blob: d7de3841ab65f15d30d09eeb749e21d5c7f9f049 [file] [log] [blame]
import torch
import unittest
import itertools
import warnings
from math import inf, nan, isnan
from random import randrange
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_NUMPY, IS_MACOS, IS_WINDOWS, TEST_WITH_ASAN, make_tensor)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, dtypesIfCUDA,
onlyCUDA, skipCUDAIfNoMagma, skipCPUIfNoLapack, precisionOverride)
from torch.testing._internal.jit_metaprogramming_utils import gen_script_fn_and_args
from torch.autograd import gradcheck
if TEST_NUMPY:
import numpy as np
class TestLinalg(TestCase):
exact_dtype = True
# Tests torch.outer, and its alias, torch.ger, vs. NumPy
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@precisionOverride({torch.bfloat16: 1e-1})
@dtypes(*(torch.testing.get_all_dtypes()))
def test_outer(self, device, dtype):
def run_test_case(a, b):
if dtype == torch.bfloat16:
a_np = a.to(torch.double).cpu().numpy()
b_np = b.to(torch.double).cpu().numpy()
else:
a_np = a.cpu().numpy()
b_np = b.cpu().numpy()
expected = np.outer(a_np, b_np)
self.assertEqual(torch.outer(a, b), expected)
self.assertEqual(torch.Tensor.outer(a, b), expected)
self.assertEqual(torch.ger(a, b), expected)
self.assertEqual(torch.Tensor.ger(a, b), expected)
# test out variant
out = torch.empty(a.size(0), b.size(0), device=device, dtype=dtype)
torch.outer(a, b, out=out)
self.assertEqual(out, expected)
out = torch.empty(a.size(0), b.size(0), device=device, dtype=dtype)
torch.ger(a, b, out=out)
self.assertEqual(out, expected)
a = torch.randn(50).to(device=device, dtype=dtype)
b = torch.randn(50).to(device=device, dtype=dtype)
run_test_case(a, b)
# test 0 strided tensor
zero_strided = torch.randn(1).to(device=device, dtype=dtype).expand(50)
run_test_case(zero_strided, b)
run_test_case(a, zero_strided)
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@precisionOverride({torch.bfloat16: 1e-1})
@dtypes(*(torch.testing.get_all_dtypes()))
def test_addr(self, device, dtype):
def run_test_case(m, a, b, beta=1, alpha=1):
if dtype == torch.bfloat16:
a_np = a.to(torch.double).cpu().numpy()
b_np = b.to(torch.double).cpu().numpy()
m_np = m.to(torch.double).cpu().numpy()
else:
a_np = a.cpu().numpy()
b_np = b.cpu().numpy()
m_np = m.cpu().numpy()
if beta == 0:
expected = alpha * np.outer(a_np, b_np)
else:
expected = beta * m_np + alpha * np.outer(a_np, b_np)
self.assertEqual(torch.addr(m, a, b, beta=beta, alpha=alpha), expected)
self.assertEqual(torch.Tensor.addr(m, a, b, beta=beta, alpha=alpha), expected)
result_dtype = torch.addr(m, a, b, beta=beta, alpha=alpha).dtype
out = torch.empty_like(m, dtype=result_dtype)
torch.addr(m, a, b, beta=beta, alpha=alpha, out=out)
self.assertEqual(out, expected)
a = torch.randn(50).to(device=device, dtype=dtype)
b = torch.randn(50).to(device=device, dtype=dtype)
m = torch.randn(50, 50).to(device=device, dtype=dtype)
# when beta is zero
run_test_case(m, a, b, beta=0., alpha=2)
# when beta is not zero
run_test_case(m, a, b, beta=0.5, alpha=2)
# test transpose
m_transpose = torch.transpose(m, 0, 1)
run_test_case(m_transpose, a, b, beta=0.5, alpha=2)
# test 0 strided tensor
zero_strided = torch.randn(1).to(device=device, dtype=dtype).expand(50)
run_test_case(m, zero_strided, b, beta=0.5, alpha=2)
# test scalar
m_scalar = torch.tensor(1, device=device, dtype=dtype)
run_test_case(m_scalar, a, b)
@dtypes(*itertools.product(torch.testing.get_all_dtypes(),
torch.testing.get_all_dtypes()))
def test_outer_type_promotion(self, device, dtypes):
a = torch.randn(5).to(device=device, dtype=dtypes[0])
b = torch.randn(5).to(device=device, dtype=dtypes[1])
for op in (torch.outer, torch.Tensor.outer, torch.ger, torch.Tensor.ger):
result = op(a, b)
self.assertEqual(result.dtype, torch.result_type(a, b))
@dtypes(*itertools.product(torch.testing.get_all_dtypes(),
torch.testing.get_all_dtypes()))
def test_addr_type_promotion(self, device, dtypes):
a = torch.randn(5).to(device=device, dtype=dtypes[0])
b = torch.randn(5).to(device=device, dtype=dtypes[1])
m = torch.randn(5, 5).to(device=device,
dtype=torch.result_type(a, b))
for op in (torch.addr, torch.Tensor.addr):
# pass the integer 1 to the torch.result_type as both
# the default values of alpha and beta are integers (alpha=1, beta=1)
desired_dtype = torch.result_type(m, 1)
result = op(m, a, b)
self.assertEqual(result.dtype, desired_dtype)
desired_dtype = torch.result_type(m, 2.)
