blob: f8529743650b5282360e745faaadcbd6cab17ea2 [file] [log] [blame]
#include <c10/util/Exception.h>
#include <c10/util/StringUtil.h>
#include <torch/csrc/jit/hooks_for_testing.h>
#include <torch/csrc/jit/interpreter.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/inline_forked_closures.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/lift_closures.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/script/convert_to_ssa.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/final_returns.h>
#include <torch/csrc/jit/script/parser.h>
#include <torch/csrc/jit/script/schema_matching.h>
#include <torch/csrc/jit/script/script_type_parser.h>
#include <torch/csrc/jit/constants.h>
#include <c10/util/Optional.h>
#include <atomic>
#include <climits>
#include <set>
namespace torch {
namespace jit {
namespace script {
using FunctionTable = std::unordered_map<std::string, Function&>;
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
using TypeTable = std::unordered_map<std::string, TypePtr>;
using AttributeMap = std::unordered_map<std::string, Const>;
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
using TypeAndRange = std::pair<TypePtr, const SourceRange*>;
// Holds mappings from a variable name to a refined type for that variable
// E.g if x is not None is true than we can refine x from type t? to t.
struct Refinements {
// using ordered map for deterministic graph output
std::map<std::string, TypeAndRange> mappings_;
void setRefinement(const std::string& name, TypeAndRange mapping) {
mappings_[name] = std::move(mapping);
}
c10::optional<TypeAndRange> getRefinement(const std::string& name) const {
const auto& maybe_mapping = mappings_.find(name);
if (maybe_mapping == mappings_.end()) {
return c10::nullopt;
}
return maybe_mapping->second;
}
// return the intersection of the values to type mappings between this
// types can be unified
void intersectRefinements(const Refinements& other) {
Refinements ret;
for (const auto& name_mapping : mappings_) {
const auto& name = name_mapping.first;
const auto& mapping = name_mapping.second;
if (auto other_mapping = other.getRefinement(name_mapping.first)) {
const auto maybe_unified_type =
unifyTypes(mapping.first, other_mapping->first);
if (maybe_unified_type) {
ret.setRefinement(
name, TypeAndRange(*maybe_unified_type, mapping.second));
}
}
}
mappings_ = std::move(ret.mappings_);
}
// return the union of the values to type mappings in a and b whose
// types can be unified
void unionRefinements(const Refinements& other) {
Refinements ret;
for (const auto& name_mapping : mappings_) {
const auto& name = name_mapping.first;
const auto& mapping = name_mapping.second;
TypePtr t_1 = mapping.first;
if (auto other_mapping = other.getRefinement(name_mapping.first)) {
TypePtr t_2 = other_mapping->first;
c10::optional<TypePtr> maybe_unified_type = c10::nullopt;
if (t_1->isSubtypeOf(t_2)) {
maybe_unified_type = t_1;
} else if (t_2->isSubtypeOf(t_1)) {
maybe_unified_type = t_2;
}
if (maybe_unified_type) {
ret.setRefinement(
name, TypeAndRange(*maybe_unified_type, mapping.second));
}
} else {
ret.setRefinement(name, mapping);
}
}
for (auto& name_mapping : other.mappings_) {
if (!getRefinement(name_mapping.first)) {
ret.setRefinement(name_mapping.first, name_mapping.second);
}
}
mappings_ = std::move(ret.mappings_);
}
};
// When a comparison like x is None is made, we associate type refinements
// with its true value and its false value. If a boolean that has refinements
// associated with it is used in a conditional of an if statememt, the true and
// false refinements are inserted into the corresponding blocks
struct BoolInfo {
BoolInfo(Refinements true_refinements, Refinements false_refinements)
: true_refinements_(std::move(true_refinements)),
false_refinements_(std::move(false_refinements)){};
BoolInfo() = default;
Refinements true_refinements_;
Refinements false_refinements_;
BoolInfo* mergeOr(const BoolInfo& other) {
// if the result of an OR is true, either a & b could have been true,
// so we take the intersection of a.true_refinements & b.true_refinements.
// if the result is false, both a and b had to be false,
// so we take their union.
true_refinements_.intersectRefinements(other.true_refinements_);
false_refinements_.unionRefinements(other.false_refinements_);
return this;
}
BoolInfo* mergeAnd(const BoolInfo& other) {
// if the result of an AND is true, both a & b had to be true,
// so we take the union of a.true_refinements and b.true_refinements.
// if the result is false, either a or b could have been false,
// so we take their intersection.
true_refinements_.unionRefinements(other.true_refinements_);
false_refinements_.intersectRefinements(other.false_refinements_);
return this;
}
};
static Value* asSimple(const SugaredValuePtr& value) {
if (SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
return sv->getValue();
}
return nullptr;
}
static std::shared_ptr<MagicMethod> makeMagic(
const std::string& name,
SugaredValuePtr base) {
return std::make_shared<MagicMethod>(name, base);
}
// Auxiliary data structure for desugaring variable binding into our always
// explicitly scoped language as we descend down nested control structures in
// the frontend (which themselves don't introduce scopes)
//
// The Environment keeps track of two tables, one for values which are not first
// class and a type table for values which are. When a first class value
// is set in the environment, we emit a prim::Store which sets the
// name of the variable to approriate type, and when a first-class value is
// referenced we emit a prim::Load that generates a value of the appropriate
// type.
//
// a = 1
// print(a)
// becomes:
// = prim::Store[name="a"](%a.1)
// %a : int = prim::Load[name="a"]()
// prim::Print(%a)
struct Environment {
Environment(
Function& method,
ResolverPtr resolver,
Block* b,
std::shared_ptr<Environment> next = nullptr)
: method(method),
resolver(std::move(resolver)),
b(b),
next(std::move(next)) {}
Function& method;
ResolverPtr resolver;
std::unordered_map<std::string, std::function<std::string()>> error_messages;
Block* b;
std::shared_ptr<Environment> next;
// set type error in the lowest environment. if the variable is used after an
// error has been set, then we will use the more informative error message
void setVariableTypeError(const std::string& name, std::function<std::string()> msg) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
runner->error_messages[name] = msg;
}
// see if type error has been set for a variable
c10::optional<std::string> findVariableTypeError(const std::string& name) {
auto runner = this;
while (runner->next) {
runner = runner->next.get();
}
auto msg = runner->error_messages.find(name);
if (msg != runner->error_messages.end()) {
return msg->second();
} else {
return c10::nullopt;
}
}
SugaredValuePtr insertLoad(const std::string& name, const TypePtr& type) {
auto g = b->owningGraph();
auto load = g->insertNode(g->createLoad(name, type));
if (meaningfulName(name)) {
load->output()->setUniqueName(name);
}
return std::make_shared<SimpleValue>(load->output());
}
void insertStore(const std::string& name, const SourceRange& loc, Value* v) {
auto g = b->owningGraph();
auto store = g->insertNode(g->createStore(name, v))->setSourceRange(loc);
type_table[name] = store->input()->type();
}
SugaredValuePtr findInThisFrame(const std::string& name) {
auto it = value_table.find(name);
if (it != value_table.end()) {
return it->second;
}
auto it2 = type_table.find(name);
if (it2 != type_table.end()) {
return insertLoad(name, it2->second);
}
return nullptr;
}
SugaredValuePtr findInParentFrame(const std::string& name) {
return next ? next->findInAnyFrame(name) : nullptr;
}
void setType(const std::string& name, TypePtr type) {
type_table[name] = std::move(type);
}
SugaredValuePtr findInAnyFrame(const std::string& name) {
for (auto runner = this; runner; runner = runner->next.get()) {
if (auto r = runner->findInThisFrame(name)) {
return r;
}
}
return nullptr;
}
Block* block() {
return b;
}
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
setSugaredVar(loc, name, std::make_shared<SimpleValue>(value));
}
void setSugaredVar(
const SourceRange& loc,
const std::string& name,
SugaredValuePtr value) {
Value* as_simple_value = asSimple(value);
if (as_simple_value && !as_simple_value->hasUniqueName() &&
meaningfulName(name) &&
// note: if the value wasn't defined in this block, we might be giving a
// name only used inside this block to a value outside of this. this is
// not normally helpful for debugging and causes import/export jitter.
as_simple_value->node()->owningBlock() == block()) {
as_simple_value->setUniqueName(name);
}
// prevent re-assignment involving any sugared values
// any reassignment like:
// a = ...
// while ...
// a = ..
// requires 'a' to be first-class in the graph since its value depends on
// control flow
if (auto parent = findInParentFrame(name)) {
if (!as_simple_value) {
throw ErrorReport(loc)
<< "Cannot re-assign '" << name << "' to a value of type "
<< value->kind() << " because " << name
<< " is not a first-class value. Only reassignments to first-class values are allowed";
}
Value* simple_parent = asSimple(parent);
if (!simple_parent) {
throw ErrorReport(loc)
<< "Cannot re-assign '" << name << "' because it has type "
<< value->kind() << " and " << name
<< " is not a first-class value. Only reassignments to first-class values are allowed";
}
if (!as_simple_value->type()->isSubtypeOf(
unshapedType(simple_parent->type()))) {
std::stringstream errMsg;
errMsg << "variable '" << name << "' previously has type "
<< simple_parent->type()->python_str()
<< " but is now being assigned to a value of type "
<< as_simple_value->type()->python_str();
// Special-cased error msg if we're trying to assign to a tensor list.
if (simple_parent->type()->kind() == TypeKind::ListType &&
as_simple_value->type()->kind() == TypeKind::ListType) {
errMsg << "\n. (Note: empty lists are constructed as Tensor[]; "
<< "if you want an empty list of a different type, "
<< "use `torch.jit.annotate(List[T], [])`, "
<< "where `T` is the type of elements in the list)";
}
throw ErrorReport(loc) << errMsg.str();
}
}
if (as_simple_value) {
insertStore(name, loc, std::move(as_simple_value));
} else {
value_table[name] = std::move(value);
}
}
SugaredValuePtr getSugaredVar(const Ident& ident, bool required = true) {
return getSugaredVar(ident.name(), ident.range());
}
Value* getVar(const Ident& ident) {
return getSugaredVar(ident)->asValue(ident.range(), method);
}
SugaredValuePtr getSugaredVar(
const std::string& ident,
const SourceRange& range,
bool required = true) {
auto retval = findInAnyFrame(ident);
if (!retval) {
static std::unordered_map<std::string, SugaredValuePtr> globals = {
{"print", std::make_shared<PrintValue>()},
{"float",
makeMagic(
"__float__",
std::make_shared<CastValue>(FloatType::get(), prim::Float))},
{"int",
makeMagic(
"__int__",
std::make_shared<CastValue>(IntType::get(), prim::Int))},
{"bool",
makeMagic(
"__bool__",
std::make_shared<CastValue>(BoolType::get(), prim::Bool))},
{"str",
makeMagic(
"__str__",
std::make_shared<CastValue>(StringType::get(), prim::str))},
{"getattr", std::make_shared<GetAttrValue>()},
{"isinstance", std::make_shared<IsInstanceValue>()},
// todo(zach): remove when we can correctly export torch.full via ONNX
// or we have implicit conversion that can convert numbers to tensors
{"_to_tensor",
std::make_shared<CastValue>(TensorType::get(), prim::NumToTensor)},
{"len",
makeMagic(
"__len__",
std::make_shared<BuiltinFunction>(aten::len, at::nullopt))},
{"hex",
makeMagic(
"__hex__",
std::make_shared<BuiltinFunction>(aten::hex, at::nullopt))},
{"oct",
makeMagic(
"__oct__",
std::make_shared<BuiltinFunction>(aten::oct, at::nullopt))},
{"round",
makeMagic(
"__round__",
std::make_shared<BuiltinFunction>(aten::round, at::nullopt))},
{"hash", std::make_shared<BuiltinFunction>(aten::hash, at::nullopt)},
{"min", std::make_shared<BuiltinFunction>(prim::min, at::nullopt)},
{"max", std::make_shared<BuiltinFunction>(prim::max, at::nullopt)},
{"abs", std::make_shared<BuiltinFunction>(prim::abs, at::nullopt)},
{"all", std::make_shared<BuiltinFunction>(aten::all, at::nullopt)},
{"divmod", std::make_shared<BuiltinFunction>(aten::divmod, at::nullopt)},
{"list", std::make_shared<BuiltinFunction>(aten::list, at::nullopt)},
{"ord", std::make_shared<BuiltinFunction>(aten::ord, at::nullopt)},
{"chr", std::make_shared<BuiltinFunction>(aten::chr, at::nullopt)},
{"bin", std::make_shared<BuiltinFunction>(aten::bin, at::nullopt)},
{"rangelist",
std::make_shared<BuiltinFunction>(prim::rangelist, at::nullopt)},
};
auto it = globals.find(ident);
if (it != globals.end()) {
retval = it->second;
}
}
if (!retval) {
if (auto type = resolver->resolveType(ident, range)) {
if (auto class_type = type->cast<ClassType>()) {
retval = std::make_shared<script::ClassValue>(class_type);
} else if (auto tuple_type = type->cast<TupleType>()) {
retval =
std::make_shared<script::NamedTupleConstructor>(tuple_type);
}
}
}
if (!retval) {
retval = resolver->resolveValue(ident, method, range);
}
if (!retval && required) {
// check if this value was not emitted in an if statement because of a
// type mismatch. if it was, then we print a more informative error msg
if (auto msg = findVariableTypeError(ident)) {
throw ErrorReport(range) << *msg << "and was used here";
}
throw ErrorReport(range) << "undefined value " << ident;
}
return retval;
}
Value* getVar(const std::string& ident, const SourceRange& range) {
return getSugaredVar(ident, range)->asValue(range, method);
}
std::vector<std::string> definedVariables() {
std::vector<std::string> result;
for (auto& kv : type_table) {
result.push_back(kv.first);
}
return result;
}
private:
TypeTable type_table;
ValueTable value_table;
};
template <class T>
static Value* materializeConstant(
T val,
Graph& graph,
const SourceRange& r,
std::unordered_map<T, Value*>& map) {
auto existing_constant = map.find(val);
if (existing_constant != map.end()) {
return existing_constant->second;
}
WithInsertPoint guard(graph.block()->nodes().front());
auto new_constant = graph.insertConstant(val, nullptr, r);
map[val] = new_constant;
return new_constant;
}
static Value* ensureInt(const SourceRange& range, Value* v) {
if (!v->type()->isSubtypeOf(IntType::get())) {
throw ErrorReport(range)
<< "expected a int but found a " << v->type()->python_str();
}
return v;
}
inline bool isSupportedListElementType(const TypePtr& type) {
return type->isSubtypeOf(TensorType::get()) ||
type->isSubtypeOf(NumberType::get());
}
// Information for each def being emitted.
