| #include <torch/csrc/jit/frontend/function_schema_parser.h> |
| #include <torch/csrc/utils/python_dispatch.h> |
| |
| #include <ATen/ATen.h> |
| #include <ATen/FuncTorchTLS.h> |
| #include <ATen/TensorSubclassLikeUtils.h> |
| #include <ATen/core/dispatch/Dispatcher.h> |
| #include <torch/library.h> |
| |
| #include <c10/core/SafePyObject.h> |
| #include <torch/csrc/autograd/python_variable.h> |
| #include <torch/csrc/jit/python/pybind_utils.h> |
| |
| #include <pybind11/operators.h> |
| #include <pybind11/stl.h> |
| #include <torch/csrc/utils/pybind.h> |
| |
| #include <iostream> |
| |
| namespace py = pybind11; |
| |
| namespace torch { |
| namespace impl { |
| namespace dispatch { |
| |
| torch::Library::Kind parseKind(const std::string& k) { |
| static std::unordered_map<std::string, torch::Library::Kind> kind_map = { |
| {"DEF", torch::Library::DEF}, |
| {"IMPL", torch::Library::IMPL}, |
| {"FRAGMENT", torch::Library::FRAGMENT}, |
| }; |
| auto it = kind_map.find(k); |
| TORCH_CHECK(it != kind_map.end(), "could not parse ", k); |
| return it->second; |
| } |
| c10::AliasAnalysisKind parseAliasAnalysisKind(const std::string& k) { |
| static std::unordered_map<std::string, c10::AliasAnalysisKind> key_map = { |
| {"CONSERVATIVE", c10::AliasAnalysisKind::CONSERVATIVE}, |
| {"FROM_SCHEMA", c10::AliasAnalysisKind::FROM_SCHEMA}, |
| {"PURE_FUNCTION", c10::AliasAnalysisKind::PURE_FUNCTION}, |
| {"", c10::AliasAnalysisKind::FROM_SCHEMA}, // default |
| }; |
| auto it = key_map.find(k); |
| TORCH_CHECK(it != key_map.end(), "could not parse ", k); |
| return it->second; |
| } |
| |
| template <typename Func> |
| inline torch::CppFunction dispatch_str(const char* key, Func&& raw_f) { |
| auto mb_key = std::string(key) == "" |
| ? c10::nullopt |
| : c10::make_optional(c10::parseDispatchKey(key)); |
| if (mb_key) { |
| return torch::dispatch(*mb_key, std::forward<Func>(raw_f)); |
| } else { |
| torch::CppFunction f(std::forward<Func>(raw_f)); |
| return f; |
| } |
| } |
| |
| class PythonKernelHolder : public c10::OperatorKernel { |
| c10::SafePyObject func_; |
| |
| public: |
| PythonKernelHolder(py::object func) |
| : func_(func.release().ptr(), getPyInterpreter()) {} |
| |
| void operator()( |
| const c10::OperatorHandle& op, |
| c10::DispatchKeySet keyset, |
| torch::jit::Stack* stack) { |
| auto arguments = torch::jit::pop(*stack, op.schema().arguments().size()); |
| py::gil_scoped_acquire g; |
| auto args_kwargs = parseIValuesToPyArgsKwargs(op, arguments); |
| auto obj = py::reinterpret_steal<py::object>(PyObject_Call( |
| func_.ptr(getPyInterpreter()), |
| args_kwargs.first.ptr(), |
| args_kwargs.second.ptr())); |
| if (!obj) { |
| throw python_error(); |
| } |
| pushPyOutToStack(op, stack, obj, "PythonKernelHolder"); |
| } |
| }; |
| |
| void initDispatchBindings(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::class_<c10::OperatorHandle>(m, "_DispatchOperatorHandle") |
| .def("schema", &c10::OperatorHandle::schema); |
| |
| // TODO: figure out how to do chaining |
| py::class_<torch::Library>(m, "_DispatchModule") |
| .def( |
| "def_", |
| [](py::object self, const char* schema, const char* alias) { |
| self.cast<torch::Library&>().def( |
| torch::schema(schema, parseAliasAnalysisKind(alias))); |
| return self; |
| }, |
| "", |
| py::arg("schema"), |
| py::arg("alias") = "") |
| // Simulated "legacy" def where alias analysis kind is not set. |
| // Ordinarily this can only be exercised from RegisterOperators() API |
| // but I am not going to bind that here |
| .def( |
| "def_legacy", |
| [](py::object self, const char* schema) { |
| self.cast<torch::Library&>().def(torch::jit::parseSchema(schema)); |
| return self; |
| }, |
| "", |
| py::arg("schema")) |
| // We can't conveniently turn Python functions into valid functions |
| // in the dispatcher. So instead we provide a bunch of precanned |
| // functions for testing purposes. You're NOT intended to actually |
| // call these functions; they're just here so we can actually register |