result = op(m, a, b, beta=0, alpha=2.)
self.assertEqual(result.dtype, desired_dtype)
# Tests migrated from test_torch.py
# 1) test the shape of the result tensor when there is empty input tensor
# 2) test the Runtime Exception when there is scalar input tensor
def test_outer_ger_addr_legacy_tests(self, device):
for size in ((0, 0), (0, 5), (5, 0)):
a = torch.rand(size[0], device=device)
b = torch.rand(size[1], device=device)
self.assertEqual(torch.outer(a, b).shape, size)
self.assertEqual(torch.ger(a, b).shape, size)
m = torch.empty(size, device=device)
self.assertEqual(torch.addr(m, a, b).shape, size)
m = torch.randn(5, 6, device=device)
a = torch.randn(5, device=device)
b = torch.tensor(6, device=device)
self.assertRaises(RuntimeError, lambda: torch.outer(a, b))
self.assertRaises(RuntimeError, lambda: torch.outer(b, a))
self.assertRaises(RuntimeError, lambda: torch.ger(a, b))
self.assertRaises(RuntimeError, lambda: torch.ger(b, a))
self.assertRaises(RuntimeError, lambda: torch.addr(m, a, b))
self.assertRaises(RuntimeError, lambda: torch.addr(m, b, a))
# Tests torch.det and its alias, torch.linalg.det, vs. NumPy
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_det(self, device, dtype):
tensors = (
torch.randn((2, 2), device=device, dtype=dtype),
torch.randn((129, 129), device=device, dtype=dtype),
torch.randn((3, 52, 52), device=device, dtype=dtype),
torch.randn((4, 2, 26, 26), device=device, dtype=dtype))
ops = (torch.det, torch.Tensor.det,
torch.linalg.det)
for t in tensors:
expected = np.linalg.det(t.cpu().numpy())
for op in ops:
actual = op(t)
self.assertEqual(actual, expected)
# NOTE: det requires a 2D+ tensor
t = torch.randn(1, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
op(t)
# This test confirms that torch.linalg.norm's dtype argument works
# as expected, according to the function's documentation
@skipCUDAIfNoMagma
def test_norm_dtype(self, device):
def run_test_case(input_size, ord, keepdim, from_dtype, to_dtype, compare_dtype):
msg = (
f'input_size={input_size}, ord={ord}, keepdim={keepdim}, '
f'from_dtype={from_dtype}, to_dtype={to_dtype}')
input = torch.randn(*input_size, dtype=from_dtype, device=device)
result = torch.linalg.norm(input, ord, keepdim=keepdim, dtype=from_dtype)
self.assertEqual(result.dtype, from_dtype, msg=msg)
result_converted = torch.linalg.norm(input, ord, keepdim=keepdim, dtype=to_dtype)
self.assertEqual(result_converted.dtype, to_dtype, msg=msg)
self.assertEqual(result.to(compare_dtype), result_converted.to(compare_dtype), msg=msg)
result_out_converted = torch.empty_like(result_converted)
torch.linalg.norm(input, ord, keepdim=keepdim, dtype=to_dtype, out=result_out_converted)
self.assertEqual(result_out_converted.dtype, to_dtype, msg=msg)
self.assertEqual(result_converted, result_out_converted, msg=msg)
ord_vector = [0, 1, -1, 2, -2, 3, -3, 4.5, -4.5, inf, -inf, None]
ord_matrix = ['fro', 'nuc', 1, -1, 2, -2, inf, -inf, None]
S = 10
test_cases = [
((S, ), ord_vector),
((S, S), ord_matrix),
]
for keepdim in [True, False]:
for input_size, ord_settings in test_cases:
for ord in ord_settings:
# float to double
run_test_case(input_size, ord, keepdim, torch.float, torch.double, torch.float)
# double to float
run_test_case(input_size, ord, keepdim, torch.double, torch.double, torch.float)
# Make sure that setting dtype != out.dtype raises an error
dtype_pairs = [
(torch.float, torch.double),
(torch.double, torch.float),
]
for keepdim in [True, False]:
for input_size, ord_settings in test_cases:
for ord in ord_settings:
for dtype, out_dtype in dtype_pairs:
input = torch.rand(*input_size)
result = torch.Tensor().to(out_dtype)
with self.assertRaisesRegex(RuntimeError, r'provided dtype must match dtype of result'):
torch.linalg.norm(input, ord=ord, keepdim=keepdim, dtype=dtype, out=result)
# This test compares torch.linalg.norm and numpy.linalg.norm to ensure that
# their vector norm results match
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_vector(self, device, dtype):
def run_test_case(input, p, dim, keepdim):
result = torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
self.assertEqual(result, result_numpy, msg=msg)
result_out = torch.empty_like(result)
torch.linalg.norm(input, ord, dim, keepdim, out=result_out)
self.assertEqual(result, result_out, msg=msg)
ord_vector = [0, 1, -1, 2, -2, 3, -3, 4.5, -4.5, inf, -inf, None]
S = 10
test_cases = [
# input size, p settings, dim
((S, ), ord_vector, None),
((S, ), ord_vector, 0),
((S, S, S), ord_vector, 0),
((S, S, S), ord_vector, 1),
((S, S, S), ord_vector, 2),
((S, S, S), ord_vector, -1),
((S, S, S), ord_vector, -2),
]
L = 1_000_000
if dtype == torch.double:
test_cases.append(((L, ), ord_vector, None))
for keepdim in [True, False]:
for input_size, ord_settings, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_test_case(input, ord, dim, keepdim)