// Defs can be nested to support closures so we need a stack of this information
// Currently records information about the functions return type.
struct DefContext {
TypePtr declared_return_type_; // nullptr if not annotated
TypePtr merged_return_type_; // nullptr if a Return has not been seen yet
};
struct to_ir {
to_ir(
const Def& def,
ResolverPtr resolver_,
const Self& self,
Function& method) // method being constructed
: method(method),
graph(method.graph()),
resolver(std::move(resolver_)),
typeParser_(resolver),
environment_stack(nullptr) {
AT_ASSERT(resolver);
pushFrame(graph->block(), /*starts_def=*/true);
// Type annotations exclude explicitly typing the "self" parameter, so in
// the case that this is a method with self we expect one fewer parameter
// annotation than the number of parameters this Def takes.
if (self && def.decl().params().size() == 0) {
throw ErrorReport(def.decl().params().range())
<< "methods must have a self argument";
}
method.setSchema(emitDef(def, self, graph->block()));
runCleanupPasses(graph);
}
private:
Function& method;
std::shared_ptr<Graph> graph;
ResolverPtr resolver;
std::unordered_map<int64_t, Value*> integral_constants;
std::unordered_map<double, Value*> fp_constants;
ScriptTypeParser typeParser_;
// Singly-linked list of environments. This top element contains a member
// `next` that points to the most immediate enclosing scope's value.
std::shared_ptr<Environment> environment_stack;
std::vector<DefContext> def_stack_;
void pushFrame(Block* b, bool starts_def = false) {
if (starts_def) {
def_stack_.emplace_back();
}
environment_stack =
std::make_shared<Environment>(method, resolver, b, environment_stack);
}
std::shared_ptr<Environment> popFrame(bool ends_def = false) {
auto old_frame = environment_stack;
environment_stack = environment_stack->next;
if (ends_def) {
def_stack_.pop_back();
}
return old_frame;
}
FunctionSchema emitDef(const Def& def, const Self& self, Block* block) {
auto schema = extractSchemaFromDef(def, self);
// TODO need guards on init returning none
if (schema.returns().size() == 1) {
def_stack_.back().declared_return_type_ = schema.returns().at(0).type();
}
std::vector<Argument> arguments =
emitFormalArguments(def, self, schema, block);
// body
auto stmts_list = moveAllReturnsToEnd(def.statements());
emitStatements(stmts_list.begin(), stmts_list.end());
std::vector<Argument> returns = {emitOutput(def.range(), schema, block)};
return {def.name().name(), "", std::move(arguments), std::move(returns)};
}
std::vector<IValue> evaluateDefaults(
const SourceRange& r,
const std::vector<Expr>& default_types,
const std::vector<Expr>& default_exprs) {
std::vector<IValue> default_values;
if (default_exprs.empty())
return default_values;
// To evaluate the default expressions, we create a graph with no inputs,
// and whose returns are the default values we need.
// We then run constant prop on this graph and check the results are
// constant. This approach avoids having to have separate handling of
// default arguments from standard expressions by piecing together existing
// machinery for graph generation, constant propgation, and constant
// extraction.
auto tuple_type = Subscript::create(
r,
Var::create(r, Ident::create(r, "Tuple")),
List<Expr>::create(r, default_types));
auto blank_decl = Decl::create(
r, List<Param>::create(r, {}), Maybe<Expr>::create(r, tuple_type));
auto tuple_expr =
TupleLiteral::create(r, List<Expr>::create(r, default_exprs));
auto ret = Return::create(r, tuple_expr);
auto def = Def::create(
r,
Ident::create(r, "defaults"),
blank_decl,
List<Stmt>::create(r, {ret}));
CompilationUnit cu;
// set optimize to false since we don't need to run it in optimize mode
cu.set_optimized(false);
cu.define({def}, {resolver}, nullptr);
Stack stack;
cu.get_function("defaults").run(stack);
return stack.at(0).toTuple()->elements();
}
std::vector<Argument> parseArgsFromDecl(const Decl& decl, const Self& self) {
auto params_begin = decl.params().begin();
auto params_end = decl.params().end();
if (self) {
++params_begin;
}
std::vector<Argument> retval;
std::vector<Expr> default_types;
std::vector<Expr> default_exprs;
// gather any non-empty default arguments
for (auto it = params_begin; it != params_end; ++it) {
auto param = *it;
auto def = param.defaultValue();
if (def.present()) {
default_types.emplace_back(param.type().get());
default_exprs.emplace_back(def.get());
}
}
auto default_values =
evaluateDefaults(decl.range(), default_types, default_exprs);
auto defaults_it = default_values.begin();
for (auto it = params_begin; it != params_end; ++it) {
auto decl_arg = *it;
TypePtr type;
c10::optional<int32_t> N;
bool is_inferred_type = false;
if (!decl_arg.type().present()) {
// If this param doesn't have a type, default to "tensor"
is_inferred_type = true;
type = TensorType::get();
N = c10::nullopt;
} else {
// BroadcastList list can only appear at the argument level
if (auto maybe_broad_list =
typeParser_.parseBroadcastList(decl_arg.type().get())) {
type = maybe_broad_list->first;
N = maybe_broad_list->second;
} else {
type = typeParser_.parseTypeFromExpr(decl_arg.type().get());
N = c10::nullopt;
}
}
c10::optional<IValue> default_value = c10::nullopt;
if (decl_arg.defaultValue().present()) {
default_value = *defaults_it++;
}
auto arg = Argument(
decl_arg.ident().name(),
type,
N,
default_value,
decl_arg.kwarg_only(),
/*alias_info=*/c10::nullopt,
is_inferred_type);
retval.push_back(arg);
}
return retval;
}
std::vector<Argument> parseReturnFromDecl(const Decl& decl) {
// we represent no annoation on a return type as having no values in the
// schema's return() list
// in emitReturn we take the actual return value to be the value of the
// return statement if no one was provided here
if (!decl.return_type().present())
return {};
if (typeParser_.parseBroadcastList(decl.return_type().get()))
throw ErrorReport(decl.return_type().range())
<< "Broadcastable lists cannot appear as a return type";
auto parsed_type = typeParser_.parseTypeFromExpr(decl.return_type().get());
return {Argument(
"",
parsed_type,
/*N =*/c10::nullopt,
/*default_value =*/c10::nullopt,
/*kwarg_only =*/false)};
}
FunctionSchema extractSchemaFromDef(const Def& def, const Self& self) {
const auto name = def.name().name();
std::vector<Argument> args = parseArgsFromDecl(def.decl(), self);
std::vector<Argument> returns = parseReturnFromDecl(def.decl());
return FunctionSchema(
name, "", std::move(args), std::move(returns), false, false);
}
std::vector<Argument> emitFormalArguments(
const Def& def,
const Self& self,
const FunctionSchema& schema,
Block* block) {
std::vector<Argument> arguments; // for schema
// inputs
auto it = def.decl().params().begin();
auto end = def.decl().params().end();
auto expected_annotation_size = def.decl().params().size();
if (self) {
expected_annotation_size--;
}
if (schema.arguments().size() != expected_annotation_size) {
throw ErrorReport(def.decl().params().range())
<< "Number of type annotations for"
<< " function parameters (" << schema.arguments().size() << ")"
<< " does not match the number of parameters on the function ("
<< expected_annotation_size << ")!";
}
if (self) {
AT_ASSERT(it != end);
const auto& name = (*it).ident().name();
Value* new_input = block->addInput()->setUniqueName(name);
environment_stack->setSugaredVar(
(*it).ident().range(), name, self(new_input));
arguments.emplace_back(name, new_input->type());
++it;
}
size_t arg_annotation_idx = 0;
for (; it != end; ++it) {
auto& name = (*it).ident().name();
// Add the input to the graph
Value* new_input = block->addInput();
if (meaningfulName(name)) {
new_input->setUniqueName(name);
}
// Record the type for the schema and set the Type on the Value*
arguments.push_back(schema.arguments().at(arg_annotation_idx++));
new_input->setType(arguments.back().type());
// NB: set type of new_input before setVar call so the Store is
// typed appropriately
environment_stack->setVar((*it).ident().range(), name, new_input);
}
return arguments;
}
Argument emitOutput(
const SourceRange& range,
const FunctionSchema& schema,
Block* block) {
// rewrites ensure there is always a return statement in program
AT_ASSERT(def_stack_.back().merged_return_type_);
// outputs
Value* result = environment_stack->getVar("$return", range);
block->registerOutput(result);
return Argument("", def_stack_.back().merged_return_type_);
}
void emitStatements(const List<Stmt>& statements) {
return emitStatements(statements.begin(), statements.end());
}
// XXX - right now closures are used _only_ for defining gradients internally
// There are several unfinished aspects that make them unusable generally
// 1. We do not have a type, ivalue, operator to represent prim::Function, so
// closure_node has type None
// 2. There is no export logic for it yet, so it cannot be
// exported/python_printed
// 3. There is nothing preventing the assignment of already existing variables
// inside the closures
// the changes to those variables will just get forgotten.
