| #include <torch/csrc/utils/auto_gil.h> |
| #include <torch/csrc/utils/pybind.h> |
| |
| #include <torch/csrc/jit/argument_spec.h> |
| #include <torch/csrc/jit/autodiff.h> |
| #include <torch/csrc/jit/export.h> |
| #include <torch/csrc/jit/fuser/interface.h> |
| #include <torch/csrc/jit/fuser/kernel_cache.h> |
| #include <torch/csrc/jit/graph_executor.h> |
| #include <torch/csrc/jit/import.h> |
| #include <torch/csrc/jit/irparser.h> |
| #include <torch/csrc/jit/operator.h> |
| #include <torch/csrc/jit/passes/canonicalize.h> |
| #include <torch/csrc/jit/passes/canonicalize_ops.h> |
| #include <torch/csrc/jit/passes/common_subexpression_elimination.h> |
| #include <torch/csrc/jit/passes/constant_pooling.h> |
| #include <torch/csrc/jit/passes/constant_propagation.h> |
| #include <torch/csrc/jit/passes/create_autodiff_subgraphs.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/passes/decompose_ops.h> |
| #include <torch/csrc/jit/passes/erase_number_types.h> |
| #include <torch/csrc/jit/passes/fuse_linear.h> |
| #include <torch/csrc/jit/passes/graph_fuser.h> |
| #include <torch/csrc/jit/passes/inline_fork_wait.h> |
| #include <torch/csrc/jit/passes/inliner.h> |
| #include <torch/csrc/jit/passes/loop_unrolling.h> |
| #include <torch/csrc/jit/passes/lower_graph.h> |
| #include <torch/csrc/jit/passes/lower_tuples.h> |
| #include <torch/csrc/jit/passes/onnx.h> |
| #include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h> |
| #include <torch/csrc/jit/passes/onnx/constant_fold.h> |
| #include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h> |
| #include <torch/csrc/jit/passes/onnx/peephole.h> |
| #include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h> |
| #include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h> |
| #include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h> |
| #include <torch/csrc/jit/passes/peephole.h> |
| #include <torch/csrc/jit/passes/quantization.h> |
| #include <torch/csrc/jit/passes/remove_expands.h> |
| #include <torch/csrc/jit/passes/remove_inplace_ops.h> |
| #include <torch/csrc/jit/passes/shape_analysis.h> |
| #include <torch/csrc/jit/passes/specialize_autogradzero.h> |
| #include <torch/csrc/jit/passes/subgraph_rewrite.h> |
| #include <torch/csrc/jit/passes/utils/check_alias_annotation.h> |
| #include <torch/csrc/jit/print_handler.h> |
| #include <torch/csrc/jit/pybind_utils.h> |
| #include <torch/csrc/jit/python_arg_flatten.h> |
| #include <torch/csrc/jit/python_ir.h> |
| #include <torch/csrc/jit/python_tracer.h> |
| #include <torch/csrc/jit/script/compiler.h> |
| #include <torch/csrc/jit/script/init.h> |
| #include <torch/csrc/jit/script/jit_exception.h> |
| #include <torch/csrc/jit/script/module.h> |
| #include <torch/csrc/jit/script/python_tree_views.h> |
| #include <torch/csrc/jit/tracer.h> |
| #include <torch/csrc/utils/auto_gil.h> |
| |
| #include <c10/macros/Export.h> |
| #include <caffe2/serialize/inline_container.h> |
| |
| #include <ATen/core/function_schema.h> |
| |
| #include <pybind11/functional.h> |
| #include <pybind11/iostream.h> |
| |
| #include <memory> |
| #include <sstream> |
| #include <stdexcept> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| namespace torch { |
| namespace jit { |
| |
| using ::c10::Argument; |
| using ::c10::FunctionSchema; |
| using caffe2::serialize::PyTorchStreamReader; |
| using caffe2::serialize::PyTorchStreamWriter; |
| |
| namespace { |
| |
| using autograd::variable_list; |
| |
| bool loadPythonClasses() { |
| // Leaving this code here, because it will likely be useful at some point |
| // PyObject *jit_module = PyImport_ImportModule("torch.jit"); |
| // THPUtils_assert(jit_module, "class loader couldn't access " |
| //"torch.jit module"); |
| // PyObject *jit_dict = PyModule_GetDict(jit_module); |
| |
| return true; |
| } |
| } // anonymous namespace |
| |
| TORCH_API void runJITCPPTests(bool runCuda); |
| |
| void initJITBindings(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::register_exception<JITException>(m, "JITException"); |
| |
| py::class_<python::IODescriptor> iodescriptor( |
| m, "IODescriptor"); // NOLINT(bugprone-unused-raii) |
| |
| m.def("_jit_init", loadPythonClasses) |
| .def( |
| "_jit_debug_fuser_num_cached_kernel_specs", |