# This test compares torch.linalg.norm and numpy.linalg.norm to ensure that
# their matrix norm results match
@skipCUDAIfNoMagma
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_matrix(self, device, dtype):
def run_test_case(input, p, dim, keepdim):
result = torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
self.assertEqual(result, result_numpy, msg=msg)
result_out = torch.empty_like(result)
torch.linalg.norm(input, ord, dim, keepdim, out=result_out)
self.assertEqual(result, result_out, msg=msg)
ord_matrix = [1, -1, 2, -2, inf, -inf, 'nuc', 'fro', None]
S = 10
test_cases = [
# input size, p settings, dim
((S, S), ord_matrix, None),
((S, S), ord_matrix, (0, 1)),
((S, S), ord_matrix, (1, 0)),
((S, S, S, S), ord_matrix, (2, 0)),
((S, S, S, S), ord_matrix, (-1, -2)),
((S, S, S, S), ord_matrix, (-1, -3)),
((S, S, S, S), ord_matrix, (-3, 2)),
]
L = 1_000
if dtype == torch.double:
test_cases.append(((L, L), ord_matrix, None))
for keepdim in [True, False]:
for input_size, ord_settings, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_test_case(input, ord, dim, keepdim)
# Test autograd and jit functionality for linalg functions.
# TODO: Once support for linalg functions is added to method_tests in common_methods_invocations.py,
# the `test_cases` entries below should be moved there. These entries are in a similar format,
# so they should work with minimal changes.
@dtypes(torch.float, torch.double)
def test_autograd_and_jit(self, device, dtype):
torch.manual_seed(0)
S = 10
NO_ARGS = None # NOTE: refer to common_methods_invocations.py if you need this feature
test_cases = [
# NOTE: Not all the features from common_methods_invocations.py are functional here, since this
# is only a temporary solution.
# (
# method name,
# input size/constructing fn,
# args (tuple represents shape of a tensor arg),
# test variant name (will be used at test name suffix), // optional
# (should_check_autodiff[bool], nonfusible_nodes, fusible_nodes) for autodiff, // optional
# indices for possible dim arg, // optional
# fn mapping output to part that should be gradcheck'ed, // optional
# kwargs // optional
# )
('norm', (S,), (), 'default_1d'),
('norm', (S, S), (), 'default_2d'),
('norm', (S, S, S), (), 'default_3d'),
('norm', (S,), (inf,), 'vector_inf'),
('norm', (S,), (3.5,), 'vector_3_5'),
('norm', (S,), (0.5,), 'vector_0_5'),
('norm', (S,), (2,), 'vector_2'),
('norm', (S,), (1,), 'vector_1'),
('norm', (S,), (0,), 'vector_0'),
('norm', (S,), (-inf,), 'vector_neg_inf'),
('norm', (S,), (-3.5,), 'vector_neg_3_5'),
('norm', (S,), (-0.5,), 'vector_neg_0_5'),
('norm', (S,), (2,), 'vector_neg_2'),
('norm', (S,), (1,), 'vector_neg_1'),
('norm', (S, S), (inf,), 'matrix_inf'),
('norm', (S, S), (2,), 'matrix_2', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), (1,), 'matrix_1'),
('norm', (S, S), (-inf,), 'matrix_neg_inf'),
('norm', (S, S), (-2,), 'matrix_neg_2', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), (-1,), 'matrix_neg_1'),
('norm', (S, S), ('fro',), 'fro'),
('norm', (S, S), ('fro', [0, 1]), 'fro_dim'),
('norm', (S, S), ('nuc',), 'nuc', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), ('nuc', [0, 1]), 'nuc_dim', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
]
for test_case in test_cases:
func_name = test_case[0]
func = getattr(torch.linalg, func_name)
input_size = test_case[1]
args = list(test_case[2])
test_case_name = test_case[3] if len(test_case) >= 4 else None
mapping_funcs = list(test_case[6]) if len(test_case) >= 7 else None
# Skip a test if a decorator tells us to
if mapping_funcs is not None:
def decorated_func(self, device, dtype):
pass
for mapping_func in mapping_funcs:
decorated_func = mapping_func(decorated_func)
try:
decorated_func(self, device, dtype)
except unittest.SkipTest:
continue
msg = f'function name: {func_name}, case name: {test_case_name}'
# Test JIT
input = torch.randn(*input_size, dtype=dtype, device=device)
input_script = input.clone().detach()
script_method, tensors = gen_script_fn_and_args("linalg.norm", "functional", input_script, *args)
self.assertEqual(
func(input, *args),
script_method(input_script),
msg=msg)
# Test autograd
# gradcheck is only designed to work with torch.double inputs
if dtype == torch.double:
input = torch.randn(*input_size, dtype=dtype, device=device, requires_grad=True)
def run_func(input):
return func(input, *args)
self.assertTrue(gradcheck(run_func, input), msg=msg)
# This test calls torch.linalg.norm and numpy.linalg.norm with illegal arguments
# to ensure that they both throw errors
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_errors(self, device, dtype):
def run_error_test_case(input, ord, dim, keepdim, error_type, error_regex):
test_case_info = (