// 4. There is no parsing support in frontend.py, this is intentional since it
// prevents people from accidentally using this feature.
std::shared_ptr<ClosureValue> emitClosure(
const std::function<void(Block*)>& emit_body) {
Node* closure_node = graph->insertNode(graph->create(prim::Function, 1));
// it is not a real thing yet, so just say the type is None
closure_node->output()->setType(NoneType::get());
Block* block = closure_node->addBlock();
{
WithInsertPoint guard(block);
pushFrame(block, /*starts_def=*/true);
emit_body(block);
popFrame(/*ends_def=*/true);
}
return std::make_shared<ClosureValue>(closure_node->output());
}
void emitClosure(const Def& def) {
// invoked once the closure block is set as the enviroment
auto emit_body = [&](Block* closure_block) {
emitDef(
def,
nullptr,
closure_block); // ignore schema return, we just wont use it for now
// since we never create a Method for the closure
};
auto closure_value = emitClosure(emit_body);
environment_stack->setSugaredVar(
def.name().range(), def.name().name(), closure_value);
}
void emitReturn(const Return& stmt) {
Value* result = emitExpr(stmt.expr());
TypePtr result_type = def_stack_.back().declared_return_type_;
// result type is annotated, every return must convert to that type
if (result_type) {
// this guard skips implicit conversion from None -> Tensor for the return
// type. otherwise forgetting a return a function returning a tensor will
// cause a None to be converted to a tensor.
if (!(result_type->isSubtypeOf(TensorType::get()) &&
result->type()->isSubtypeOf(NoneType::get()))) {
result = tryConvertToType(
stmt.range(),
*graph,
result_type,
result,
/*allow_conversions=*/true);
}
if (!result->type()->isSubtypeOf(result_type)) {
throw ErrorReport(stmt.range())
<< "Return value was annotated as having type "
<< result_type->python_str() << " but is actually of type "
<< result->type()->python_str();
}
} else {
result_type = def_stack_.back().merged_return_type_;
if (!result_type) {
result_type = result->type();
}
if (!unifyTypes(result_type, result->type())) {
throw ErrorReport(stmt.range())
<< "Previous return statement returned a value of type "
<< result_type->python_str()
<< " but this return statement returns a value of type "
<< result->type()->python_str();
}
}
AT_ASSERT(result_type);
def_stack_.back().merged_return_type_ = result_type;
environment_stack->setVar(stmt.range(), "$return", result);
}
void emitStatements(
List<Stmt>::const_iterator begin,
List<Stmt>::const_iterator end) {
for (; begin != end; ++begin) {
auto stmt = *begin;
switch (stmt.kind()) {
case TK_IF:
emitIf(If(stmt));
break;
case TK_WHILE:
emitWhile(While(stmt));
break;
case TK_FOR:
emitFor(For(stmt));
break;
case TK_ASSIGN:
emitAssignment(Assign(stmt));
break;
case TK_AUG_ASSIGN:
emitAugAssignment(AugAssign(stmt));
break;
case TK_GLOBAL:
for (auto ident : Global(stmt).names()) {
const auto& name = Ident(ident).name();
environment_stack->setVar(
ident.range(), name, graph->addInput(name));
}
break;
case TK_EXPR_STMT: {
auto expr = ExprStmt(stmt).expr();
emitSugaredExpr(expr, 0);
} break;
case TK_RAISE:
emitRaise(Raise(stmt).range());
break;
case TK_ASSERT:
emitAssert(Assert(stmt));
break;
case TK_RETURN: {
emitReturn(Return(stmt));
} break;
case TK_PASS:
// Emit nothing for pass
break;
case TK_DEF:
emitClosure(Def(stmt));
break;
default:
throw ErrorReport(stmt)
<< "Unrecognized statement kind " << kindToString(stmt.kind());
}
}
}
std::shared_ptr<Environment> emitSingleIfBranch(
Block* b,
const List<Stmt>& branch,
const Refinements& refinements) {
pushFrame(b);
WithInsertPoint guard(b);
insertRefinements(refinements);
emitStatements(branch);
return popFrame();
}
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
return graph->create(kind, n_outputs)->setSourceRange(loc);
}
Value* emitTernaryIf(const TernaryIf& expr) {
const auto& bool_info = findRefinements(expr.cond());
Value* cond_value = emitCond(expr.cond());
auto true_expr = [&] {
insertRefinements(bool_info.true_refinements_);
return emitExpr(expr.true_expr());
};
auto false_expr = [&] {
insertRefinements(bool_info.false_refinements_);
return emitExpr(expr.false_expr());
};
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
}
Value* emitListComprehension(const ListComp& lc) {
// this avoids a race condition where we would re-use the same temp name
static std::atomic<size_t> tmp_count{0};
const auto tmp_name =
std::string("___list_acc") + std::to_string(tmp_count++);
const auto list_value = emitExpr(lc.iter());
if (list_value->type()->kind() != TypeKind::ListType) {
// TODO: constraining iterators to be simple lists for now
// as it makes easy to get list's element type.
throw ErrorReport(lc.range())
<< "iterator expression is expected to be a list";
}
auto elem_types = list_value->type()->containedTypes();
// TODO: users can easily change the type to (x,1) or float(x)
// as in `float(x) for x in my_list_of_ints`
// eventually, we would probably want to temporarily inject x
// so we can evaluate the generator expression (e.g. `float(x)`) depending
// on x
// given `[x*2 for x in my_list]` this generates the following AST:
// __list_acc = []
// for x in my_list:
// __list_acc.append(x*2)
const auto n = graph->insertNode(
graph->createList(elem_types.at(0), at::ArrayRef<Value*>{}));
environment_stack->setVar(lc.range(), tmp_name, n->output());
const auto tmp_list_ident = Ident::create(lc.range(), tmp_name);
const auto tmp_list_var = Var::create(lc.range(), tmp_list_ident);
const auto append_ident = Ident::create(lc.range(), "append");
const auto dot_op = Select::create(lc.range(), tmp_list_var, append_ident);
const auto append_args_list = List<Expr>::create(lc.range(), {lc.elt()});
const auto append_attrs = List<Attribute>::create(lc.range(), {});
const auto apply_append =
Apply::create(lc.range(), dot_op, append_args_list, append_attrs);
const auto expr_stmt = ExprStmt::create(lc.range(), apply_append);
const auto stmt_list = List<Stmt>::create(lc.range(), {expr_stmt});
const auto iters_list = List<Expr>::create(lc.range(), {lc.iter()});
const auto targets_list = List<Ident>::create(lc.range(), {lc.target()});
const auto for_loop =
For::create(lc.range(), targets_list, iters_list, stmt_list);
emitFor(for_loop);
return n->output();
}
// Insert subtyping refinements
void insertRefinements(const Refinements& ref) {
for (const auto& name_mappings : ref.mappings_) {
const std::string& name = name_mappings.first;
auto type = name_mappings.second.first;
const auto& range = *name_mappings.second.second;
Value* v = environment_stack->getVar(name, range);
if (type != NoneType::get()) {
Value* output = graph->insert(prim::unchecked_unwrap_optional, {v});
environment_stack->setVar(range, name, output);
}
// todo @eellison - revisit inserting Nones when None subtypes Optional
}
}
Value* emitShortCircuitIf(
const SourceRange& loc,
const TreeRef& first_expr,
const TreeRef& second_expr,
bool is_or) {
const auto first_bool_info = findRefinements(first_expr);
Value* first_value = emitCond(Expr(first_expr));
// if the second expr in the short circuit is not evaluated,
// than the first expression is False if the short circuit
// is an `and` and True if the short circuit is an `or`.
// `False and expr` -> False, `True or expr` -> True
//
// inserting it as a constant makes optimization easier
Value* first_value_returned;
const Refinements* first_expr_refinements;
const Refinements* second_expr_refinements;
// if it's an OR the first expr is emitted in the true branch
// and the second expr in the false branch, if it's an AND the opposite
if (is_or) {
first_value_returned = graph->insertConstant(true, nullptr, loc);
first_expr_refinements = &first_bool_info.true_refinements_;
second_expr_refinements = &first_bool_info.false_refinements_;
} else {
first_value_returned = graph->insertConstant(false, nullptr, loc);
first_expr_refinements = &first_bool_info.false_refinements_;
second_expr_refinements = &first_bool_info.true_refinements_;
}
auto get_first_expr = [&] {
insertRefinements(*first_expr_refinements);
return first_value_returned;
};
auto get_second_expr = [&] {
insertRefinements(*second_expr_refinements);
return emitCond(Expr(second_expr));
};
// if this is an OR, eval second expression if first expr is False
// If this is an AND, eval second expression if first expr is True
if (is_or) {
return emitIfExpr(loc, first_value, get_first_expr, get_second_expr);
} else {
return emitIfExpr(loc, first_value, get_second_expr, get_first_expr);
}
}
Value* emitIfExpr(
const SourceRange& range,
Value* cond_value,
std::function<Value*()> true_expr,
std::function<Value*()> false_expr) {
Node* n = graph->insertNode(create(prim::If, range, 0));
n->addInput(cond_value);
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) {
pushFrame(b);
WithInsertPoint guard(b);
Value* out_val = expr_value();
b->registerOutput(out_val);
popFrame();
};
emit_if_expr(true_block, std::move(true_expr));
emit_if_expr(false_block, std::move(false_expr));
auto true_type = true_block->outputs().at(0)->type();
auto false_type = false_block->outputs().at(0)->type();
auto unified = unifyTypes(true_type, false_type);
if (!unified) {
throw ErrorReport(range)
<< "if-expression's true branch has type " << true_type->python_str()
<< " but false branch has type " << false_type->python_str();
}
// Add op outputs
auto expr_value = n->addOutput()->setType(*unified); // Resulting value
return expr_value;
}
Value* emitCond(const Expr& cond) {
Value* v = emitExpr(cond);
Value* out;
try {
auto bool_cast = environment_stack->getSugaredVar("bool", cond.range());
out = asSimple(bool_cast->call(cond.get()->range(), method, {v}, {}, 0));
} catch (...) {
throw ErrorReport(cond.range()) << "Could not cast value of type "
<< v->type()->python_str() << " to bool";
}
// cast value not response for checking output type
if (!out->type()->isSubtypeOf(BoolType::get())) {
throw ErrorReport(cond)
<< "expected a bool expression for condition but found "
<< out->type()->python_str();
}
return out;
}
void emitIfElseBlocks(Value* cond_value, const If& stmt) {
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
const auto bool_info = findRefinements(stmt.cond());
auto* true_block = n->addBlock();
auto* false_block = n->addBlock();
// Emit both blocks once to get the union of all mutated values
auto save_true = emitSingleIfBranch(
true_block, stmt.trueBranch(), bool_info.true_refinements_);
auto save_false = emitSingleIfBranch(
false_block, stmt.falseBranch(), bool_info.false_refinements_);
// In python, every variable assigned in an if statement escapes
// the scope of the if statement (all variables are scoped to the function).
// Script is a subset of python: we consider variables to be in scope
// as long as there is a definition of the variable along all paths
// through the if statemnent
// ----
// if ...:
// a =
// else:
// ...
// ... = a # error, a is not defined along all paths
// ----
// if ...:
// a =
// else:
// a =
// ... = a # OK, a is defined along all paths
// ----
// a = ...
// if ...:
// a =
// ... = a # OK, a is defined along all paths
// ordered set, because we want deterministic graph output
std::set<std::string> mutated_variables;
// When we access either the true or false environment,
// we need to set the insertion point so the prim::Load is inserted
// into the right block.