| // something |
| // |
| // Mangling scheme: args_rets. One character per. |
| // t = Tensor |
| .def( |
| "def_name_t_t", |
| [](py::object self, |
| const char* name, |
| const char* dispatch, |
| const char* debug) { |
| self.cast<torch::Library&>().def( |
| name, dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug)); |
| return self; |
| }, |
| "", |
| py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("debug") = "default_def_name_t_t") |
| .def( |
| "def_schema_t_t", |
| [](py::object self, |
| const char* schema, |
| const char* dispatch, |
| const char* alias, |
| const char* debug) { |
| self.cast<torch::Library&>().def( |
| torch::schema(schema, parseAliasAnalysisKind(alias)), |
| dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug)); |
| return self; |
| }, |
| "", |
| py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("alias") = "", |
| py::arg("debug") = "default_def_schema_t_t") |
| // TODO: maybe consider deduplicating the definitions here, it's getting |
| // pretty long |
| .def( |
| "impl_t_t", |
| [](py::object self, |
| const char* name, |
| const char* dispatch, |
| const char* debug) { |
| self.cast<torch::Library&>().impl( |
| name, dispatch_str(dispatch, [](const at::Tensor& a) { |
| return a; |
| }).debug(debug)); |
| return self; |
| }, |
| "", |
| py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("debug") = "impl_t_t") |
| .def( |
| "impl_tt_t", |
| [](py::object self, |
| const char* name, |
| const char* dispatch, |
| const char* debug) { |
| self.cast<torch::Library&>().impl( |
| name, |
| dispatch_str( |
| dispatch, |
| [](const at::Tensor& a, const at::Tensor& b) { return a; }) |
| .debug(debug)); |
| return self; |
| }, |
| "", |
| py::arg("name"), |
| py::arg("dispatch") = "", |
| py::arg("debug") = "") |
| .def( |
| "impl", |
| [](py::object self, |
| const char* name, |
| const char* dispatch, |
| py::object func) { |
| HANDLE_TH_ERRORS |
| self.cast<torch::Library&>().impl( |
| name, |
| dispatch_str( |
| dispatch, |
| CppFunction::makeFromBoxedFunctor( |
| std::make_unique<PythonKernelHolder>( |
| std::move(func))))); |
| END_HANDLE_TH_ERRORS_PYBIND |
| }, |
| "", |
| py::arg("name"), |
| py::arg("dispatch"), |
| py::arg("func")) |
| .def( |
| "define", |
| [](py::object self, const char* schema, const char* alias_analysis) { |
| self.cast<torch::Library&>().def( |
| torch::schema(schema, parseAliasAnalysisKind(alias_analysis))); |
| return torch::schema(schema, parseAliasAnalysisKind(alias_analysis)) |
| .name(); |
| }, |
| "", |
| py::arg("schema"), |
| py::arg("alias_analysis") = "") |
| .def( |
| "fallback_fallthrough", |
| [](py::object self, const char* dispatch) { |
| self.cast<torch::Library&>().fallback( |
| dispatch_str(dispatch, CppFunction::makeFallthrough())); |
| return self; |
| }, |
| "", |
| py::arg("dispatch") = ""); |
| |
| m.def( |
| "_dispatch_library", |
| [](const char* kind, |
| std::string name, |
| const char* dispatch, |
| const char* file, |
| uint32_t linenum) { |
| HANDLE_TH_ERRORS |
| return std::make_unique<torch::Library>( |
| parseKind(kind), |
| std::move(name), |
| std::string(dispatch) == "" |
| ? c10::nullopt |
| : c10::make_optional(c10::parseDispatchKey(dispatch)), |
| "/dev/null", // temporary workaround |
| linenum); |
| END_HANDLE_TH_ERRORS_PYBIND |
| }, |
| "", |
| py::arg("kind"), |
| py::arg("name"), |
| py::arg("dispatch"), |
| py::arg("file") = "/dev/null", |
| py::arg("linenum") = 0); |
| |
| m.def("_dispatch_dump", [](const char* name) -> std::string { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| if (!op) { |
| return ""; |
| } else { |
| return op->dumpState(); |
| } |
| }); |
| |
| m.def("_dispatch_dump_table", [](const char* name) -> std::string { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| if (!op) { |
| return ""; |
| } else { |
| return op->dumpComputedTable(); |
| } |
| }); |
| |
| m.def("_dispatch_check_invariants", [](const char* name) { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| if (!op) { |