f'test case input.size()={input.size()}, ord={ord}, dim={dim}, '
f'keepdim={keepdim}, dtype={dtype}')
with self.assertRaisesRegex(error_type, error_regex, msg=test_case_info):
torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
msg = f'numpy does not raise error but pytorch does, for case "{test_case_info}"'
with self.assertRaises(Exception, msg=test_case_info):
np.linalg.norm(input_numpy, ord, dim, keepdim)
S = 10
error_test_cases = [
# input size, p settings, dim, error type, error regex
((S, ), ['fro'], None, RuntimeError, r'order "fro" can only be used if either len\(dim\) == 2'),
((S, ), ['nuc'], None, RuntimeError, r'order "nuc" can only be used if either len\(dim\) == 2'),
((S, S), [3.5], None, RuntimeError, r'Order 3.5 not supported for matrix norm'),
((S, S), [0], None, RuntimeError, r'Order 0 not supported for matrix norm'),
((S, S), ['nuc'], 0, RuntimeError, r'order "nuc" can only be used if either len\(dim\) == 2'),
((S, S), ['fro'], 0, RuntimeError, r'order "fro" can only be used if either len\(dim\) == 2'),
((S, S), ['nuc'], (0, 0), RuntimeError, r'duplicate or invalid dimensions'),
((S, S), ['fro', 0], (0, 0), RuntimeError, r'Expected dims to be different'),
((S, S), ['fro', 'nuc', 0], (0, 4), IndexError, r'Dimension out of range'),
((S, ), [0], (4, ), IndexError, r'Dimension out of range'),
((S, ), [None], (0, 0), RuntimeError, r'Expected dims to be different, got this instead'),
((S, S, S), [1], (0, 1, 2), RuntimeError, r"'dim' must specify 1 or 2 dimensions"),
((S, S, S), [1], None, RuntimeError, r"'dim' must specify 1 or 2 dimensions"),
((S, S), ['garbage'], (0, 1), RuntimeError, r'Invalid norm order: garbage'),
]
for keepdim in [True, False]:
for input_size, ord_settings, dim, error_type, error_regex in error_test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_error_test_case(input, ord, dim, keepdim, error_type, error_regex)
# Test complex number inputs for linalg.norm. Some cases are not supported yet, so
# this test also verifies that those cases raise an error.
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@dtypes(torch.cfloat, torch.cdouble)
def test_norm_complex(self, device, dtype):
def gen_error_message(input_size, ord, keepdim, dim=None):
return "complex norm failed for input size %s, ord=%s, keepdim=%s, dim=%s" % (
input_size, ord, keepdim, dim)
if self.device_type == 'cpu':
supported_vector_ords = [0, 1, 3, inf, -1, -2, -3, -inf]
supported_matrix_ords = ['nuc', 1, 2, inf, -1, -2, -inf]
unsupported_vector_ords = [
(2, r'norm with p=2 not supported for complex tensors'),
(None, r'norm with p=2 not supported for complex tensors'),
]
unsupported_matrix_ords = [
('fro', r'frobenius norm not supported for complex tensors'),
(None, r'norm with p=2 not supported for complex tensors'),
]
elif self.device_type == 'cuda':
supported_vector_ords = [inf, -inf]
supported_matrix_ords = [1, inf, -1, -inf]
unsupported_vector_ords = [
(0, r'norm_cuda" not implemented for \'Complex'),
(1, r'norm_cuda" not implemented for \'Complex'),
(2, r'norm with p=2 not supported for complex tensors'),
(-1, r'norm_cuda" not implemented for \'Complex'),
(-2, r'norm_cuda" not implemented for \'Complex'),
(None, r'norm with p=2 not supported for complex tensors'),
]
unsupported_matrix_ords = [
(None, r'norm with p=2 not supported for complex tensors'),
('fro', r'frobenius norm not supported for complex tensors'),
]
# Test supported ords
for keepdim in [False, True]:
# vector norm
x = torch.randn(25, device=device, dtype=dtype)
xn = x.cpu().numpy()
for ord in supported_vector_ords:
res = torch.linalg.norm(x, ord, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, ord, keepdims=keepdim)
msg = gen_error_message(x.size(), ord, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# matrix norm
x = torch.randn(25, 25, device=device, dtype=dtype)
xn = x.cpu().numpy()
for ord in supported_matrix_ords:
# TODO: Need to fix abort when nuclear norm is given cdouble input:
# "double free or corruption (!prev) Aborted (core dumped)"
if ord == 'nuc' and dtype == torch.cdouble:
continue
res = torch.linalg.norm(x, ord, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, ord, keepdims=keepdim)
msg = gen_error_message(x.size(), ord, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# Test unsupported ords
# vector norm
x = torch.randn(25, device=device, dtype=dtype)
for ord, error_msg in unsupported_vector_ords:
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.linalg.norm(x, ord)
# matrix norm
x = torch.randn(25, 25, device=device, dtype=dtype)
for ord, error_msg in unsupported_matrix_ords:
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.linalg.norm(x, ord)
# Test that linal.norm gives the same result as numpy when inputs
# contain extreme values (inf, -inf, nan)
@unittest.skipIf(IS_WINDOWS, "Skipped on Windows!")
