blob: 60558d9acf8cfff53ac75e2ed63774895f83d8de [file] [log] [blame]
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/jit/argument_spec.h>
#include <torch/csrc/jit/autodiff.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/fuser/interface.h>
#include <torch/csrc/jit/fuser/kernel_cache.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/print_handler.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/python_arg_flatten.h>
#include <torch/csrc/jit/python_ir.h>
#include <torch/csrc/jit/python_tracer.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/init.h>
#include <torch/csrc/jit/script/jit_exception.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/python_tree_views.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/utils/auto_gil.h>
#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/iostream.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if defined(_WIN32)
void runJITCPPTests(bool runCuda) {
AT_ERROR("JIT tests not yet supported on Windows");
}
#else
CAFFE2_API void runJITCPPTests(bool runCuda);
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX)
.def("_jit_pass_onnx_cast_all_constant_to_floating", CastAllConstantToFloating)
.def(
"_jit_pass_onnx_constant_fold",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict,
int opset_version) {
ConstantFoldONNX(graph->block(), paramsDict, opset_version); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block(), true, DCESideEffectPolicy::ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_propagate_qinfo",
[](std::shared_ptr<Graph>& g) { return PropagateQuantInfo(g); })
.def(
"_jit_pass_insert_observers",
[](const script::Module& moduleObj,
const std::string& methodName,
py::function pyObserverFunction) {
// Create a new node that would be used in the insert observer pass:
// all observer nodes will be cloned from this one.
Graph g;
Node* new_node = g.createPythonOp(
THPObjectPtr(pyObserverFunction.release().ptr()), "dd", {});
InsertObserverNodes(moduleObj, methodName, new_node);
// We don't need this node anymore, don't forget to remove it.
new_node->destroy();
})
.def(
"_jit_pass_insert_observers",
[](const StrongFunctionPtr& function_var,
py::function pyObserverFunction) {
// Overloaded jit pass for pure functions instead of modules.
// Create a new node that would be used in the insert observer pass:
// all observer nodes will be cloned from this one.
Graph g;
Node* new_node = g.createPythonOp(
THPObjectPtr(pyObserverFunction.release().ptr()), "dd", {});
InsertObserverNodes(function_var.function_, new_node);
// We don't need this node anymore, don't forget to remove it.
new_node->destroy();
})
.def(
"_jit_pass_insert_quantdequant",
[](const script::Module& moduleObj,
const std::string& methodName,
py::dict& pyQParamDict) {
if (!pyQParamDict.size()) {
return;
}
auto qparam_dict = py::cast<std::unordered_map<
std::string,
std::tuple<std::string, float, int>>>(pyQParamDict);
return InsertQuantDequantNodes(moduleObj, methodName, qparam_dict);
})
.def(
"_jit_pass_insert_quantdequant_for_weight_bias",
[](const script::Module& moduleObj,
const std::string& method_name,
const std::string& param_name,
py::function pyGetQParamFunc) {
// For different static params we pass different getQParamFunc via
// same interface exposed by the quantizer.
if (param_name == std::string("weight")) {
auto getQParamFunc =
py::cast<std::function<std::tuple<std::string, float, int>(
at::Tensor)>>(pyGetQParamFunc);
InsertQuantDequantNodesForParam(
moduleObj,
method_name,
param_name,
getQParamFunc,
at::ScalarType::QInt8);
} else if (param_name == std::string("bias")) {
auto getQParamFunc =
py::cast<std::function<std::tuple<std::string, float, int>(
float, float)>>(pyGetQParamFunc);
InsertQuantDequantNodesForParam(
moduleObj,
method_name,
param_name,
getQParamFunc,
at::ScalarType::QInt32);
} else {
TORCH_CHECK(false, "Invalid Param Name");
}
})
.def(
"_jit_pass_quantlint",
[](std::shared_ptr<Graph>& g) { return QuantLinting(g); })
.def(
"_jit_pass_pattern_based_rewrite",
[](const script::Module& m) { return PatternBasedRewrite(m); })
.def(
"_jit_pass_custom_pattern_based_rewrite",
[](const std::string& pattern,
const std::string& fused_node_name,
const script::Module& m) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnModule(m);
})
.def(
"_jit_pass_custom_pattern_based_rewrite_graph",
[](const std::string& pattern,
const std::string& fused_node_name,
std::shared_ptr<Graph> g) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnGraph(g);
})
.def(
"_jit_pass_fold_quant_inputs",
[](std::shared_ptr<Graph>& g) {
return FoldQuantNodesIntoInputsOutputs(g);
})
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
ArgumentSpecCreator arg_spec_creator(*graph);
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toIValue(obj));
}
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
arg_spec_creator.specializeTypes(*graph, spec);
// We only get DimensionedTensorType from the arg_spec_creator, but
// we want CompleteTensorType. The alternative would be to have a
// "complete type inference" function in ArguemntSpecCreator.