| } else { |
| return op->checkInvariants(); |
| } |
| }); |
| |
| m.def("_dispatch_check_all_invariants", []() { |
| c10::Dispatcher::singleton().checkInvariants(); |
| }); |
| |
| m.def("_dispatch_has_kernel", [](const char* name) -> bool { |
| auto op = c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| return static_cast<bool>(op); |
| }); |
| |
| m.def( |
| // Returns whether or not a direct kernel registration exists |
| // for this <op_name, dispatch_key> pair. |
| "_dispatch_has_kernel_for_dispatch_key", |
| [](const char* name, c10::DispatchKey dispatch) -> bool { |
| auto op = |
| c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| TORCH_CHECK(op, "operator ", name, " does not exist"); |
| return op->hasKernelForDispatchKey(dispatch); |
| }); |
| |
| m.def( |
| "_dispatch_has_kernel_for_any_dispatch_key", |
| [](const char* name, c10::DispatchKeySet ks) -> bool { |
| auto op = |
| c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| TORCH_CHECK(op, "operator ", name, " does not exist"); |
| return op->hasKernelForAnyDispatchKey(ks); |
| }); |
| |
| m.def( |
| // Returns whether or not there is an entry in the runtime computed |
| // dispatch table, for this <op_name, dispatch_key> pair. For example, if |
| // "op" has a `CompositeImplicitAutograd` kernel, Then |
| // _dispatch_has_computed_kernel_for_dispatch_key(op, backend) will return |
| // true for all backends that are part of the alias set for |
| // CompositeImplicitAutograd. |
| "_dispatch_has_computed_kernel_for_dispatch_key", |
| [](const char* name, const char* dispatch) -> bool { |
| auto op = |
| c10::Dispatcher::singleton().findOp(torch::jit::parseName(name)); |
| TORCH_CHECK(op, "operator ", name, " does not exist"); |
| return op->hasComputedKernelForDispatchKey( |
| c10::parseDispatchKey(dispatch)); |
| }); |
| |
| m.def("_dispatch_find_dangling_impls", []() -> std::vector<std::string> { |
| auto danglingImpls = c10::Dispatcher::singleton().findDanglingImpls(); |
| |
| std::vector<std::string> states; |
| states.reserve(danglingImpls.size()); |
| for (auto& danglingImpl : danglingImpls) { |
| states.push_back(danglingImpl.dumpState()); |
| } |
| |
| return states; |
| }); |
| |
| m.def("_dispatch_get_all_op_names", []() -> std::vector<std::string> { |
| auto op_names = c10::Dispatcher::singleton().getAllOpNames(); |
| |
| std::vector<std::string> names; |
| names.reserve(op_names.size()); |
| for (auto& op : op_names) { |
| std::stringstream ss; |
| ss << op.name; |
| if (!op.overload_name.empty()) { |
| ss << "." << op.overload_name; |
| } |
| names.push_back(ss.str()); |
| } |
| |
| return names; |
| }); |
| |
| m.def( |
| "_dispatch_tls_set_dispatch_key_excluded", |
| [](c10::DispatchKey dispatch_key, bool desired_state) { |
| c10::impl::tls_set_dispatch_key_excluded(dispatch_key, desired_state); |
| }); |
| m.def( |
| "_dispatch_tls_is_dispatch_key_excluded", |
| [](c10::DispatchKey dispatch_key) { |
| return c10::impl::tls_is_dispatch_key_excluded(dispatch_key); |
| }); |
| |
| m.def("_dispatch_isTensorSubclassLike", [](const at::Tensor& tensor) { |
| return at::isTensorSubclassLike(tensor); |
| }); |
| |
| m.def("_dispatch_key_name", [](c10::DispatchKey k) { |
| return c10::toString(k); |
| }); |
| m.def("_dispatch_key_parse", [](c10::DispatchKey k) { return k; }); |
| m.def("_dispatch_num_backends", []() { return c10::num_backends; }); |
| |
| #define DEF_ONE(n) .value(#n, c10::DispatchKey::n) |
| |
| py::enum_<c10::DispatchKey>(m, "DispatchKey") DEF_ONE(Undefined) |
| DEF_ONE(CompositeExplicitAutogradNonFunctional) |
| DEF_ONE(CompositeExplicitAutograd) |
| DEF_ONE(CompositeImplicitAutogradNestedTensor) |
| DEF_ONE(CompositeImplicitAutograd) DEF_ONE(AutogradOther) |
| DEF_ONE(Autograd) DEF_ONE(BackendSelect) |
| DEF_ONE(ADInplaceOrView) DEF_ONE(PythonTLSSnapshot) |
| DEF_ONE(Python) |
| |
| #define DEF_SINGLE(n, prefix) .value(#prefix #n, c10::DispatchKey::prefix##n) |
