blob: 8e8940aa01e8a1cbafe506731b0a329424ba0f93 [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/jit.h>
#include <torch/types.h>
#include <string>
TEST(TorchScriptTest, CanCompileMultipleFunctions) {
auto module = torch::jit::compile(R"JIT(
def test_mul(a, b):
return a * b
def test_relu(a, b):
return torch.relu(a + b)
def test_while(a, i):
while bool(i < 10):
a += a
i += 1
return a
def test_len(a : List[int]):
return len(a)
)JIT");
auto a = torch::ones(1);
auto b = torch::ones(1);
ASSERT_EQ(1, module->run_method("test_mul", a, b).toTensor().item<int64_t>());
ASSERT_EQ(2, module->run_method("test_relu", a, b).toTensor().item<int64_t>());
ASSERT_TRUE(
0x200 == module->run_method("test_while", a, b).toTensor().item<int64_t>());
at::IValue list = std::vector<int64_t>({3, 4});
ASSERT_EQ(2, module->run_method("test_len", list).toInt());
}
TEST(TorchScriptTest, TestNestedIValueModuleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def nested_loop(a: List[List[Tensor]], b: int):
return torch.tensor(1.0) + b
)JIT");
auto b = 3;
std::vector<torch::Tensor> list = {torch::rand({4, 4})};
std::vector<torch::jit::IValue> list_of_lists;
list_of_lists.push_back(list);
module->run_method("nested_loop", list_of_lists, b);
std::vector<torch::jit::IValue> generic_list;
std::vector<torch::jit::IValue> empty_generic_list;
empty_generic_list.push_back(generic_list);
module->run_method("nested_loop", empty_generic_list, b);
std::vector<torch::jit::IValue> too_many_lists;
too_many_lists.push_back(empty_generic_list);
try {
module->run_method("nested_loop", too_many_lists, b);
AT_ASSERT(false);
} catch (const c10::Error& error) {
AT_ASSERT(
std::string(error.what_without_backtrace())
.find("nested_loop() expected a value of type 'List[List[Tensor]]'"
" for argument 'a' but instead found type "
"'List[List[List[t]]]'") == 0);
};
std::vector<torch::jit::IValue> gen_list;
std::vector<int64_t> int_list = {1, 2, 3};
gen_list.emplace_back(list);
gen_list.emplace_back(int_list);
try {
module->run_method("nested_loop", gen_list, b);
AT_ASSERT(false);
} catch (const c10::Error& error) {
//TODO: currently does not unify types across encounted generic lists,
//so the error message is not helpful here.
AT_ASSERT(
std::string(error.what_without_backtrace())
.find("nested_loop() expected a value of type "
"'List[List[Tensor]]' for argument 'a' but "
"instead found type 'List[List[Tensor]]'") == 0);
};
}
TEST(TorchScriptTest, TestDictArgMatching) {
auto module = torch::jit::compile(R"JIT(
def dict_op(a: Dict[str, Tensor], b: str):
return a[b]
)JIT");
c10::impl::GenericDictPtr dict = c10::impl::make_generic_dict();
dict.insert("hello", torch::ones({2}));
auto output = module->run_method("dict_op", dict, std::string("hello"));
ASSERT_EQ(1, output.toTensor()[0].item<int64_t>());
}
TEST(TorchScriptTest, TestTupleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def tuple_op(a: Tuple[List[int]]):
return a
)JIT");
std::vector<int64_t> int_list = {1};
auto tuple_generic_list = torch::jit::Tuple::create({ int_list });
// doesn't fail on arg matching
module->run_method("tuple_op", tuple_generic_list);
}
TEST(TorchScriptTest, TestOptionalArgMatching) {
auto module = torch::jit::compile(R"JIT(
def optional_tuple_op(a: Optional[Tuple[int, str]]):
if a is None:
return 0
else:
return a[0]
)JIT");
auto optional_tuple = torch::jit::Tuple::create({2, std::string("hi")});
ASSERT_EQ(2, module->run_method("optional_tuple_op", optional_tuple).toInt());
ASSERT_EQ(
0, module->run_method("optional_tuple_op", torch::jit::IValue()).toInt());
}