// if var is only defined in one branch save error in case it's used later
for (auto& v : save_true->definedVariables()) {
{
WithInsertPoint insert(false_block);
if (save_false->findInAnyFrame(v)) {
mutated_variables.insert(v);
} else {
ErrorReport error(stmt);
environment_stack->setVariableTypeError(v, [=]() -> std::string {
error << v << " is not defined in the false branch";
return error.what();
});
}
}
}
for (auto& v : save_false->definedVariables()) {
{
WithInsertPoint insert(true_block);
if (save_true->findInAnyFrame(v)) {
mutated_variables.insert(v);
} else {
ErrorReport error(stmt);
environment_stack->setVariableTypeError(v, [=]() -> std::string {
error << v << " is not defined in the true branch";
return error.what();
});
}
}
}
// Register outputs in each block
for (const auto& x : mutated_variables) {
Value* tv;
Value* fv;
{
WithInsertPoint insert(true_block);
tv = save_true->getVar(x, stmt.range());
}
{
WithInsertPoint insert(false_block);
fv = save_false->getVar(x, stmt.range());
}
auto unified = unifyTypes(tv->type(), fv->type());
// attempt to unify the types. we allow variables to be set to different
// types in each branch as long as that variable is not already in scope,
// or if that variable does not get used later. here, we save the error
// so that the error message will be more informative in the case that is
// used later. When a is accessed in (a + 1), the error will get printed
// if cond:
// a = 1
// else:
// a = tensor
// b = a + 1
//
if (!unified) {
ErrorReport error(stmt);
error << "Type mismatch: " << x << " is set to type "
<< tv->type()->python_str() << " in the true branch"
<< " and type " << fv->type()->python_str()
<< " in the false branch";
if (save_true->findInParentFrame(x) ||
save_false->findInParentFrame(x)) {
throw error;
} else {
environment_stack->setVariableTypeError(x, [=]() -> std::string {
return error.what();
});
continue;
}
}
environment_stack->setType(x, *unified);
}
}
void emitIf(const If& stmt) {
// NOTE: emitIf checks on If stmt condition to see if the cond AST kind ==
// is/is not, for such cases we do meta programming and disable emitting the
// corresponding branches
Expr cond = stmt.cond();
if (cond.kind() != TK_IS && cond.kind() != TK_ISNOT) {
// emit normal IF stmt for cases except TK_IS and TK_ISNOT
Value* cond_value = emitCond(cond);
emitIfElseBlocks(cond_value, stmt);
return;
}
// meta programming on AST for is/is not cases and emit branches base on the
// possible output of cond
auto cond_op = BinOp(cond);
SugaredValuePtr lhs_val = emitSugaredExpr(cond_op.lhs(), 1);
SugaredValuePtr rhs_val = emitSugaredExpr(cond_op.rhs(), 1);
List<Stmt> always_none_branch =
cond.kind() == TK_IS ? stmt.trueBranch() : stmt.falseBranch();
List<Stmt> never_none_branch =
cond.kind() == TK_IS ? stmt.falseBranch() : stmt.trueBranch();
auto lhs_none = lhs_val->isNone();
auto rhs_none = rhs_val->isNone();
// Dispatch logic (A: ALWAYS, N: NEVER, M: MAYBE):
//
// AA, -> emit always_none_branch
// AN , NA-> emit never_none_branch
// MA, MM, MN, NM, NN, AM -> emit both conditional branches
if (lhs_none == ALWAYS && rhs_none == ALWAYS) {
// None is/is not None: only emit the always_none_branch
emitStatements(always_none_branch);
} else if (
(lhs_none == ALWAYS && rhs_none == NEVER) ||
(lhs_none == NEVER && rhs_none == ALWAYS)) {
// lhs_val/rhs_val with A/M: only emit never_none_branch
emitStatements(never_none_branch);
} else {
// all other cases for lhs_val and rhs_val
// emit the whole If stmt as usual, finish emitCond first
auto lhs_range = cond_op.lhs().get()->range();
auto rhs_range = cond_op.rhs().get()->range();
auto kind = getNodeKind(cond.kind(), cond.get()->trees().size());
Value* cond_value = emitBuiltinCall(
cond.get()->range(),
*method.graph(),
kind,
c10::nullopt,
{lhs_val->asValue(lhs_range, method),
rhs_val->asValue(rhs_range, method)},
{},
/*required=*/true);
emitIfElseBlocks(cond_value, stmt);
}
}
// *********************** Loop Operators ************************************
// Emits a loop operator with the form:
// Loop(max_trip_count)
// block0(loop_counter) {
// <body>
// }
// block1 {
// <loop condition>
// -> (condition)
// }
// For loops will have an empty loop condition block with condition set to
// true. In the convert to ssa pass, the loop condition will correctly
// inlined. and inputs and outputs added so that the loop conforms to the
// semantics specified at
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#experimental-loop
void emitLoopCommon(
SourceRange range,
const List<Stmt>& body,
const std::function<void(Value*, std::shared_ptr<Environment>)>&
current_element_assigner,
c10::optional<Expr> cond,
Value* max_trip_count_val = nullptr) {
if (!max_trip_count_val) {
max_trip_count_val = materializeConstant(
std::numeric_limits<int64_t>::max(),
*graph,
range,
integral_constants);
}
Node* n = graph->insertNode(create(prim::Loop, range, 0));
auto* body_block = n->addBlock();
{
Block* condition_block = n->addBlock();
pushFrame(condition_block);
WithInsertPoint insert(condition_block);
Value* out = cond ? emitCond(cond.value())
: graph->insertConstant(true, nullptr, range);
condition_block->registerOutput(out);
popFrame();
}
n->addInput(max_trip_count_val);
Value* trip_count =
body_block->addInput()->setType(IntType::get()); // Iteration num
{
pushFrame(body_block);
WithInsertPoint guard(body_block);
// current_element_assigner uses an induction variable
// to set a current element
if (current_element_assigner) {
current_element_assigner(trip_count, environment_stack);
}
emitStatements(body);
popFrame();
}
}
void emitForRange(
const SourceRange& range,
const Ident& target,
const List<Expr>& args,
const List<Stmt>& body) {
Value *end_val = nullptr, *start_val = nullptr, *step_val = nullptr;
bool isSimpleRange = (args.size() == 1);
std::vector<Value*> argVals;
for (auto i : args) {
argVals.push_back(ensureInt(range, emitExpr(i)));
}
if (isSimpleRange) {
end_val = argVals[0];
start_val = end_val->owningGraph()->insertConstant(0);
step_val = end_val->owningGraph()->insertConstant(1);
start_val->node()->setSourceRange(range);
end_val->node()->setSourceRange(range);
} else if (args.size() == 2 || args.size() == 3) {
start_val = argVals[0];
end_val = argVals[1];
if (args.size() == 3) {
step_val = argVals[2];
} else {
step_val = end_val->owningGraph()->insertConstant(1);
step_val->node()->setSourceRange(range);
}
} else if (args.size() == 0) {
throw ErrorReport(range) << "range expected 1 arguments, got 0";
} else {
throw ErrorReport(range)
<< "range expected at most 3 arguments, got " << args.size();
}
const auto& ident_name = target.name();
TORCH_CHECK(
end_val != nullptr && start_val != nullptr && step_val != nullptr,
"Expected non-null pointers for range() arguments");
auto addOp = [range](
Graph* g, NodeKind kind, ArrayRef<Value*> inputs) {
return g->insertNode(g->create(kind, inputs, 1))
->setSourceRange(range)
->output()
->setType(IntType::get());
};
auto assigner =
[addOp, ident_name, range, start_val, step_val, isSimpleRange](
Value* index, std::shared_ptr<Environment> env) {
Value* derived_index;
if (isSimpleRange) {
derived_index = index;
} else {
auto g = index->owningGraph();
derived_index =
addOp(g, aten::__derive_index, {index, start_val, step_val});
}
env->setVar(range, ident_name, derived_index);
};
Value* max_trip_count_val;
if (isSimpleRange) {
max_trip_count_val = end_val;
} else {
auto g = start_val->owningGraph();
Value* cond_value = emitBuiltinCall(
range,
*g,
aten::eq,
c10::nullopt,
{step_val, g->insertConstant(0)},
{},
/*required=*/true);
Node* n = g->insertNode(create(prim::If, range, 0));
n->addInput(cond_value);
auto true_block = n->addBlock();
n->addBlock();
{
WithInsertPoint guard(true_block);
g->insert(
prim::RaiseException,
{std::string("range() arg 3 must not be zero")},
{},
range);
}
max_trip_count_val =
addOp(g, aten::__range_length, {start_val, end_val, step_val});
}
emitLoopCommon(range, body, assigner, {}, max_trip_count_val);
}
void emitForInListLoop(
const For& stmt,
const std::shared_ptr<torch::jit::script::SimpleValue>& siv) {
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
auto& range = stmt.range();
auto target = targets[0];
auto listArg = siv->asValue(range, method);
auto max_trip_count_val = emitBuiltinCall(
range,
*graph,
aten::len,
c10::nullopt,
{listArg},
{},
/*required=*/true);
const auto& ident_name = target.name();
auto assigner = [ident_name, range, listArg, this](
Value* index, std::shared_ptr<Environment> env) {
auto cur_elm = emitBuiltinCall(
range,
*this->graph,
aten::select,
c10::nullopt,
{listArg, index},
{},
/*required=*/true);
env->setVar(range, ident_name, cur_elm);
};
emitLoopCommon(range, body, assigner, {}, max_trip_count_val);
}
void emitForInTensorLoop(const For& stmt, Value* tensorArg) {
auto targets = stmt.targets();
auto target = targets[0];
auto itrs = stmt.itrs();
auto body = stmt.body();
auto& range = stmt.range();
auto outermost_dim_index = graph->insertConstant(0, IntType::get(), range);
auto num_dim = graph->insert(aten::dim, {tensorArg});
Value* cond_value = emitBuiltinCall(
range,
*method.graph(),
aten::eq,
c10::nullopt,
{num_dim, outermost_dim_index},
{},
/*required=*/true);
Node* n = graph->insertNode(create(prim::If, range, 0));
n->addInput(cond_value);
auto true_block = n->addBlock();
n->addBlock();
{
WithInsertPoint guard(true_block);
graph->insert(
prim::RaiseException,
{std::string("iteration over a 0-d tensor")},
{},
range);
}
auto sizes_tuple = emitBuiltinCall(
range,
*graph,
aten::size,
c10::nullopt,
{tensorArg},
{},
/*required=*/true);
auto max_trip_count_val = emitBuiltinCall(
range,
*graph,
aten::select,
c10::nullopt,
{sizes_tuple, outermost_dim_index},
{},
/*required=*/true);
const auto& ident_name = target.name();
auto assigner = [outermost_dim_index, ident_name, range, tensorArg, this](
Value* index, std::shared_ptr<Environment> env) {
auto cur_elm = emitBuiltinCall(
range,
*this->graph,
aten::select,
c10::nullopt,
{tensorArg, outermost_dim_index, index},
{},
/*required=*/true);
env->setVar(range, ident_name, cur_elm);
};
emitLoopCommon(range, body, assigner, {}, max_trip_count_val);
}
void emitFor(const For& stmt) {
// For now, we only support range loops. e.g. for i in range(3): ...
auto targets = stmt.targets();
auto itrs = stmt.itrs();
auto body = stmt.body();
if (stmt.itrs().size() != 1) {
throw ErrorReport(stmt)
<< "List of iterables is not supported currently.";
}
if (targets.size() != 1) {
throw ErrorReport(stmt)
<< "Iteration variable unpacking is not supported";
}
if (targets[0].kind() != TK_IDENT) {
throw ErrorReport(targets[0])
<< "unexpected expression in variable initialization of for loop";
}
// match range(<expr>) style loops
// itrs must consist of a single Apply node
if (itrs[0].kind() == TK_APPLY) {
Apply range_iterator = Apply(itrs[0]);
if (range_iterator.callee().kind() == TK_VAR) {
Var var = Var(range_iterator.callee());
if (var.name().name() == "range") {
return emitForRange(
stmt.range(), targets[0], range_iterator.inputs(), body);
}
}
}
// it isn't a range(<expr>) loop, treat it as a sugared value that maybe can
// be unrolled
auto sv = emitSugaredExpr(itrs[0], 1);
auto siv = std::dynamic_pointer_cast<SimpleValue>(sv);
// for-in lists
if (siv && siv->getValue()->type()->kind() == TypeKind::ListType) {
emitForInListLoop(stmt, siv);
return;
}
// for-in tensors
if (siv && siv->getValue()->type()->isSubclass(TypeKind::TensorType)) {
auto value = siv->asValue(stmt.range(), method);
emitForInTensorLoop(stmt, value);
return;
}
auto instances = sv->asTuple(stmt.range(), method);
const std::string& target_name = targets[0].name();
pushFrame(environment_stack->block());
for (const auto& inst : instances) {
environment_stack->setSugaredVar(itrs[0].range(), target_name, inst);
emitStatements(body);
}
for (const auto& n : environment_stack->definedVariables()) {
if (environment_stack->findInParentFrame(n)) {
environment_stack->next->setVar(
stmt.range(), n, environment_stack->getVar(n, stmt.range()));
}
}
popFrame();
}
void emitWhile(const While& stmt) {
auto cond = stmt.cond();
emitLoopCommon(stmt.range(), stmt.body(), nullptr, cond, nullptr);
}
// Currently we do not support assigning exceptions to variables,
// a = Exception("hi")
// raise a
//
// We ignore the expression following raise
//
// NYI: add exception logic to control-flow nodes
// if True:
// a = 1
// else
// raise Exception("Hi")
// print(a)
void emitRaise(const SourceRange& loc) {
const std::string exception = "Exception";
auto string_input = insertConstant(*graph, exception, nullptr, loc);
graph->insert(prim::RaiseException, {string_input}, {}, loc);
}
void emitAssert(const Assert& stmt) {
Value* cond_value = emitCond(stmt.test());
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
n->addInput(cond_value);
/* true_block =*/n->addBlock();
auto* false_block = n->addBlock();
// if assert test is false throw exception
pushFrame(false_block);
WithInsertPoint guard(false_block);
emitRaise(stmt.range());
popFrame();
}
// Validate that the `lhs` Expr's in an assignment statement are valid. That
// is:
//
// 1) All lhs Expr's are either Var, Tuple or Starred nodes
// 2) There is at most one Starred node in the lhs Expr
// 3) A Starred node can only appear when there is another non-Starred lhs
// Expr. Concretely this means that `*abc = func()` is illegal. Unpacking
// all outputs into a tuple is covered by `abc = func()`.