@unittest.skipIf(IS_MACOS, "Skipped on MacOS!")
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_norm_extreme_values(self, device):
vector_ords = [0, 1, 2, 3, inf, -1, -2, -3, -inf]
matrix_ords = ['fro', 'nuc', 1, 2, inf, -1, -2, -inf]
vectors = []
matrices = []
for pair in itertools.product([inf, -inf, 0.0, nan, 1.0], repeat=2):
vectors.append(list(pair))
matrices.append([[pair[0], pair[1]]])
matrices.append([[pair[0]], [pair[1]]])
for vector in vectors:
x = torch.tensor(vector).to(device)
x_n = x.cpu().numpy()
for ord in vector_ords:
msg = f'ord={ord}, vector={vector}'
result = torch.linalg.norm(x, ord=ord)
result_n = np.linalg.norm(x_n, ord=ord)
self.assertEqual(result, result_n, msg=msg)
# TODO: Remove this function once the broken cases are fixed
def is_broken_matrix_norm_case(ord, x):
if self.device_type == 'cuda':
if x.size() == torch.Size([1, 2]):
if ord in ['nuc', 2, -2] and isnan(x[0][0]) and x[0][1] == 1:
# These cases are broken because of an issue with svd
# https://github.com/pytorch/pytorch/issues/43567
return True
return False
for matrix in matrices:
x = torch.tensor(matrix).to(device)
x_n = x.cpu().numpy()
for ord in matrix_ords:
msg = f'ord={ord}, matrix={matrix}'
result = torch.linalg.norm(x, ord=ord)
result_n = np.linalg.norm(x_n, ord=ord)
if is_broken_matrix_norm_case(ord, x):
continue
else:
self.assertEqual(result, result_n, msg=msg)
# Test degenerate shape results match numpy for linalg.norm vector norms
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(TEST_WITH_ASAN, "Skipped on ASAN since it checks for undefined behavior.")
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_norm_vector_degenerate_shapes(self, device, dtype):
def run_test_case(input, ord, dim, keepdim, should_error):
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
input_numpy = input.cpu().numpy()
if should_error:
with self.assertRaises(ValueError):
np.linalg.norm(input_numpy, ord, dim, keepdim)
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
else:
if dtype in [torch.cfloat, torch.cdouble] and ord in [2, None]:
# TODO: Once these ord values have support for complex numbers,
# remove this error test case
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
return
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
result = torch.linalg.norm(input, ord, dim, keepdim)
self.assertEqual(result, result_numpy, msg=msg)
ord_vector = [0, 0.5, 1, 2, 3, inf, -0.5, -1, -2, -3, -inf, None]
S = 10
test_cases = [
# input size, p settings that cause error, dim
((0, ), [inf, -inf], None),
((0, S), [inf, -inf], 0),
((0, S), [], 1),
((S, 0), [], 0),
((S, 0), [inf, -inf], 1),
]
for keepdim in [True, False]:
for input_size, error_ords, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_vector:
run_test_case(input, ord, dim, keepdim, ord in error_ords)
# Test degenerate shape results match numpy for linalg.norm matrix norms
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_norm_matrix_degenerate_shapes(self, device, dtype):
def run_test_case(input, ord, dim, keepdim, should_error):
if dtype in [torch.cfloat, torch.cdouble] and ord in ['fro', None]:
# TODO: Once these ord values have support for complex numbers,
# remove this error test case
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
return
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
input_numpy = input.cpu().numpy()
if should_error:
with self.assertRaises(ValueError):
np.linalg.norm(input_numpy, ord, dim, keepdim)
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
else:
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
result = torch.linalg.norm(input, ord, dim, keepdim)
self.assertEqual(result, result_numpy, msg=msg)
ord_matrix = ['fro', 'nuc', 1, 2, inf, -1, -2, -inf, None]
S = 10
test_cases = [
# input size, p settings that cause error, dim
((0, 0), [1, 2, inf, -1, -2, -inf], None),
((0, S), [2, inf, -2, -inf], None),
((S, 0), [1, 2, -1, -2], None),
((S, S, 0), [], (0, 1)),
((1, S, 0), [], (0, 1)),
((0, 0, S), [1, 2, inf, -1, -2, -inf], (0, 1)),
((0, 0, S), [1, 2, inf, -1, -2, -inf], (1, 0)),
]
for keepdim in [True, False]:
for input_size, error_ords, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_matrix:
run_test_case(input, ord, dim, keepdim, ord in error_ords)
def test_norm_fastpaths(self, device):
x = torch.randn(3, 5, device=device)
# slow path
result = torch.linalg.norm(x, 4.5, 1)
expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5)
self.assertEqual(result, expected)
# fast 0-norm
result = torch.linalg.norm(x, 0, 1)
