ones(5)) |
| |
| def test_passing_unknown_kwargs(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Unknown keyword argument 'foo' for operator 'aten::leaky_relu'" |
| ): |
| torch.ops.aten.leaky_relu(torch.ones(5), foo=torch.ones(5)) |
| # |
| # def test_passing_and_returning_lists(self): |
| # a, b = torch.ones(5), torch.zeros(5) |
| # output = torch.ops.aten.stack([a, b]) |
| # self.assertEqual(output, torch.ones(10)) |
| # |
| # def test_throws_for_tuples(self): |
| # with self.assertRaisesRegex( |
| # RuntimeError, |
| # "Unknown keyword argument 'foo' for operator 'aten::leaky_relu'" |
| # ): |
| # torch.ops.aten.leaky_relu(torch.ones(5), foo=torch.ones(5)) |
| |
| |
| # UBSAN per-function exclusions don't seem to work with OpenMP pragmas, |
| # and we have to disable the failing tests here instead. |
| UBSAN_BLACKLISTED_TESTS = [ |
| "test___rdiv___constant", |
| "test___rdiv___scalar_constant", |
| "test_addcdiv", |
| "test_addcdiv_broadcast_all", |
| "test_addcdiv_broadcast_rhs", |
| "test_addcdiv_scalar", |
| "test_addcdiv_scalar_broadcast_lhs", |
| "test_addcdiv_scalar_broadcast_rhs", |
| "test_addcdiv_scalar_scale", |
| "test_addcdiv_scalar_scale_broadcast_lhs", |
| "test_addcdiv_scalar_scale_broadcast_rhs", |
| "test_addcdiv_scale", |
| "test_addcdiv_scale_broadcast_all", |
| "test_addcdiv_scale_broadcast_rhs", |
| "test_add_broadcast_all", |
| "test_add_broadcast_lhs", |
| "test_add_broadcast_rhs", |
| "test_add_constant", |
| "test_add_scalar", |
| "test_add_scalar_broadcast_lhs", |
| "test_add_scalar_broadcast_rhs", |
| "test_div", |
| "test_div_broadcast_all", |
| "test_div_broadcast_lhs", |
| "test_div_broadcast_rhs", |
| "test_div_scalar", |
| "test_div_scalar_broadcast_lhs", |
| "test_div_scalar_broadcast_rhs", |
| "test_rsqrt", |
| "test_rsqrt_scalar", |
| "test_add", |
| "test_reciprocal", |
| "test_reciprocal_scalar", |
| ] |
| |
| |
| def add_test( |
| name, |
| self_size, |
| args, |
| variant_name='', |
| dim_args_idx=(), |
| skipTestIf=(), |
| output_process_fn=lambda x: x, |
| kwargs=None): |
| basic_test_name = 'test_' + name |
| if variant_name != '': |
| basic_test_name += '_' + variant_name |
| |
| for dim_perm in product([-1, 1], repeat=len(dim_args_idx)): |
| test_name = basic_test_name |
| new_args = [arg * dim_perm[dim_args_idx.index(i)] if i in dim_args_idx else arg for i, arg in enumerate(args)] |
| test_name = basic_test_name + ''.join('_neg' + str(i) for i, idx in enumerate(dim_perm) if idx < 0) |
| new_args = tuple(new_args) |
| |
| # for-loop bodies don't define scopes, so we have to save the variables |
| # we want to close over in some way |
| def do_test(self, name=name, self_size=self_size, args=new_args, test_name=test_name, |
| output_process_fn=output_process_fn): |
| def check(name): |
| is_magic_method = name[:2] == '__' and name[-2:] == '__' |
| is_inplace = name[-1] == "_" and not is_magic_method |
| self_variable = create_input((self_size,))[0][0] |
| # FixMe: run grad checks on inplace self |
| if is_inplace: |
| self_variable.requires_grad = False |
| # need to record this because methods can change the szie (e.g. unsqueeze) |
| args_variable, kwargs_variable = create_input(args, requires_grad=not is_inplace, call_kwargs=kwargs) |
| self_tensor = deepcopy(self_variable.data) |
| args_tensor = deepcopy(unpack_variables(args_variable)) |
| output_variable = getattr(self_variable, name)(*args_variable, **kwargs_variable) |
| |
| def fn(*inputs, **kwargs): |
| output = getattr(inputs[0], name)(*inputs[1:], **kwargs) |
| return output_process_fn(output) |
| |
| if not is_inplace and name not in EXCLUDE_GRADCHECK and not exclude_tensor_method(name, test_name): |
| if test_name not in EXCLUDE_TRACED: |
| check_against_reference(self, create_traced_fn(fn), |
| fn, (self_variable,) + args_variable, kwargs_variable) |
| |
| if not is_magic_method and test_name not in EXCLUDE_SCRIPT: |
| check_against_reference(self, |
| create_script_fn(name, False, output_process_fn), |
| fn, (self_variable,) + args_variable, kwargs_variable) |
| |
| # functional interface tests |
| if hasattr(torch, name) and name not in EXCLUDE_FUNCTIONAL: |
| def fn(*inputs, **kwargs): |
| output = getattr(torch, name)(*inputs, **kwargs) |
| return output_process_fn(output) |
| |
| f_args_variable = (self_variable,) + args_variable |
| f_args_tensor = (self_tensor,) + args_tensor |
| |
| if not is_inplace and test_name not in EXCLUDE_TRACED: |
| check_against_reference(self, create_traced_fn(fn), fn, f_args_variable, kwargs_variable) |
| |
| if not is_inplace and test_name not in EXCLUDE_SCRIPT: |
| check_against_reference(self, |
| create_script_fn(name, True, output_process_fn), |
| fn, f_args_variable, kwargs_variable) |
| |
| check(name) |
| inplace_name = name + '_' |
| # can't broadcast inplace to left hand side |
| broadcast_skip_inplace = 'broadcast_lhs' in test_name or 'broadcast_all' in test_name |
| if hasattr(torch.ones(1), inplace_name) and not broadcast_skip_inplace: |
| check(inplace_name) |
| |
| assert not hasattr(TestJitGenerated, test_name), 'Two tests have the same name: ' + test_name |
| |
| for skip in skipTestIf: |
| do_test = skip(do_test) |
| |
| if not (TEST_WITH_UBSAN and test_name in UBSAN_BLACKLISTED_TESTS): |
| setattr(TestJitGenerated, test_name, do_test) |
| |
| for test in method_tests: |
| add_test(*test) |
| |
| if __name__ == '__main__': |
| run_tests() |