bool calcNumStarredUnpack(const List<Expr>& lhs, const SourceRange& r) {
size_t num_normal_assign = 0;
size_t num_starred = 0;
for (const auto& assignee : lhs) {
if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT
|| assignee.kind() == TK_TUPLE_LITERAL) {
num_normal_assign++;
} else if (assignee.kind() == TK_STARRED) {
num_starred++;
} else {
throw ErrorReport(assignee) << "lhs of assignment must be a variable, "
<< "subscript, or starred expression.";
}
}
if (num_starred > 1) {
throw ErrorReport(r)
<< "Only one starred expression is allowed on the lhs.";
}
if (num_starred > 0 && num_normal_assign == 0) {
throw ErrorReport(r) << "A Starred expression may only appear on the "
<< "lhs within the presence of another non-starred"
<< " expression.";
}
return num_starred;
}
// Get the appropriate builtin op for this augmented assignment
// If the RHS is a tensor, return the corresponding ATen in-place op
// If it's a list of scalars, then return the corresponding list augment op
Symbol getAugOp(const AugAssign& stmt, bool isTensor) {
switch (stmt.aug_op()) {
case '+':
return isTensor ? aten::add_ : aten::add;
case '-':
return isTensor ? aten::sub_ : aten::sub;
case '/':
return isTensor ? aten::div_ : aten::div;
case '*':
return isTensor ? aten::mul_ : aten::mul;
default:
throw ErrorReport(stmt)
<< "Unknown augmented assignment: " << kindToString(stmt.aug_op());
}
}
// Emit nodes for augmented assignments like `+=`
void emitAugAssignment(const AugAssign& stmt) {
switch (stmt.lhs().kind()) {
case TK_VAR: {
emitAugAssignmentToVar(stmt);
} break;
case '.': {
emitAugAssignmentToSelectVar(stmt);
} break;
case TK_SUBSCRIPT: {
emitAugAssignmentToSubscript(stmt);
} break;
default:
throw ErrorReport(stmt.lhs())
<< "unexpected expression on "
<< "left-hand side of augmented assignment.";
}
}
// This will be called when there is a class param or module buffer
// mutation which make the LHS of the expr be a select expression
//
// Example like:
// class A(Module):
// def __init__():
// self.register_buffer("running_var", torch.zeros(1))
//
// def forward():
// self.num_batches += 1
//
// In this case we will only consider the scenario that the module
// buffer type is a tensor, and we emit the corresponding tensor
// in place op, and throw error for other unsupported types
void emitAugAssignmentToSelectVar(const AugAssign& stmt) {
const auto lhs = Select(stmt.lhs());
const auto lhsSugaredVar =
environment_stack->getSugaredVar(Var(lhs.value()).name());
const auto lhsValue =
lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name())
->asValue(lhs.range(), method);
if (lhsValue->type()->isSubtypeOf(TensorType::get())) {
// for module parameter/buffer assignment, only consider tensor types,
// emit the corresponding in-place op
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
self,
{rhs},
{},
/*required=*/true);
} else {
throw ErrorReport(stmt.lhs())
<< "left-hand side of augmented assignment to module "
<< "parameters/buffers can only be tensor types";
}
}
void emitAugAssignmentToVar(const AugAssign& stmt) {
const auto lhs = Var(stmt.lhs());
const auto lhsValue = environment_stack->getSugaredVar(lhs.name())
->asValue(lhs.range(), method);
if (lhsValue->type()->isSubtypeOf(TensorType::get())) {
// for tensors, emit the corresponding in-place op
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
const auto output = emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
self,
{rhs},
{},
/*required=*/true);
environment_stack->setVar(lhs.range(), lhs.name().name(), output);
} else {
// for primitive types, desugar into a simple assignment
// e.g. foo += 1 becomes foo.2 = foo + 1
Ident lhs = Var(stmt.lhs()).name();
Expr expr = BinOp::create(
stmt.range(),
stmt.aug_op(),
Var::create(lhs.range(), lhs),
stmt.rhs());
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
}
}
void emitAugAssignmentToSubscript(const AugAssign& stmt) {
// Process the base list value
const auto lhs = Subscript(stmt.lhs());
const auto sliceable = emitExpr(lhs.value());
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
// If it's a tensor, just fully evaluate the subscript operation and emit
// an in-place assignment
std::vector<Value*> tensorIndices;
Value* sliced;
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
lhs.range(), sliceable, lhs.subscript_exprs());
const auto slicedArg = NamedValue(stmt.lhs().range(), "self", sliced);
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
if (tensorIndices.size() == 0) {
// Common case: we only tried to index with int and slices. Emit the
// correct augmented assignment op to the sliced value
emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
slicedArg,
{rhs},
{},
/*required=*/true);
} else {
// Special case: we tried to do "advanced indexing". Lower this expr
// into `index` and `index_put_` ops with tensordices of Tensor?[]
const auto indices = graph
->insertNode(graph->createList(
OptionalType::ofTensor(), tensorIndices))
->output();
const auto indexed =
graph->insert(aten::index, {slicedArg, indices}, {}, stmt.range());
const auto augmented = emitBuiltinCall(
stmt.range(),
*method.graph(),
getAugOp(stmt, /*isTensor=*/true),
indexed,
{rhs},
{},
/*required=*/true);
graph->insert(
aten::index_put_,
{slicedArg, indices, augmented},
{},
stmt.range());
}
} else {
// Otherwise, it should be a list. Lower this expression into:
// list.set_item(get_item(idx).add_(value))
// similar to how Python handles things.
const auto listType = sliceable->type()->cast<ListType>();
AT_ASSERT(listType != nullptr);
bool isTensorList =
listType->getElementType()->isSubtypeOf(TensorType::get());
// Get the idx to augment
const auto subscriptExprs = lhs.subscript_exprs();
if (subscriptExprs.size() != 1) {
throw ErrorReport(subscriptExprs)
<< "Sliced expression not yet supported for"
<< " subscripted list augmented assignment. "
<< "File a bug if you want this.";
}
const auto idxValue = emitExpr(subscriptExprs[0]);
const auto listArg = NamedValue(lhs.value().range(), "list", sliceable);
const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue);
const auto valueArg =
NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs()));
const auto getItem =
graph->insert(aten::select, {listArg, idxArg}, {}, stmt.range());
const auto augmentedItem = graph->insert(
getAugOp(stmt, isTensorList), {getItem, valueArg}, {}, stmt.range());
graph->insert(
aten::_set_item, {listArg, idxArg, augmentedItem}, {}, stmt.range());
}
}
// Emit mutating assignments like `foo[0] = bar`
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const Expr& rhs) {
emitSubscriptAssign(stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs)));
}
void emitSubscriptAssign(
const SourceRange& stmtRange,
const Subscript& lhs,
const NamedValue& rhs) {
// First check the base value.
auto sliceable = emitExpr(lhs.value());
// If it's a tensor, copy the RHS data into it
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
std::vector<Value*> tensorIndices;
Value* sliced;
// Handle multi-dimensional slicing: first emit int/slice indexing
// TODO: the Python equivalent code has special-cased copy_to
// broadcasting to match NumPy semantics (see PR#4853). We can't
// replicate that without knowing the size of the Tensor; so really that
// code should be moved into the aten function
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
lhs.range(), sliceable, lhs.subscript_exprs());
const auto slicedArg = NamedValue(lhs.range(), sliced);
if (tensorIndices.size() == 0) {
// Common case: we only tried to index with int and slices. Copy the
// RHS into the resulting tensor.
graph->insert(aten::copy_, {slicedArg, rhs}, {}, stmtRange);
} else {
// Special case: we tried to do "advanced indexing" with a tensor.
// Dispatch to `aten::index_put_` with tensorindices of Tensor?[]
const auto indices = graph
->insertNode(graph->createList(
OptionalType::ofTensor(), tensorIndices))
->output();
graph->insert(
aten::index_put_, {slicedArg, indices, rhs}, {}, stmtRange);
}
// Otherwise, this is a list. Dispatch to aten::_set_item to both select
// and assign
} else {
const auto subscript = lhs.subscript_exprs();
if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) {
throw ErrorReport(subscript)
<< "Sliced expression not yet supported for"
<< " subscripted list assignment. "
<< "File a bug if you want this.";
}
std::vector<NamedValue> args;
args.emplace_back(lhs.value().range(), "list", sliceable);
args.emplace_back(
lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0]));
args.push_back(rhs);
graph->insert(aten::_set_item, args, {}, stmtRange);
}
}
void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) {
size_t n_binders = tl.inputs().size();
bool starred_unpack = calcNumStarredUnpack(tl.inputs(), tl.range());
if (starred_unpack)
n_binders--;
auto output = emitSugaredExpr(rhs, n_binders);
emitTupleAssign(tl, output, rhs.range(), n_binders, starred_unpack);
}
void emitTupleAssign(const TupleLiteral& tl, const SugaredValuePtr& rhs_output,
const SourceRange& rhs_loc, size_t n_binders, bool starred_unpack) {
auto outputs = rhs_output->asTuple(
rhs_loc,
method,
starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
if (outputs.size() < n_binders) {
throw ErrorReport(tl)
<< "need " << (starred_unpack ? "at least " : "") << n_binders
<< " values to unpack but found only " << outputs.size();
}
if (outputs.size() > n_binders && !starred_unpack) {
throw ErrorReport(tl) << "too many values to unpack: need " << n_binders
<< " but found " << outputs.size();
}
emitExprsAssign(tl.inputs(), outputs, rhs_loc, n_binders);
}
void emitExprsAssign(const List<Expr>& lhs_exprs, const at::ArrayRef<SugaredValuePtr> outputs,
const SourceRange& rhs_loc, size_t n_binders) {
int i = 0;
for (auto assignee : lhs_exprs) {
switch (assignee.kind()) {
case TK_SUBSCRIPT:
emitSubscriptAssign(
rhs_loc,
Subscript(assignee),
NamedValue(
rhs_loc, outputs.at(i)->asValue(rhs_loc, method)));
i++;
break;
case TK_VAR:
environment_stack->setSugaredVar(
assignee.range(), Var(assignee).name().name(), outputs.at(i));
i++;
break;
case TK_STARRED: {
auto var = Starred(assignee).expr();
if (var.kind() != TK_VAR) {
throw ErrorReport(var)
<< "Cannot pack a tuple into a non-variable.";
}
size_t n_matched = outputs.size() - n_binders;
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
auto values = fmap(
outputs_ref.slice(i, n_matched),
[&](const std::shared_ptr<SugaredValue>& v) {
return v->asValue(assignee.range(), method);
});
auto tup = graph->insertNode(graph->createTuple(values))->output();
environment_stack->setVar(var.range(), Var(var).name().name(), tup);
i += n_matched;
} break;
case TK_TUPLE_LITERAL: {
// recursively emit tuple assignments
TupleLiteral sub_tl = TupleLiteral(assignee);
size_t sub_n_binders = sub_tl.inputs().size();
bool sub_starred_unpack = calcNumStarredUnpack(sub_tl.inputs(), sub_tl.range());
if (sub_starred_unpack)
sub_n_binders--;
emitTupleAssign(sub_tl, outputs.at(i), rhs_loc, sub_n_binders, sub_starred_unpack);
i ++;
} break;
default:
throw ErrorReport(assignee)
<< "unexpected expression on the left-hand side";
}
}
}
void emitAssignment(const Assign& stmt) {
switch (stmt.lhs().kind()) {
case TK_VAR: {
auto v = Var(stmt.lhs());
TypePtr type = nullptr;
if (stmt.type().present()) {
type = typeParser_.parseTypeFromExpr(stmt.type().get());
}
environment_stack->setSugaredVar(
v.range(), v.name().name(), emitSugaredExpr(stmt.rhs(), 1, type));
} break;
case TK_TUPLE_LITERAL:
emitTupleAssign(TupleLiteral(stmt.lhs()), stmt.rhs());
break;
case '.':
emitSelectAssign(stmt);
break;
case TK_SUBSCRIPT:
emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), stmt.rhs());
break;
default:
throw ErrorReport(stmt.lhs())
<< "unexpected expression on left-hand side of assignment.";
}
}
void emitSelectAssign(const Assign& stmt) {
const auto lhs = Select(stmt.lhs());
const auto basename = Var(lhs.value()).name();
const auto rhsValue =
emitSugaredExpr(stmt.rhs(), 1)->asValue(stmt.rhs().range(), method);
