| import torch.nn as nn |
| import torch.nn.intrinsic as nni |
| |
| from typing import Union, Callable, Tuple, Dict, Optional, Type |
| |
| from .utils import get_combined_dict |
| |
| def fuse_conv_bn(conv, bn): |
| r"""Given the conv and bn modules, fuses them and returns the fused module |
| |
| Args: |
| conv: Module instance of type conv2d/conv3d |
| bn: Spatial BN instance that needs to be fused with the conv |
| |
| Examples:: |
| |
| >>> m1 = nn.Conv2d(10, 20, 3) |
| >>> b1 = nn.BatchNorm2d(20) |
| >>> m2 = fuse_conv_bn(m1, b1) |
| """ |
| assert(conv.training == bn.training),\ |
| "Conv and BN both must be in the same mode (train or eval)." |
| |
| fused_module_class_map = { |
| nn.Conv1d: nni.ConvBn1d, |
| nn.Conv2d: nni.ConvBn2d, |
| nn.Conv3d: nni.ConvBn3d, |
| } |
| |
| if conv.training: |
| assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d' |
| assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True' |
| assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True' |
| fused_module_class = fused_module_class_map.get((type(conv)), None) |
| if fused_module_class is not None: |
| return fused_module_class(conv, bn) |
| else: |
| raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn))) |
| else: |
| return nn.utils.fuse_conv_bn_eval(conv, bn) |
| |
| def fuse_conv_bn_relu(conv, bn, relu): |
| r"""Given the conv and bn modules, fuses them and returns the fused module |
| |
| Args: |
| conv: Module instance of type conv2d/conv3d |
| bn: Spatial BN instance that needs to be fused with the conv |
| |
| Examples:: |
| |
| >>> m1 = nn.Conv2d(10, 20, 3) |
| >>> b1 = nn.BatchNorm2d(20) |
| >>> r1 = nn.ReLU(inplace=False) |
| >>> m2 = fuse_conv_bn_relu(m1, b1, r1) |
| """ |
| assert(conv.training == bn.training == relu.training),\ |
| "Conv and BN both must be in the same mode (train or eval)." |
| fused_module : Optional[Type[nn.Sequential]] = None |
| if conv.training: |
| map_to_fused_module_train = { |
| nn.Conv1d: nni.ConvBnReLU1d, |
| nn.Conv2d: nni.ConvBnReLU2d, |
| nn.Conv3d: nni.ConvBnReLU3d, |
| } |
| assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm' |
| assert bn.affine, 'Only support fusing BatchNorm with affine set to True' |
| assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True' |
| fused_module = map_to_fused_module_train.get(type(conv), None) |
| if fused_module is not None: |
| return fused_module(conv, bn, relu) |
| else: |
| raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu))) |
| else: |
| map_to_fused_module_eval = { |
| nn.Conv1d: nni.ConvReLU1d, |
| nn.Conv2d: nni.ConvReLU2d, |
| nn.Conv3d: nni.ConvReLU3d, |
| } |
| fused_module = map_to_fused_module_eval.get(type(conv), None) |
| if fused_module is not None: |
| fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn) |
| return fused_module(fused_conv, relu) |
| else: |
| raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu))) |
| |
| def fuse_linear_bn(linear, bn): |
| r"""Given the linear and bn modules, fuses them and returns the fused module |
| |
| Args: |
| linear: Module instance of type Linear |
| bn: BatchNorm1d instance that needs to be fused with the linear layer |
| |
| Examples:: |
| |
| >>> m1 = nn.Linear(20, 10) |
| >>> b1 = nn.BatchNorm1d(10) |
| >>> m2 = fuse_linear_bn(m1, b1) |
| """ |
| assert(linear.training == bn.training),\ |
| "Linear and BN both must be in the same mode (train or eval)." |
| |
| if linear.training: |
| raise Exception("Fusing Linear+BatchNorm not yet supported in training.") |
| else: |
| return nn.utils.fusion.fuse_linear_bn_eval(linear, bn) |
| |
| DEFAULT_OP_LIST_TO_FUSER_METHOD : Dict[Tuple, Union[nn.Sequential, Callable]] = { |
| (nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn, |
| (nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu, |
| (nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn, |
| (nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu, |
| (nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn, |
| (nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu, |
| (nn.Conv1d, nn.ReLU): nni.ConvReLU1d, |
| (nn.Conv2d, nn.ReLU): nni.ConvReLU2d, |
| (nn.Conv3d, nn.ReLU): nni.ConvReLU3d, |
| (nn.Linear, nn.BatchNorm1d): fuse_linear_bn, |
| (nn.Linear, nn.ReLU): nni.LinearReLU, |
| (nn.BatchNorm2d, nn.ReLU): nni.BNReLU2d, |
| (nn.BatchNorm3d, nn.ReLU): nni.BNReLU3d, |
| } |
| |
| def get_fuser_method(op_list, additional_fuser_method_mapping=None): |
| ''' Get fuser method for the given list of module types, |
| return None if fuser method does not exist |
| ''' |
| if additional_fuser_method_mapping is None: |
| additional_fuser_method_mapping = dict() |
| all_mappings = get_combined_dict(DEFAULT_OP_LIST_TO_FUSER_METHOD, |
| additional_fuser_method_mapping) |
| fuser_method = all_mappings.get(op_list, None) |
| assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list) |
| return fuser_method |