blob: 1e8aa83461f211885bccf72170cfc72b03b163ea [file] [log] [blame]
#include <Python.h>
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/assertions.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/pybind.h"
#include "torch/csrc/utils/python_strings.h"
#include <sstream>
using namespace torch::autograd;
using namespace torch::jit;
using namespace torch::jit::tracer;
namespace torch { namespace jit {
#define ASSERT_UNEXPIRED(METHOD_NAME) if (s.is_expired()) throw std::runtime_error("calling " METHOD_NAME " on an expired trace")
void initPythonTracerBindings(PyObject* module_) {
auto m = py::handle(module_).cast<py::module>();
py::class_<TracingState,std::shared_ptr<TracingState>>(m, "TracingState", py::dynamic_attr())
// NB: no constructor; you have to get it from C++ code
.def("__repr__", [](const TracingState& s) {
std::ostringstream ss;
ss << "<TracingState " << (const void*)&s << ">";
return ss.str();
})
.def("__str__", [](const TracingState& s) -> std::string {
if (s.is_expired()) return "<expired TracingState>";
std::ostringstream ss;
ss << *s.graph;
return ss.str();
})
.def("push_scope", [](TracingState& s, const std::string& scope_name) {
ASSERT_UNEXPIRED("push_scope");
s.push_scope(scope_name);
})
.def("pop_scope", [](TracingState& s) {
ASSERT_UNEXPIRED("pop_scope");
s.pop_scope();
})
.def("export", [](TracingState& s, const std::vector<at::Tensor>& initializers,
int64_t onnx_opset_version, bool defer_weight_export=false) {
ASSERT_UNEXPIRED("export");
std::string graph;
RawDataExportMap export_map;
std::tie(graph, export_map) = ExportGraph(
s.graph, initializers, onnx_opset_version, defer_weight_export);
std::unordered_map<std::string, py::bytes> python_serialized_export_map;
for (auto& kv : export_map) {
auto t = kv.second;
size_t copy_bytes = t.type().elementSizeInBytes() * t.numel();
// TODO: this is an unecessary copy. In theory we can directly return
// the map from identifier to Tensor, but we need some API in Python
// to get raw `bytes` containing the raw tensor data.
python_serialized_export_map[kv.first] = py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
}
return std::make_tuple(
py::bytes(graph), python_serialized_export_map);
})
.def("graph", [](TracingState& s) {
return s.graph;
})
.def_property_readonly("is_expired", [](TracingState& s) {
return s.is_expired();
})
.def_property_readonly("is_complete", [](TracingState& s) {
return s.is_complete();
});
m.def("_tracer_enter", [](variable_list trace_inputs, std::size_t num_backwards) {
return tracer::enter(std::move(trace_inputs), num_backwards + 1);
});
m.def("_tracer_exit", [](variable_list var_outputs) {
tracer::exit(var_outputs);
});
m.def("_get_tracing_state", [](const variable_list& vars) {
return getTracingState(vars);
});
m.def("_get_value_trace", [](std::shared_ptr<TracingState>& state, const Variable& var) {
return getValueTrace(state, var);
});
m.def("_set_value_trace", [](std::shared_ptr<TracingState>& state, const Variable& var, Value* value) {
return setValueTrace(state, var, value);
});
m.def("_is_tracing", [](const variable_list& vars) {
return isTracingVar(vars);
});
}
}} // namespace torch::jit