auto userObject = environment_stack->getSugaredVar(basename);
userObject->setAttr(stmt.range(), method, lhs.selector().name(), rhsValue);
}
NodeKind getNodeKind(int kind, int ninputs) {
switch (kind) {
case '+':
return aten::add;
case '-':
return aten::sub;
case TK_UNARY_MINUS:
return aten::neg;
case '*':
return aten::mul;
case TK_POW:
return aten::pow;
case '@':
return aten::matmul;
case TK_STARRED:
return prim::Starred;
case '/':
return aten::div;
case '%':
return aten::remainder;
case TK_NE:
return aten::ne;
case TK_EQ:
return aten::eq;
case '<':
return aten::lt;
case '>':
return aten::gt;
case TK_LE:
return aten::le;
case TK_GE:
return aten::ge;
case TK_AND:
return aten::__and__;
case TK_OR:
return aten::__or__;
case TK_IS:
return aten::__is__;
case TK_ISNOT:
return aten::__isnot__;
case TK_NOT:
return aten::__not__;
case TK_FLOOR_DIV:
return aten::floordiv;
case '&':
return aten::__and__;
case '|':
return aten::__or__;
case '^':
return aten::__xor__;
case TK_IN:
return aten::__contains__;
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::string getOperatorOverload(int kind, int ninputs) {
switch (kind) {
case '+':
return "__add__";
case '-':
return "__sub__";
case TK_UNARY_MINUS:
return "__neg__";
case '*':
return "__mul__";
case TK_POW:
return "__pow__";
case '/':
return "__truediv__";
case '%':
return "__mod__";
case TK_NE:
return "__ne__";
case TK_EQ:
return "__eq__";
case '<':
return "__lt__";
case '>':
return "__gt__";
case TK_LE:
return "__le__";
case TK_GE:
return "__ge__";
case '&':
return "__and__";
case '|':
return "__or__";
case '^':
return "__xor__";
case TK_IN:
return "__contains__";
default:
throw std::runtime_error("unknown kind " + std::to_string(kind));
}
}
std::vector<NamedValue> getNamedValues(
const TreeList& trees,
bool maybe_unpack) {
std::vector<NamedValue> values;
for (const auto& tree : trees) {
if (maybe_unpack && tree->kind() == TK_STARRED) {
auto starred = Starred(tree);
auto entries = emitSugaredExpr(starred.expr(), 1)
->asTuple(starred.range(), method);
for (const auto& entry : entries) {
values.emplace_back(
tree->range(), entry->asValue(starred.range(), method));
}
} else {
values.emplace_back(tree->range(), emitExpr(Expr(tree)));
}
}
return values;
}
std::vector<NamedValue> getNamedValues(
const List<Expr>& trees,
bool maybe_unpack) {
return getNamedValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<Value*> getValues(const TreeList& trees, bool maybe_unpack) {
return toValues(*graph, getNamedValues(trees, maybe_unpack));
}
std::vector<Value*> getValues(const List<Expr>& trees, bool maybe_unpack) {
return getValues(trees.tree()->trees(), maybe_unpack);
}
std::vector<NamedValue> emitAttributes(const List<Attribute>& attributes) {
return fmap(attributes, [&](const Attribute& attr) {
return NamedValue(
attr.range(), attr.name().name(), emitExpr(attr.value()));
});
}
void checkApplyExpr(
Apply& apply,
SourceRange& loc,
size_t expected_inputs = 2) {
if (apply.inputs().size() != expected_inputs) {
throw ErrorReport(loc)
<< Var(apply.callee()).name().name() << " expected exactly "
<< expected_inputs << " arguments but found "
<< apply.inputs().size();
}
if (apply.attributes().size() > 0) {
throw ErrorReport(loc)
<< Var(apply.callee()).name().name() << " takes no keyword arguments";
}
}
std::shared_ptr<SugaredValue> emitApplyExpr(Apply& apply, size_t n_binders) {
auto sv = emitSugaredExpr(apply.callee(), 1);
auto loc = apply.callee().range();
if (auto fork_value = dynamic_cast<ForkValue*>(sv.get())) {
auto& trees = apply.inputs().tree()->trees();
if (trees.size() < 1) {
throw ErrorReport(loc) << "Expected at least one argument to fork()";
}
auto forked = emitSugaredExpr(Expr(trees[0]), 1);
TreeList sliced_trees(trees.begin() + 1, trees.end());
auto inputs = getNamedValues(sliced_trees, true);
auto attributes = emitAttributes(apply.attributes());
return emitForkExpr(loc, forked, inputs, attributes);
} else if (auto annotate_value = dynamic_cast<AnnotateValue*>(sv.get())) {
checkApplyExpr(apply, loc);
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
Value* expr = tryConvertToType(
apply.range(),
*graph,
type,
emitExpr(apply.inputs()[1], type),
/*allow_conversions=*/true);
// This is to ensure even if user forgets to call annotate None with the
// Optional wrapper type, we still generate the correct value with the
// Optional type. e.g. it makes annoate(Tensor, None) to behave the same
// with annotate(Optional[Tensor], None). It also maintains the backward
// compatibility of exported model on Optional undefined tensor/None
auto opt_type = expr->type()->cast<OptionalType>();
bool forget_opt_annotate =
opt_type && *opt_type->getElementType() == *type;
if (!forget_opt_annotate && !expr->type()->isSubtypeOf(type)) {
throw ErrorReport(apply.inputs())
<< "expected an expression of type " << type->python_str()
<< " but found " << expr->type()->python_str();
}
return std::make_shared<SimpleValue>(expr);
} else if (auto getattr = dynamic_cast<GetAttrValue*>(sv.get())) {
checkApplyExpr(apply, loc);
auto obj = emitSugaredExpr(apply.inputs()[0], 1);
auto selector = apply.inputs()[1];
if (selector.kind() != TK_STRINGLITERAL) {
throw ErrorReport(loc)
<< "getattr's second argument must be a string literal";
}
const std::string& name = StringLiteral(selector).text();
return obj->attr(apply.range(), method, name);
} else if (
auto uninitialized_value =
dynamic_cast<UninitializedValue*>(sv.get())) {
checkApplyExpr(apply, loc, 1);
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
auto out = graph->insertNode(graph->createUninitialized(type))
->setSourceRange(loc);
return std::make_shared<SimpleValue>(out->output());
} else if (auto isinstance = dynamic_cast<IsInstanceValue*>(sv.get())) {
// NOTE: for `isinstance` builtin call in JIT, we only check the static
// types on the inputs to evaluate, and insert the corresponding constant
// node
std::function<bool(Expr, Expr)> isInstanceCheck = [&](Expr obj,
Expr classinfo) {
if (classinfo.kind() == TK_TUPLE_LITERAL) {
// handle the case for recursive tuple classinfo
// return true if obj is an instance of any of the types
for (Expr e : TupleLiteral(classinfo).inputs()) {
if (isInstanceCheck(obj, e)) {
return true;
}
}
return false;
}
auto type_name = typeParser_.parseBaseTypeName(classinfo);
if (!type_name) {
throw ErrorReport(classinfo.range())
<< "type must be a type identifier";
}
auto val = emitExpr(obj);
// Special casing for list and tuple since isinstance(x, list) and
// isinstance(x, tuple) does not accept List[int] / Tuple[int] like
// subscript type annotation in python
if (*type_name == "list" && val->type()->cast<ListType>()) {
return true;
} else if (*type_name == "tuple" && val->type()->cast<TupleType>()) {
return true;
} else if (val->type()->cast<OptionalType>()) {
throw ErrorReport(loc)
<< "Optional isinstance check is not supported, "
<< "consider use is/isnot None instead";
} else {
TypePtr type = typeParser_.parseTypeFromExpr(classinfo);
if (val->type()->isSubtypeOf(type)) {
return true;
}
}
return false;
};
checkApplyExpr(apply, loc);
bool is_instance_val =
isInstanceCheck(apply.inputs()[0], apply.inputs()[1]);
return std::make_shared<SimpleValue>(
graph->insertConstant(is_instance_val, nullptr, loc));
} else if (auto classNew = dynamic_cast<ClassNewMethod*>(sv.get())) {
if (apply.inputs().size() != 1) {
throw ErrorReport(loc) << "Only one argument to __new__ allowed";
}
auto arg = emitSugaredExpr(apply.inputs()[0], 1);
auto class_arg = dynamic_cast<ClassValue*>(arg.get());
if (!class_arg) {
throw ErrorReport(loc)
<< "Expected class value as argument to __new__, got "
<< arg->kind() << " instead";
}
if (class_arg->type_ != classNew->type_) {
throw ErrorReport(loc)
<< "Argument to __new__() must match the class "
<< "you are calling __new__() on. "
<< "Got: " << class_arg->type_->python_str()
<< ", expected: " << classNew->type_->python_str();
}
return classNew->createObject(apply.range(), method);
} else {
auto inputs = getNamedValues(apply.inputs(), true);
auto attributes = emitAttributes(apply.attributes());
return sv->call(loc, method, inputs, attributes, n_binders);
}
}
BoolInfo findRefinements(const TreeRef& tree) {
switch (tree->kind()) {
case TK_IS:
case TK_ISNOT: {
const auto& inputs = tree->trees();
if (inputs.at(0)->kind() == TK_VAR && inputs.at(1)->kind() == TK_NONE) {
const std::string& var_name = Var(inputs[0]).name().name();
Refinements true_info, false_info;
auto type =
environment_stack->getVar(var_name, inputs[0]->range())->type();
if (auto opt_type = type->cast<OptionalType>()) {
false_info.setRefinement(
var_name,
TypeAndRange(opt_type->getElementType(), &tree->range()));
true_info.setRefinement(
var_name, TypeAndRange(NoneType::get(), &tree->range()));
}
if (tree->kind() == TK_IS) {
return BoolInfo(true_info, false_info);
} else {
return BoolInfo(false_info, true_info);
}
}
} break;
case TK_NOT: {
const auto& inputs = tree->trees();
auto bool_info = findRefinements(inputs[0]);
return BoolInfo(
bool_info.false_refinements_, bool_info.true_refinements_);
}
case TK_OR:
case TK_AND: {
const auto& inputs = tree->trees();
auto first = findRefinements(inputs[0]);
auto second = findRefinements(inputs[1]);
if (tree->kind() == TK_OR) {
return *first.mergeOr(second);
} else {
return *first.mergeAnd(second);
}
}
}
return BoolInfo();
}
Value* emitExpr(const Expr& tree, const TypePtr& type_hint = nullptr) {
return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method);
}
NodeKind reverseComparision(NodeKind kind) {
if (kind == aten::lt) {
return aten::gt;
} else if (kind == aten::le) {
return aten::ge;
} else if (kind == aten::gt) {
return aten::lt;
} else if (kind == aten::ge) {
return aten::le;
}
throw std::runtime_error(
"reverseComparision: unsupported NodeKind. File a bug");
}
// any expression that can produce a SugaredValue is handled here
// expressions that only return a single Value* are handled in emitSimpleExpr
// type_hint is set if there is a type that this value is expected to be
// e.g. a : List[int] = []
// or a = torch.jit.annotate(List[int], [])
// the caller is responsible for checking that the result matches type_hint
// emitSugaredExpr is free to ignore it.
std::shared_ptr<SugaredValue> emitSugaredExpr(
const Expr& tree,
size_t n_binders,
const TypePtr& type_hint = nullptr) {
switch (tree.kind()) {
case TK_VAR:
return environment_stack->getSugaredVar(Var(tree).name());
case '.': {
auto select = Select(tree);
auto sv = emitSugaredExpr(select.value(), 1);
return sv->attr(select.range(), method, select.selector().name());
}
case TK_APPLY: {
auto apply = Apply(tree);
return emitApplyExpr(apply, n_binders);
} break;
default:
return std::make_shared<SimpleValue>(emitSimpleExpr(tree, type_hint));
}
}
Value* emitNegate(const TreeRef& tree) {
const auto& inputs = tree->trees();
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
auto neg_val =
asSimple(makeMagic(
"__neg__",
std::make_shared<BuiltinFunction>(aten::neg, at::nullopt))
->call(tree->range(), method, named_values, {}, 0));
// if we emitted a aten::neg and not some other overloaded function,
// then try to constantfold
if (neg_val->node()->kind() != aten::neg) {
return neg_val;
}
auto maybe_constant_input = toIValue(neg_val->node()->input());
if (!maybe_constant_input) {
return neg_val;
}
auto op = getOperation(neg_val->node());
Stack stack;
stack.push_back(*maybe_constant_input);
op(stack);
AT_ASSERT(stack.size() == 1);
return graph->insertConstant(stack[0], nullptr, tree->range());
}
std::shared_ptr<SugaredValue> emitForkExpr(
SourceRange loc,
const std::shared_ptr<SugaredValue>& forked,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes) {
auto g = method.graph();
Node* fork_node;
TypePtr out_type;
fork_node = g->insertNode(method.graph()->create(prim::forkClosure, 1))
->setSourceRange(loc);
// We create a fork by emitting a closure and setting the closure output
// into the fork input. If a closure doesn't already exist, we create one.