| #define DEF_MULTIPLE(fullname, prefix) \ |
| DEF_SINGLE(, fullname) \ |
| DEF_SINGLE(, StartOf##fullname##Backends) \ |
| C10_FORALL_BACKEND_COMPONENTS(DEF_SINGLE, prefix) \ |
| DEF_SINGLE(, EndOf##fullname##Backends) |
| |
| C10_FORALL_FUNCTIONALITY_KEYS(DEF_MULTIPLE) |
| |
| #undef DEF_MULTIPLE |
| #undef DEF_SINGLE |
| ; |
| |
| py::class_<c10::DispatchKeySet>(m, "DispatchKeySet") |
| .def(py::init<c10::DispatchKey>()) |
| .def("__or__", &c10::DispatchKeySet::operator|) |
| .def("__sub__", &c10::DispatchKeySet::operator-) |
| .def("__and__", &c10::DispatchKeySet::operator&) |
| .def("highestPriorityTypeId", &c10::DispatchKeySet::highestPriorityTypeId) |
| .def("has", &c10::DispatchKeySet::has) |
| .def("__repr__", [](c10::DispatchKeySet d) { return c10::toString(d); }); |
| |
| m.attr("_dispatch_autogradother_backends") = |
| py::cast(c10::autogradother_backends); |
| |
| m.def("_dispatch_has_backend_fallback", [](c10::DispatchKey t) { |
| return c10::Dispatcher::singleton().hasBackendFallbackForDispatchKey(t); |
| }); |
| |
| m.def("_dispatch_keyset_full_after", [](c10::DispatchKey t) { |
| return c10::DispatchKeySet(c10::DispatchKeySet::FULL_AFTER, t); |
| }); |
| |
| m.def("_dispatch_keyset_to_string", [](c10::DispatchKeySet keyset) { |
| return c10::toString(keyset); |
| }); |
| |
| m.def("_dispatch_get_backend_keyset_from_autograd", [](c10::DispatchKey k) { |
| return c10::getBackendKeySetFromAutograd(k); |
| }); |
| |
| m.def("_dispatch_keys", [](const at::Tensor& tensor) { |
| auto* impl = tensor.unsafeGetTensorImpl(); |
| return impl->key_set(); |
| }); |
| m.def("_dispatch_tls_local_include_set", []() { |
| return c10::impl::tls_local_dispatch_key_set().included_; |
| }); |
| m.def("_dispatch_tls_local_exclude_set", []() { |
| return c10::impl::tls_local_dispatch_key_set().excluded_; |
| }); |
| m.def( |
| "_dispatch_is_included_in_alias", |
| [](c10::DispatchKey a, c10::DispatchKey b) { |
| return c10::isIncludedInAlias(a, b); |
| }); |
| py::class_<c10::impl::ExcludeDispatchKeyGuard>(m, "ExcludeDispatchKeyGuard") |
| .def(py::init<c10::DispatchKeySet>()); |
| |
| py::class_<at::AutoDispatchBelowAutograd>(m, "_AutoDispatchBelowAutograd") |
| .def(py::init<>()); |
| |
| // Prints out the name of every operator that has a kernel registered to the |
| // Dispatcher under [dispatch_key]. If no arguments are specified, it'll print |
| // out the name of every operator that the Dispatcher knows of. This can be |
| // useful to answer questions like "list all operators that do not have a CPU |
| // kernel". |
| m.def( |
| "_dispatch_print_registrations_for_dispatch_key", |
| [](const char* dispatch_key = "") { |
| auto k = std::string(dispatch_key) == "" |
| ? c10::nullopt |
| : c10::make_optional(c10::parseDispatchKey(dispatch_key)); |
| auto op_names = |
| c10::Dispatcher::singleton().getRegistrationsForDispatchKey(k); |
| for (auto& op : op_names) { |
| std::cout << op << std::endl; |
| } |
| }, |
| py::arg("dispatch_key") = static_cast<const char*>("")); |
| |
| m.def( |
| "_dispatch_get_registrations_for_dispatch_key", |
| [](const char* dispatch_key = "") { |
| auto k = std::string(dispatch_key) == "" |
| ? c10::nullopt |
| : c10::make_optional(c10::parseDispatchKey(dispatch_key)); |
| auto op_names = |
| c10::Dispatcher::singleton().getRegistrationsForDispatchKey(k); |
| std::vector<std::string> names; |
| names.reserve(op_names.size()); |
| for (auto& op : op_names) { |
| names.push_back( |
| op.name + (op.overload_name == "" ? "" : "." + op.overload_name)); |
| } |
| return names; |
| }, |
| py::arg("dispatch_key") = static_cast<const char*>("")); |
| |
| m.def("_are_functorch_transforms_active", []() { |
| auto include_set = c10::impl::tls_local_dispatch_key_set().included_; |
| return ( |
| include_set.has(c10::DispatchKey::FuncTorchDynamicLayerFrontMode) || |
| include_set.has(c10::DispatchKey::FuncTorchDynamicLayerBackMode)); |
| }); |
| } |
| |
| } // namespace dispatch |
| } // namespace impl |
| } // namespace torch |