expected = (x != 0).type_as(x).sum(1)
self.assertEqual(result, expected)
# fast 1-norm
result = torch.linalg.norm(x, 1, 1)
expected = x.abs().sum(1)
self.assertEqual(result, expected)
# fast 2-norm
result = torch.linalg.norm(x, 2, 1)
expected = torch.sqrt(x.pow(2).sum(1))
self.assertEqual(result, expected)
# fast 3-norm
result = torch.linalg.norm(x, 3, 1)
expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0)
self.assertEqual(result, expected)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_norm_old(self, device):
def gen_error_message(input_size, p, keepdim, dim=None):
return "norm failed for input size %s, p=%s, keepdim=%s, dim=%s" % (
input_size, p, keepdim, dim)
for keepdim in [False, True]:
# full reduction
x = torch.randn(25, device=device)
xn = x.cpu().numpy()
for p in [0, 1, 2, 3, 4, inf, -inf, -1, -2, -3, 1.5]:
res = x.norm(p, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, p, keepdims=keepdim)
self.assertEqual(res, expected, atol=1e-5, rtol=0, msg=gen_error_message(x.size(), p, keepdim))
# one dimension
x = torch.randn(25, 25, device=device)
xn = x.cpu().numpy()
for p in [0, 1, 2, 3, 4, inf, -inf, -1, -2, -3]:
dim = 1
res = x.norm(p, dim, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, p, dim, keepdims=keepdim)
msg = gen_error_message(x.size(), p, keepdim, dim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# matrix norm
for p in ['fro', 'nuc']:
res = x.norm(p, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, p, keepdims=keepdim)
msg = gen_error_message(x.size(), p, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# zero dimensions
x = torch.randn((), device=device)
xn = x.cpu().numpy()
res = x.norm(keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, keepdims=keepdim)
msg = gen_error_message(x.size(), None, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# larger tensor sanity check
self.assertEqual(
2 * torch.norm(torch.ones(10000), keepdim=keepdim),
torch.norm(torch.ones(40000), keepdim=keepdim))
# matrix norm with non-square >2-D tensors, all combinations of reduction dims
x = torch.randn(5, 6, 7, 8, device=device)
xn = x.cpu().numpy()
for p in ['fro', 'nuc']:
for dim in itertools.product(*[list(range(4))] * 2):
if dim[0] == dim[1]:
continue
res = x.norm(p=p, dim=dim, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, ord=p, axis=dim, keepdims=keepdim)
msg = gen_error_message(x.size(), p, keepdim, dim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_norm_complex_old(self, device):
def gen_error_message(input_size, p, keepdim, dim=None):
return "complex norm failed for input size %s, p=%s, keepdim=%s, dim=%s" % (
input_size, p, keepdim, dim)
if device == 'cpu':
for keepdim in [False, True]:
# vector norm
x = torch.randn(25, device=device) + 1j * torch.randn(25, device=device)
xn = x.cpu().numpy()
for p in [0, 1, 3, inf, -1, -2, -3, -inf]:
res = x.norm(p, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, p, keepdims=keepdim)
msg = gen_error_message(x.size(), p, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# matrix norm
x = torch.randn(25, 25, device=device) + 1j * torch.randn(25, 25, device=device)
xn = x.cpu().numpy()
for p in ['nuc']:
res = x.norm(p, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, p, keepdims=keepdim)
msg = gen_error_message(x.size(), p, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# TODO: remove error test and add functionality test above when 2-norm support is added
with self.assertRaisesRegex(RuntimeError, r'norm with p=2 not supported for complex tensors'):
x = torch.randn(2, device=device, dtype=torch.complex64).norm(p=2)
# TODO: remove error test and add functionality test above when frobenius support is added
with self.assertRaisesRegex(RuntimeError, r'frobenius norm not supported for complex tensors'):
x = torch.randn(2, 2, device=device, dtype=torch.complex64).norm(p='fro')
elif device == 'cuda':
with self.assertRaisesRegex(RuntimeError, r'"norm_cuda" not implemented for \'ComplexFloat\''):
(1j * torch.randn(25)).norm()
# Ensure torch.norm with p='fro' and p=2 give the same results for mutually supported input combinations
@dtypes(torch.float)
def test_norm_fro_2_equivalence_old(self, device, dtype):
input_sizes = [
(0,),
(10,),
(0, 0),
(4, 30),
(0, 45),
(100, 0),
(45, 10, 23),
(0, 23, 59),
(23, 0, 37),
(34, 58, 0),
(0, 0, 348),
(0, 3434, 0),
(0, 0, 0),
(5, 3, 8, 1, 3, 5)]
for input_size in input_sizes:
a = make_tensor(input_size, device, dtype, low=-9, high=9)
# Try full reduction
dim_settings = [None]