{
WithInsertPoint insert(fork_node);
if (ClosureValue* sv = dynamic_cast<ClosureValue*>(forked.get())) {
Value* closure_output = sv->asValue(loc, method);
Block* closure_block = closure_output->node()->blocks().at(0);
TORCH_INTERNAL_ASSERT(closure_block->outputs().size() == 1);
out_type = closure_block->outputs().at(0)->type();
fork_node->addInput(closure_output);
} else {
auto emit_closure_body = [&](Block* closure_block) {
auto fn_sugared_output =
forked->call(loc, method, inputs, attributes, 1);
auto fn_simple_output = fn_sugared_output->asValue(loc, method);
closure_block->registerOutput(fn_simple_output);
out_type = fn_simple_output->type();
};
auto closure_value = emitClosure(emit_closure_body);
fork_node->addInput(closure_value->asValue(loc, method));
}
}
Value* node_output =
fork_node->output()->setType(FutureType::create(out_type));
return std::make_shared<SimpleValue>(node_output);
}
Value* emitSimpleExpr(
const TreeRef& tree,
const TypePtr& type_hint = nullptr) {
switch (tree->kind()) {
case TK_IS:
case TK_ISNOT:
case TK_FLOOR_DIV:
case '@': {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
return emitBuiltinCall(
tree->range(),
*method.graph(),
kind,
c10::nullopt,
named_values,
{},
/*required=*/true);
}
case TK_IN:
case TK_POW:
case TK_NE:
case TK_EQ:
case '<':
case '>':
case TK_LE:
case TK_GE:
case '*':
case '/':
case '+':
case '-':
case '%':
case '&':
case '|':
case '^': {
const auto& inputs = tree->trees();
auto kind = getNodeKind(tree->kind(), inputs.size());
auto overload = getOperatorOverload(tree->kind(), inputs.size());
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
if (tree->kind() == TK_IN) {
// For `in` the arguments are in reverse order (the object being
// checked is second)
std::iter_swap(named_values.begin() + 0, named_values.begin() + 1);
}
return asSimple(
makeMagic(
overload,
std::make_shared<BuiltinFunction>(kind, at::nullopt))
->call(tree->range(), method, named_values, {}, 0));
}
case TK_NOT: {
Value* input = emitCond(Expr(tree->trees()[0]));
return emitBuiltinCall(
tree->range(),
*method.graph(),
aten::__not__,
c10::nullopt,
{input},
{},
/*required=*/true);
}
case TK_UNARY_MINUS: {
return emitNegate(tree);
}
case TK_AND:
case TK_OR: {
const auto& inputs = tree->trees();
return emitShortCircuitIf(
tree->range(), inputs[0], inputs[1], tree->kind() == TK_OR);
}
case TK_STARRED: {
throw ErrorReport(tree)
<< "Unexpected starred expansion. File a bug report.";
}
case TK_CONST: {
return emitConst(Const(tree));
} break;
case TK_TRUE: {
return graph->insertConstant(true, nullptr, tree->range());
} break;
case TK_FALSE: {
return graph->insertConstant(false, nullptr, tree->range());
} break;
case TK_NONE: {
return graph->insertConstant(IValue(), nullptr, tree->range());
} break;
case TK_SUBSCRIPT: {
return emitSubscript(Subscript(tree));
} break;
case TK_IF_EXPR: {
return emitTernaryIf(TernaryIf(tree));
} break;
case TK_STRINGLITERAL: {
return emitStringLiteral(StringLiteral(tree));
} break;
case TK_LIST_LITERAL: {
auto ll = ListLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
// determine the element type of the list
// if we have a type hint of List[T], use T
// if the list is non-empty use type_of(list[0])
// otherwise assume it is List[Tensor]
TypePtr elem_type = TensorType::get();
if (type_hint && type_hint->kind() == TypeKind::ListType) {
elem_type = type_hint->expect<ListType>()->getElementType();
} else if (!values.empty()) {
elem_type = values.at(0)->type();
}
// Tensors are special because they have dymnamic properties. So any
// list containing tensors should be typed with the unified typeof all
// the elements.
if (elem_type->isSubtypeOf(TensorType::get())) {
for (const auto& value : values) {
elem_type = unifyTypes(elem_type, value->type()).value();
}
}
for (auto v : values) {
if (!v->type()->isSubtypeOf(elem_type)) {
throw ErrorReport(tree)
<< "Lists must contain only a single type, expected: "
<< *elem_type << " but found " << *v->type() << " instead";
}
}
Value* result =
graph->insertNode(graph->createList(elem_type, values))->output();
return result;
} break;
case TK_TUPLE_LITERAL: {
auto ll = TupleLiteral(tree);
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
return graph->insertNode(graph->createTuple(values))->output();
} break;
case TK_DICT_LITERAL: {
auto dl = DictLiteral(tree);
auto key_trees = dl.key_inputs().tree()->trees();
auto value_trees = dl.value_inputs().tree()->trees();
AT_ASSERT(key_trees.size() == value_trees.size());
std::vector<Value*> keys, values;
for (size_t i = 0; i < key_trees.size(); ++i) {
keys.push_back(emitExpr(Expr(key_trees[i])));
values.push_back(emitExpr(Expr(value_trees[i])));
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
if (type_hint && type_hint->kind() == TypeKind::DictType) {
auto dict_type = type_hint->expect<DictType>();
key_type = dict_type->getKeyType();
value_type = dict_type->getValueType();
} else if (!keys.empty()) {
key_type = keys.at(0)->type();
value_type = values.at(0)->type();
} else {
key_type = StringType::get();
value_type = TensorType::get();
}
AT_ASSERT(key_type != nullptr && value_type != nullptr);
return graph
->insertNode(graph->createDict(key_type, value_type, keys, values))
->output();
} break;
case TK_LIST_COMP: {
auto lc = ListComp(tree);
return emitListComprehension(lc);
} break;
default:
throw ErrorReport(tree) << "Cannot emit expr for: " << tree;
break;
}
}
Value* emitConst(const Const& c) {
if (c.isFloatingPoint())
return materializeConstant(
c.asFloatingPoint(), *graph, c.range(), fp_constants);
else
return materializeConstant(
c.asIntegral(), *graph, c.range(), integral_constants);
}
Value* emitStringLiteral(const StringLiteral& c) {
return insertConstant(*graph, c.text(), nullptr, c.range());
}
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
Value* emitSelect(
const SourceRange& loc,
Value* input,
Value* dim,
Value* index) {
return emitBuiltinCall(
loc, *graph, aten::select, c10::nullopt, {input, dim, index}, {}, true);
}
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end,
// 1)
Value* emitSlice(
const SourceRange& loc,
Value* input,
Value* dim, // Only used for tensor slicing
const SliceExpr& slice) {
std::vector<NamedValue> args;
args.reserve(4);
args.emplace_back(loc, "self", input);
// XXX: If list slicing becomes more complicated or stops using
// aten::slice, we should separate it from this function.
if (dim) {
AT_ASSERT(input->type()->isSubtypeOf(TensorType::get()));
args.emplace_back(dim);
} else {
AT_ASSERT(!input->type()->isSubtypeOf(TensorType::get()));
}
args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0))));
const auto has_end = slice.end().present();
if (has_end) {
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get())));
}
if (input->type()->cast<TupleType>()) {
auto has_step = slice.step().present();
if (has_step)
{
// TODO: add support for slicing tuples with a step
throw ErrorReport(loc) << "Unsupported operation: slicing tuples with a step isn't supported";
}
if (has_end) {
return emitTupleSlice(loc, args[0], args[1], /*end*/ args[2]);
} else {
return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
}
}
auto step = emitExpr(Expr(slice.stepOr(1)));
NamedValue step_nv =
NamedValue(loc, "step", step);
return emitBuiltinCall(
loc, *graph, aten::slice, c10::nullopt, args, {step_nv}, true);
}
Value* emitUnsqueeze(const SourceRange& loc, Value* input, int64_t dim) {
return emitBuiltinCall(
loc,
*graph,
aten::unsqueeze,
c10::nullopt,
{input, graph->insertConstant(dim, nullptr, loc)},
{},
true);
}
Value* emitIndex(
const SourceRange& loc,
Value* input,
at::ArrayRef<Value*> indices) {
// NB: the index of aten::index should be a type of List[Optional[Tensor]],
// this is to support the case like t[:, :, 1] where : here indicates a
// None/undefined tensor(optional tensor)
auto* index =
graph->insertNode(graph->createList(OptionalType::ofTensor(), indices))
->output();
return emitBuiltinCall(
loc, *graph, aten::index, c10::nullopt, {input, index}, {}, true);
}
// Emits multidimensional slicing with int and slice indices.
// Returns:
// - Value*: the input after it has been indexed by int and slice indices.
// - vector<Value*>: A list of tensor Value* indices that have not been
// applied yet.
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by
// a tensor.
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
std::vector<Value*> tensor_indices;
size_t dim = 0;
auto handle_tensor = [&](Value* tensor) {
// NB: tensor_indices can have None holes because of how at::index works.
tensor_indices.resize(dim + 1);
tensor_indices[dim] = tensor;
dim++;
};
// before ellipsis, dimension index should be `dim`
// after ellipsis, dimension index should be `-offset`
int offset = 0;
size_t ellipsis_dim = 0;
auto insert_value_for_dim = [&](int64_t dim) {
return (offset == 0)
? graph->insertConstant(dim, nullptr, loc)
:
// NB: offset is incremented to move to the next dimension index
graph->insertConstant(offset++, nullptr, loc);
};
for (const auto& subscript_expr : subscript_exprs) {
// NB: ellipsis_dim is **always** incremented
// (comparing to dim) in order to compute
// the correct offsets for the remaining
// dimension indices following an ellipsis "..."
// token
ellipsis_dim++;
if (subscript_expr.kind() == TK_DOTS) {
offset = -(subscript_exprs.size() - ellipsis_dim);
++dim;
continue;
}
if (subscript_expr.kind() == TK_SLICE_EXPR) {
auto dim_val = insert_value_for_dim(dim);
sliceable =
emitSlice(loc, sliceable, dim_val, SliceExpr(subscript_expr));
++dim;
continue;
}
auto index = emitExpr(subscript_expr, OptionalType::ofTensor());
if (index->type() == IntType::get()) {
// NB: note, select squeezes out a dimension,
// so dim is **not** incremented
auto dim_val = insert_value_for_dim(dim);
sliceable = emitSelect(loc, sliceable, dim_val, index);
continue;
} else if (index->type()->isSubtypeOf(NoneType::get())) {
sliceable = emitUnsqueeze(loc, sliceable, dim);
dim++;
continue;
} else if (index->type()->isSubtypeOf(OptionalType::ofTensor())) {
// NB:index type can either be a Tensor or : (None of Optional Tensor)
handle_tensor(index);
continue;
}
throw ErrorReport(loc)
<< "Unsupported operation: indexing tensor with unsupported index type '"
<< index->type()->python_str()
<< "'. Only ints, slices, and tensors are supported";
}
// at::index takes in a List[Optional[Tensor]] where some dims can be None.
// create None node with optional tensor output type and pass to at::index.
for (auto& index : tensor_indices) {
if (index == nullptr) {
index =
graph->insertNode(graph->createNone(TensorType::get()))->output();
}
}
return std::make_pair(sliceable, tensor_indices);
}
// Desugars multidim slicing into slice/select/index/unsqueeze calls.