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(incompleteInferTypeFrom(stack[i]));
}
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
.def(
"_jit_run_cpp_tests",
[](bool runCuda) {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
AutoNoGIL _no_gil;
return runJITCPPTests(runCuda);
},
py::arg("run_cuda"))
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_canonicalize_ops", CanonicalizeOps)
.def("_jit_pass_decompose_ops", DecomposeOps)
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
})
.def(
"_jit_set_profiling_mode",
[](bool profiling_flag) { getProfilingMode() = profiling_flag; })
.def(
"_jit_set_inline_everything_mode",
[](bool enabled) { script::getInlineEverythingMode() = enabled; })
.def(
"_jit_try_infer_type",
[](py::object obj) -> TypePtr {
auto match = tryToInferType(obj);
if (match.type) {
return *match.type;
}
return nullptr;
})
.def(
"_jit_fuser_get_fused_kernel_code",
[](Graph& g, std::vector<at::Tensor> inps) {
return debugGetFusedKernelCode(g, inps);
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code").def("grad_executor_states", [](Code& c) {
std::vector<GraphExecutorState> states;
for (auto& e : c.grad_executors()) {
states.emplace_back(e->getDebugState());
}
return states;
});
py::class_<ExecutionPlan>(m, "ExecutionPlan")
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
const char* data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile);
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def("get_record", [](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
});
m.def(
"_jit_get_operation",
[](const std::string& op_name) {
try {
auto symbol = Symbol::fromQualString(op_name);
auto operations = getAllOperatorsFor(symbol);
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
TORCH_CHECK(
operations.size() == 1,
"Found ",
operations.size(),
" overloads for operator ",
op_name,
"! Overloads are not supported from Python.");
std::shared_ptr<Operator> op = operations[0];
AT_ASSERT(op != nullptr);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << op_name
<< "' with schema: " << op->schema();
return py::cpp_function(
[op](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
*op, std::move(args), std::move(kwargs));
},
py::name(symbol.toUnqualString()),
py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
m.def("parse_ir", [](const std::string& input) {
auto graph = std::make_shared<Graph>();
script::parseIR(input, &*graph);
return graph;
});
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"overload_name",
[](FunctionSchema& self) { return self.overload_name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); })
.def("__str__", [](FunctionSchema& self) {
std::stringstream ss;
ss << self;
return ss.str();
});
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly("default_value", [](Argument& self) -> py::object {
if (!self.default_value())
return py::none();
IValue v = *self.default_value();
return toPyObject(std::move(v));
});
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
struct PythonFutureWrapper {
explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut)
: fut(std::move(fut)) {}
c10::intrusive_ptr<c10::ivalue::Future> fut;
};
py::class_<PythonFutureWrapper>(m, "Future");
m.def("fork", [](py::args args) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::fork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
auto retval = c10::make_intrusive<c10::ivalue::Future>();
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup);
// Convert the output of the user-supplied funciton to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toIValue(py_func_output);
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
// Lambda lift into a Subgraph attribute
torch::jit::script::lambdaLiftFork(fork_node);
}
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return PythonFutureWrapper(retval);
} else {
auto retval = c10::make_intrusive<c10::ivalue::Future>();
retval->markCompleted(toIValue(f(*args_tup)));
return PythonFutureWrapper(retval);
}
});
m.def("wait", [](PythonFutureWrapper& fut) {
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut.fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut.fut->value(), output);
}
return fut.fut->value();
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
setPrintHandler([](const std::string& str) {
py::gil_scoped_acquire acquire;
try {
auto _stdout = py::module::import("sys").attr("stdout");
_stdout.attr("write")(str);
} catch (py::error_already_set& e) {
throw std::runtime_error(e.what());
}
});
}
} // namespace jit
} // namespace torch