# Try all possible 1-D reductions
dim_settings += list(range(-a.dim(), a.dim()))
def wrap_dim(dim, ndims):
assert (dim < ndims) and (dim >= -ndims)
if dim >= 0:
return dim
else:
return dim + ndims
# Try all possible 2-D reductions
dim_settings += [
(d0, d1) for d0, d1 in itertools.combinations(range(-a.dim(), a.dim()), 2)
if wrap_dim(d0, a.dim()) != wrap_dim(d1, a.dim())]
for dim in dim_settings:
for keepdim in [True, False]:
a_norm_2 = torch.norm(a, p=2, dim=dim, keepdim=keepdim)
a_norm_fro = torch.norm(a, p='fro', dim=dim, keepdim=keepdim)
self.assertEqual(a_norm_fro, a_norm_2)
@skipCUDAIfNoMagma
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_nuclear_norm_axes_small_brute_force_old(self, device):
def check_single_nuclear_norm(x, axes):
if self.device_type != 'cpu' and randrange(100) < 95:
return # too many cpu <==> device copies
a = np.array(x.cpu(), copy=False)
expected = np.linalg.norm(a, "nuc", axis=axes)
ans = torch.norm(x, "nuc", dim=axes)
self.assertTrue(ans.is_contiguous())
self.assertEqual(ans.shape, expected.shape)
self.assertEqual(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)
out = torch.zeros(expected.shape, dtype=x.dtype, device=x.device)
ans = torch.norm(x, "nuc", dim=axes, out=out)
self.assertIs(ans, out)
self.assertTrue(ans.is_contiguous())
self.assertEqual(ans.shape, expected.shape)
self.assertEqual(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True)
for n in range(1, 3):
for m in range(1, 3):
for axes in itertools.permutations([0, 1], 2):
# 2d, inner dimensions C
x = torch.randn(n, m, device=device)
check_single_nuclear_norm(x, axes)
# 2d, inner dimensions Fortran
x = torch.randn(m, n, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 2d, inner dimensions non-contiguous
x = torch.randn(n, 2 * m, device=device)[:, ::2]
check_single_nuclear_norm(x, axes)
# 2d, all dimensions non-contiguous
x = torch.randn(7 * n, 2 * m, device=device)[::7, ::2]
check_single_nuclear_norm(x, axes)
for o in range(1, 3):
for axes in itertools.permutations([0, 1, 2], 2):
# 3d, inner dimensions C
x = torch.randn(o, n, m, device=device)
check_single_nuclear_norm(x, axes)
# 3d, inner dimensions Fortran
x = torch.randn(o, m, n, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 3d, inner dimensions non-contiguous
x = torch.randn(o, n, 2 * m, device=device)[:, :, ::2]
check_single_nuclear_norm(x, axes)
# 3d, all dimensions non-contiguous
x = torch.randn(7 * o, 5 * n, 2 * m, device=device)[::7, ::5, ::2]
check_single_nuclear_norm(x, axes)
for r in range(1, 3):
for axes in itertools.permutations([0, 1, 2, 3], 2):
# 4d, inner dimensions C
x = torch.randn(r, o, n, m, device=device)
check_single_nuclear_norm(x, axes)
# 4d, inner dimensions Fortran
x = torch.randn(r, o, n, m, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 4d, inner dimensions non-contiguous
x = torch.randn(r, o, n, 2 * m, device=device)[:, :, :, ::2]
check_single_nuclear_norm(x, axes)
# 4d, all dimensions non-contiguous
x = torch.randn(7 * r, 5 * o, 11 * n, 2 * m, device=device)[::7, ::5, ::11, ::2]
check_single_nuclear_norm(x, axes)
@skipCUDAIfNoMagma
def test_nuclear_norm_exceptions_old(self, device):
for lst in [], [1], [1, 2]:
x = torch.tensor(lst, dtype=torch.double, device=device)
for axes in (), (0,):
self.assertRaises(RuntimeError, torch.norm, x, "nuc", axes)
self.assertRaises(IndexError, torch.norm, x, "nuc", (0, 1))
x = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.double, device=device)
self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 0))
self.assertRaisesRegex(IndexError, "Dimension out of range", torch.norm, x, "nuc", (0, 2))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
@dtypesIfCUDA(torch.float, torch.double)
@precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4})
def test_tensorsolve(self, device, dtype):
def run_test(a_shape, dims):
a = torch.randn(a_shape, dtype=dtype, device=device)
b = torch.randn(a_shape[:2], dtype=dtype, device=device)
result = torch.linalg.tensorsolve(a, b, dims=dims)
expected = np.linalg.tensorsolve(a.cpu().numpy(), b.cpu().numpy(), axes=dims)
self.assertEqual(result, expected)
# check the out= variant
out = torch.empty_like(result)
ans = torch.linalg.tensorsolve(a, b, dims=dims, out=out)
self.assertEqual(ans, out)
self.assertEqual(ans, result)
a_shapes = [(2, 3, 6), (3, 4, 4, 3)]
dims = [None, (0, 2)]
for a_shape, d in itertools.product(a_shapes, dims):
run_test(a_shape, d)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
@dtypesIfCUDA(torch.float, torch.double)
def test_tensorsolve_empty(self, device, dtype):