//
// XXX: Errors in user code are not elegantly reported.
// Let's say someone were to do the following:
// @torch.jit.script
// def fn(x):
// return x[0, 1]
// fn(torch.randn(5))
// Because we desugar this into two aten::select ops, the error message
// complains about aten::select failing rather than there "not being
// enough dimensions to index".
//
// The strategy is to slice and select the tensor for int and slices first
// in one pass and then apply at::index on the result of the
// slicing/selecting. Call the tensor after we've applied slice / select the
// `sliced`. tensor_indices should have the same size as sliced.dim():
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
Value* emitMultidimSlicing(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
if (!sliceable->type()->isSubtypeOf(TensorType::get())) {
throw ErrorReport(loc)
<< "Unsupported operation: attempted to use multidimensional "
<< "indexing on a non-tensor type.";
}
std::vector<Value*> tensor_indices;
std::tie(sliceable, tensor_indices) =
emitIntAndSliceIndexing(loc, sliceable, subscript_exprs);
if (tensor_indices.empty()) {
// XXX: Might need to at::alias this when we support mutability
return sliceable;
}
return emitIndex(loc, sliceable, tensor_indices);
}
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
// end).
Value* emitBasicSlice(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
AT_ASSERT(subscript_exprs.size() == 1);
AT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR);
auto slice_exp = SliceExpr(subscript_exprs[0]);
Value* maybe_dim = nullptr;
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
// If the sliceable object is a tensor, specify a default dimension
maybe_dim = graph->insertConstant(0, nullptr, loc);
}
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
}
int64_t getAdjTupleIndex(
const SourceRange& loc,
const TupleTypePtr& tuple_type,
int64_t input_index,
bool allow_out_of_bounds) {
// set index to be positive to simplify logic in runtime
int64_t adj_index = input_index;
int64_t tuple_len = tuple_type->elements().size();
if (input_index < 0) {
adj_index = tuple_len + input_index;
}
if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
throw ErrorReport(loc) << "Tuple index out of range. Tuple is length "
<< tuple_len << " and index is " << input_index;
}
return adj_index;
}
// When a list is marked const in a module, it gets converted to a tuple.
// The result is indexing into a Tuple which contains only one type
// is quite common. since indexing will likely be done in a for loop,
// we do not want to invoke the overhead of converting the tuple to a list
// each iter.
Value* emitTupleIndex(
const SourceRange& loc,
Value* tuple_val,
Value* idx_val) {
auto tuple_typ = tuple_val->type()->cast<TupleType>();
auto elems = tuple_typ->elements();
TypePtr output_type;
if (idx_val->type() != IntType::get()) {
throw ErrorReport(loc) << "tuple index must be an integer";
}
auto idx = toIValue(idx_val);
if (!idx) {
if (elems.size() == 0 ||
!convertibleToList(tuple_typ, ListType::create(elems[0]))) {
throw ErrorReport(loc)
<< "Cannot index into a " << tuple_typ->python_str()
<< " with a non-integer literal because we cannot resolve the output type";
}
output_type = elems[0];
} else {
auto adj_index = getAdjTupleIndex(
loc, tuple_typ, idx->toInt(), /*allow_out_of_bounds*/ false);
output_type = elems[adj_index];
}
return graph
->insertNode(graph->createTupleIndex(tuple_val, idx_val, output_type))
->output();
}
Value* emitDictIndex(
const SourceRange& loc,
Value* dict_val,
Value* key_val) {
auto dict_type = dict_val->type()->cast<DictType>();
AT_ASSERT(key_val->type()->isSubtypeOf(dict_type->getKeyType()));
return graph->insertNode(graph->createDictIndex(dict_val, key_val))
->output();
}
int64_t getSliceInd(Value* idx_val, const SourceRange& loc) {
auto ivalue = toIValue(idx_val);
if (ivalue && ivalue->isInt()) {
return ivalue->to<int64_t>();
} else {
throw ErrorReport(loc) << "tuple slice indices must be integer constants";
}
}
Value* emitTupleSlice(
const SourceRange& loc,
const NamedValue& tuple_val,
const NamedValue& beg_val,
const at::optional<NamedValue>& end_val) {
auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
int64_t beg = getAdjTupleIndex(
loc,
tuple_type,
getSliceInd(beg_val.value(*graph), loc),
/*allow_out_of_bounds*/ true);
int64_t end;
int64_t tuple_len = tuple_type->elements().size();
if (end_val) {
end = getAdjTupleIndex(
loc, tuple_type, getSliceInd(end_val->value(*graph), loc), true);
} else {
end = tuple_len;
}
// slicing does not throw out of bounds errors
end = std::min(std::max((int64_t)0, end), tuple_len);
beg = std::min(std::max((int64_t)0, beg), tuple_len);
return graph
->insertNode(graph->createTupleSlice(tuple_val.value(*graph), beg, end))
->output();
}
Value* emitSubscript(const Subscript& subscript) {
return emitSubscript(
subscript.range(),
emitExpr(subscript.value()),
subscript.subscript_exprs());
}
Value* emitSubscript(
const SourceRange& loc,
Value* sliceable,
const List<Expr>& subscript_exprs) {
if (subscript_exprs.size() != 1) {
return emitMultidimSlicing(loc, sliceable, subscript_exprs);
}
if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
return emitBasicSlice(loc, sliceable, subscript_exprs);
} else {
return emitBasicGather(loc, sliceable, subscript_exprs);
}
}
// Desugars gather syntactic sugar foo[i]
Value* emitBasicGather(
const SourceRange& loc,
Value* gatherable,
const List<Expr>& subscript_exprs) {
AT_ASSERT(subscript_exprs.size() == 1);
if (gatherable->type()->kind() == TypeKind::ListType) {
// if it's a list, emit a regular index selection op
auto* idx = emitExpr(subscript_exprs[0]);
return emitBuiltinCall(
loc, *graph, aten::select, c10::nullopt, {gatherable, idx}, {}, true);
} else if (gatherable->type()->isSubtypeOf(TensorType::get())) {
return emitMultidimSlicing(loc, gatherable, subscript_exprs);
} else if (auto tuple_type = gatherable->type()->cast<TupleType>()) {
auto* idx = emitExpr(subscript_exprs[0]);
return emitTupleIndex(loc, gatherable, idx);
} else if (auto dict_type = gatherable->type()->cast<DictType>()) {
auto* idx = emitExpr(subscript_exprs[0]);
return emitDictIndex(loc, gatherable, idx);
} else if (auto string_type = gatherable->type()->cast<StringType>()) {
auto* idx = emitExpr(subscript_exprs[0]);
return emitBuiltinCall(
loc,
*graph,
prim::StringIndex,
c10::nullopt,
{gatherable, idx},
{},
true);
} else {
throw ErrorReport(loc) << "Indexing only supported on List, Dict, "
"Tensor, Tuple, and str but got type '"
<< gatherable->type()->python_str() << "'";
}
}
};
struct FunctionResolver : public Resolver {
explicit FunctionResolver(
const Resolver* otherResolver,
const std::unordered_map<std::string, std::shared_ptr<Function>>&
functionTable)
: otherResolver_(otherResolver), functionTable_(functionTable) {}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) const override {
auto it = functionTable_.find(name);
if (it != functionTable_.end()) {
return std::make_shared<FunctionValue>(it->second);
}
return otherResolver_->resolveValue(name, m, loc);
}
TypePtr resolveType(const std::string& name, const SourceRange& loc) const override {
return otherResolver_->resolveType(name, loc);
}
private:
const Resolver* otherResolver_;
const std::unordered_map<std::string, std::shared_ptr<Function>>&
functionTable_;
};
CompilationUnit::CompilationUnit(const std::string& source) {
// calles the define with native resolver to generate the graph for functions
define(source, nativeResolver(), nullptr);
}
std::shared_ptr<Function> CompilationUnit::define(
const Def& def,
const ResolverPtr& resolver,
const Self& self,
const std::unordered_map<std::string, std::shared_ptr<Function>>&
function_table) const {
const std::string& name = def.name().name();
TORCH_INTERNAL_ASSERT(resolver);
auto _resolver = resolver;
if (!self) {
// if self is defined, then these are methods and do not go into the
// global namespace otherwise, they get defined together so we add them to
// the function table so the methods can see each other
_resolver =
std::make_shared<FunctionResolver>(resolver.get(), function_table);
}
auto creator = [def, _resolver, self](Function& method) {
to_ir(def, _resolver, self, method);
};
return std::make_shared<Function>(
name, is_optimized(), std::make_shared<Graph>(), creator);
}
void CompilationUnit::define(
const std::vector<Def>& definitions,
const std::vector<ResolverPtr>& resolvers,
const Self& self) {
AT_ASSERT(definitions.size() == resolvers.size());
// We need to compile `__init__` first, since it can determine what attributes
// are available to other methods. So reorder the definitions accordingly.
c10::optional<size_t> init_idx;
for (size_t i = 0; i < definitions.size(); i++) {
const auto& def = definitions[i];
if (def.name().name() == "__init__") {
init_idx = i;
break;
}
}
std::vector<Function*> methods;
std::unordered_map<std::string, std::shared_ptr<Function>> function_table;
if (init_idx.has_value()) {
// if we have an init, do it first.
auto fn = define(
definitions[*init_idx], resolvers[*init_idx], self, function_table);
const auto& name = fn->name();
function_table[name] = fn;
methods.push_back(fn.get());
register_function(std::move(fn));
}
for (size_t i = 0; i < definitions.size(); i++) {
if (init_idx.has_value() && i == *init_idx) {
// skip this def since it's already been compiled
continue;
}
auto fn = define(definitions[i], resolvers[i], self, function_table);
const auto& name = fn->name();
function_table[name] = fn;
methods.push_back(fn.get());
register_function(std::move(fn));
}
for (Function* method : methods) {
method->ensure_defined();
}
}
void CompilationUnit::define(
const std::string& source,
const ResolverPtr& resolver,
const Self& self) {
Parser p(std::make_shared<Source>(source, "<string>", 1));
std::vector<Def> definitions;
std::vector<ResolverPtr> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
definitions.push_back(def);
resolvers.push_back(resolver);
}
define(definitions, resolvers, self);
}
void runCleanupPasses(std::shared_ptr<Graph>& to_clean, bool convert_ssa) {
// the graph including closures is converted to ssa in the first pass,
// so subsequent cleanups do not need reconvert it
if (convert_ssa) {
ConvertToSSA(to_clean);
}
// NB ORDERING: SSA conversion has to occur before
// lifting of closures and forks, this way closures are converted
// to SSA while part of their original graph, and closures are ready to
// be inlined into forked closures
liftClosures(to_clean);
inlineForkedClosures(to_clean);
if (script::getInlineEverythingMode()) {
Inline(*to_clean);
}
// remove any uses of tuples that we inserted that are not needed
LowerSimpleTuples(to_clean);
ConstantPooling(to_clean);
// For jitter
CanonicalizeOutputs(to_clean);
}
// we consider _N where N is a number, to be a non-meaningful name
// and do not record it as a unique name. This allows python printing to
// be able to export and import more consistently named graphs
bool meaningfulName(const std::string& name) {
if (name.size() == 0)
return false;
if (name[0] == '$')
return false;
if (name[0] != '_')
return true;
for (size_t i = 1; i < name.size(); ++i) {
if (!isdigit(name[i]))
return true;
}
return false;
}
void lambdaLiftFork(Node* fork_node) {
// Fork a new graph from its orignal owning graph
auto forked_graph = std::make_shared<Graph>();
auto body_block = fork_node->blocks()[0];
// Make sure we capture everything in the new graph.
// The uncaptured values will be added to the fork signature.
std::unordered_map<Value*, Value*> uncaptures_map;
auto env = [&](Value* v) -> Value* {
if (!uncaptures_map.count(v)) {
// Capture values for both graphs
uncaptures_map[v] = forked_graph->addInput()->copyMetadata(v);
fork_node->addInput(v);
}
return uncaptures_map[v];
};
forked_graph->block()->cloneFrom(body_block, env);
// Separate the subgraph and clean up the orignal one
fork_node->g_(attr::Subgraph, forked_graph);
fork_node->eraseBlock(0);
}
} // namespace script
} // namespace jit
} // namespace torch