| torch::jit::fuser::debugNumCachedKernelSpecs) |
| .def("_jit_pass_onnx_remove_print", RemovePrintOps) |
| .def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops) |
| .def("_jit_pass_onnx", ToONNX) |
| .def("_jit_pass_lower_all_tuples", LowerAllTuples) |
| .def( |
| "_jit_pass_onnx_peephole", |
| [](std::shared_ptr<Graph>& graph, |
| int opset_version, |
| bool fixed_batch_size) { |
| return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size); |
| }) |
| .def( |
| "_jit_pass_onnx_cast_all_constant_to_floating", |
| CastAllConstantToFloating) |
| .def( |
| "_jit_pass_onnx_constant_fold", |
| [](std::shared_ptr<Graph>& graph, |
| std::map<std::string, at::Tensor>& paramsDict, |
| int opset_version) { |
| ConstantFoldONNX( |
| graph->block(), |
| paramsDict, |
| opset_version); // overload resolution |
| return paramsDict; |
| }, |
| pybind11::return_value_policy::move) |
| .def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX) |
| .def("_jit_pass_fuse", FuseGraph) |
| .def( |
| "_jit_pass_dce", |
| [](std::shared_ptr<Graph>& g) { |
| return EliminateDeadCode(g->block()); // overload resolution |
| }) |
| .def( |
| "_jit_pass_dce_allow_deleting_nodes_with_side_effects", |
| [](std::shared_ptr<Graph>& g) { |
| return EliminateDeadCode( |
| g->block(), |
| true, |
| DCESideEffectPolicy:: |
| ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload |
| // resolution |
| }) |
| .def( |
| "_jit_pass_cse", |
| [](std::shared_ptr<Graph>& g) { |
| return EliminateCommonSubexpression(g); // overload resolution |
| }) |
| .def( |
| "_jit_pass_insert_observers", |
| [](script::Module& module, |
| const std::string& method_name, |
| const py::dict& qconfig_dict, |
| bool inplace) { |
| auto dict = py::cast<std::unordered_map< |
| std::string, |
| std::tuple<script::Module, script::Module>>>(qconfig_dict); |
| return InsertObservers(module, method_name, dict, inplace); |
| }, |
| py::arg("module"), |
| py::arg("method_name"), |
| py::arg("qconfig_dict"), |
| py::arg("inplace") = false) |
| .def( |
| "_jit_pass_insert_quant_dequant", |
| [](script::Module& module, |
| const std::string& method_name, |
| bool inplace) { |
| return InsertQuantDeQuant(module, method_name, inplace); |
| }, |
| py::arg("module"), |
| py::arg("method_name"), |
| py::arg("inplace") = false) |
| .def( |
| "_jit_pass_insert_prepack_unpack", |
| [](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); }) |
| .def( |
| "_jit_pass_insert_prepack_unpack", |
| [](script::Module& module) { return InsertPrepackUnpack(module); }) |
| .def( |
| "_jit_pass_quant_fusion", |
| [](std::shared_ptr<Graph>& g) { return QuantFusion(g); }) |
| .def("_jit_pass_fold_convbn", &FoldConvBatchNorm2d) |
| .def("_jit_pass_fuse_linear", &FuseLinear) |
| .def( |
| "_jit_pass_fold_quantize", |
| [](script::Module& module, const std::string& method_name) { |
| FoldQuantizeCallIntoBuffer(module, method_name); |
| }) |
| .def("_jit_pass_fold_prepack", &FoldPrepackedWeightIntoModule) |
| .def( |
| "_jit_pass_pattern_based_rewrite", |
| [](const script::Module& m) { return PatternBasedRewrite(m); }) |
| .def( |
| "_jit_pass_custom_pattern_based_rewrite", |
| [](const std::string& pattern, |
| const std::string& fused_node_name, |
| const script::Module& m) { |
| SubgraphRewriter subgraph_rewriter; |
| subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name); |
| subgraph_rewriter.runOnModule(m); |
| }) |
| .def( |
| "_jit_pass_custom_pattern_based_rewrite_graph", |
| [](const std::string& pattern, |
| const std::string& fused_node_name, |
| std::shared_ptr<Graph> g) { |
| SubgraphRewriter subgraph_rewriter; |
| subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name); |
| subgraph_rewriter.runOnGraph(g); |
| }) |
| .def( |
| "_jit_pass_fold_quant_inputs", |
| [](std::shared_ptr<Graph>& g) { |
| return FoldQuantNodesIntoInputsOutputs(g); |
| }) |
| .def( |
| "_jit_pass_remove_inplace_ops", |
| [](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); }) |
| .def("_jit_pass_constant_pooling", ConstantPooling) |
| .def( |
| "_jit_pass_peephole", |
| [](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) { |
| return PeepholeOptimize(g, addmm_fusion_enabled); |
| }, |