# Check for empty inputs. NumPy does not work for these cases.
a = torch.empty(0, 0, 1, 2, 3, 0, dtype=dtype, device=device)
b = torch.empty(a.shape[:2], dtype=dtype, device=device)
x = torch.linalg.tensorsolve(a, b)
self.assertEqual(torch.tensordot(a, x, dims=len(x.shape)), b)
# TODO: once "solve_cuda" supports complex dtypes, they shall be added to above tests
@unittest.expectedFailure
@onlyCUDA
@skipCUDAIfNoMagma
@dtypes(torch.cfloat, torch.cdouble)
def test_tensorsolve_xfailed(self, device, dtype):
a_shape = (2, 3, 6)
a = torch.randn(a_shape, dtype=dtype, device=device)
b = torch.randn(a_shape[:2], dtype=dtype, device=device)
result = torch.linalg.tensorsolve(a, b)
expected = np.linalg.tensorsolve(a.cpu().numpy(), b.cpu().numpy())
self.assertEqual(result, expected)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
@dtypesIfCUDA(torch.float, torch.double)
@precisionOverride({torch.float: 1e-4, torch.cfloat: 1e-4})
def test_tensorsolve_non_contiguous(self, device, dtype):
def run_test_permuted(a_shape, dims):
# check for permuted / transposed inputs
a = torch.randn(a_shape, dtype=dtype, device=device)
a = a.movedim((0, 2), (-2, -1))
self.assertFalse(a.is_contiguous())
b = torch.randn(a.shape[:2], dtype=dtype, device=device)
b = b.t()
self.assertFalse(b.is_contiguous())
result = torch.linalg.tensorsolve(a, b, dims=dims)
expected = np.linalg.tensorsolve(a.cpu().numpy(), b.cpu().numpy(), axes=dims)
self.assertEqual(result, expected)
def run_test_skipped_elements(a_shape, dims):
# check for inputs with skipped elements
a = torch.randn(a_shape, dtype=dtype, device=device)
a = a[::2]
self.assertFalse(a.is_contiguous())
b = torch.randn(a_shape[:2], dtype=dtype, device=device)
b = b[::2]
self.assertFalse(b.is_contiguous())
result = torch.linalg.tensorsolve(a, b, dims=dims)
expected = np.linalg.tensorsolve(a.cpu().numpy(), b.cpu().numpy(), axes=dims)
self.assertEqual(result, expected)
# check non-contiguous out
out = torch.empty(2 * result.shape[0], *result.shape[1:], dtype=dtype, device=device)[::2]
self.assertFalse(out.is_contiguous())
ans = torch.linalg.tensorsolve(a, b, dims=dims, out=out)
self.assertEqual(ans, out)
self.assertEqual(ans, result)
a_shapes = [(2, 3, 6), (3, 4, 4, 3)]
dims = [None, (0, 2)]
for a_shape, d in itertools.product(a_shapes, dims):
run_test_permuted(a_shape, d)
a_shapes = [(4, 3, 6), (6, 4, 4, 3)]
dims = [None, (0, 2)]
for a_shape, d in itertools.product(a_shapes, dims):
run_test_skipped_elements(a_shape, d)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.float32)
def test_tensorsolve_errors_and_warnings(self, device, dtype):
# tensorsolve expects the input that can be reshaped to a square matrix
a = torch.eye(2 * 3 * 4).reshape((2 * 3, 4, 2, 3, 4))
b = torch.randn(8, 4)
self.assertTrue(np.prod(a.shape[2:]) != np.prod(b.shape))
with self.assertRaisesRegex(RuntimeError, r'Expected self to satisfy the requirement'):
torch.linalg.tensorsolve(a, b)
# if non-empty out tensor with wrong shape is passed a warning is given
out = torch.empty_like(a)
b = torch.randn(6, 4)
with warnings.catch_warnings(record=True) as w:
# Trigger warning
torch.linalg.tensorsolve(a, b, out=out)
# Check warning occurs
self.assertEqual(len(w), 1)
self.assertTrue("An output with one or more elements was resized" in str(w[-1].message))
# dtypes should match
out = torch.empty_like(a).to(torch.int)
with self.assertRaisesRegex(RuntimeError, "result dtype Int does not match self dtype"):
torch.linalg.tensorsolve(a, b, out=out)
instantiate_device_type_tests(TestLinalg, globals())
if __name__ == '__main__':
run_tests()