| py::arg("graph"), |
| py::arg("addmm_fusion_enabled") = false) |
| .def( |
| "_jit_pass_canonicalize", |
| [](const std::shared_ptr<Graph>& g) { return Canonicalize(g); }) |
| .def("_jit_pass_lint", LintGraph) |
| .def( |
| "_jit_pass_complete_shape_analysis", |
| [](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) { |
| ArgumentSpecCreator arg_spec_creator(*graph); |
| Stack stack; |
| stack.reserve(inputs.size()); // captures? |
| for (auto& obj : inputs) { |
| stack.push_back(toTypeInferredIValue(obj)); |
| } |
| ArgumentSpec spec = arg_spec_creator.create(with_grad, stack); |
| arg_spec_creator.specializeTypes(*graph, spec); |
| // We only get partial specialization from the arg_spec_creator, but |
| // we want full shape specialization. The alternative would be to |
| // have a "complete type inference" function in ArguemntSpecCreator. |
| auto g_inputs = graph->inputs(); |
| for (size_t i = 0; i < inputs.size(); ++i) { |
| if (stack[i].isTensor()) { |
| g_inputs[i]->setType(stack[i].type()); |
| } |
| } |
| PropagateInputShapes(graph); |
| }) |
| .def("_jit_pass_remove_expands", RemoveExpands) |
| .def("_jit_pass_erase_number_types", EraseNumberTypes) |
| .def("_jit_pass_inline_fork_wait", InlineForkWait) |
| .def("_jit_pass_inline", Inline) |
| .def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX) |
| .def( |
| "_jit_pass_lower_graph", |
| [](std::shared_ptr<Graph>& graph, const script::Module& self) { |
| return LowerGraph(*graph, self._ivalue()); |
| }) |
| .def("_jit_pass_loop_unrolling", UnrollLoops) |
| .def( |
| "_jit_pass_constant_propagation", |
| [](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); }) |
| .def("_jit_pass_erase_shape_information", EraseShapeInformation) |
| .def( |
| "_jit_pass_create_autodiff_subgraphs", |
| [](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); }) |
| .def( |
| "_jit_run_cpp_tests", |
| [](bool runCuda) { |
| // We have to release the GIL inside this method, because if we |
| // happen to initialize the autograd engine in these tests, the |
| // newly spawned worker threads will try to initialize their |
| // PyThreadState*, and they need the GIL for this. |
| AutoNoGIL _no_gil; |
| return runJITCPPTests(runCuda); |
| }, |
| py::arg("run_cuda")) |
| .def( |
| "_jit_flatten", |
| [](py::handle& obj) { |
| auto res = python::flatten(obj); |
| return std::make_pair(res.vars, res.desc); |
| }) |
| .def( |
| "_jit_unflatten", |
| [](autograd::variable_list vars, python::IODescriptor& desc) { |
| return py::reinterpret_steal<py::object>( |
| python::unflatten(vars, desc)); |
| }) |
| .def("_jit_pass_onnx_block", BlockToONNX) |
| .def("_jit_pass_fixup_onnx_loops", FixupONNXLoops) |
| .def("_jit_pass_canonicalize_ops", CanonicalizeOps) |
| .def("_jit_pass_decompose_ops", DecomposeOps) |
| .def("_jit_pass_specialize_autogradzero", specializeAutogradZero) |
| .def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU) |
| .def( |
| "_jit_differentiate", |
| [](Graph& g) { |
| // the python binding slightly differs in semantics |
| // it makes a copy of the input Graph, and works on that |
| // jit::differentiate mutates the input Graph |
| auto g_clone = g.copy(); |
| return differentiate(g_clone); |
| }) |
| .def( |
| "_jit_check_alias_annotation", |
| [](std::shared_ptr<Graph> g, |
| py::tuple args, |
| const std::string& unqualified_op_name) { |
| auto stack = toTraceableStack(args); |
| checkAliasAnnotation(g, std::move(stack), unqualified_op_name); |
| }) |
| .def( |
| "_jit_set_profiling_mode", |
| [](bool profiling_flag) { |
| bool oldState = getProfilingMode(); |
| getProfilingMode() = profiling_flag; |
| return oldState; |
| }) |
| .def( |
| "_jit_set_profiling_executor", |
| [](bool profiling_flag) { |
| bool oldState = getExecutorMode(); |
| getExecutorMode() = profiling_flag; |
| return oldState; |
| }) |
| .def( |
| "_jit_set_inline_everything_mode", |
| [](bool enabled) { script::getInlineEverythingMode() = enabled; }) |
| .def( |
| "_jit_get_inline_everything_mode", |
| []() { return script::getInlineEverythingMode(); }) |
| .def( |
| "_jit_try_infer_type", |
| [](py::object obj) -> TypePtr { |
| auto match = tryToInferType(obj); |
| if (match.success()) { |
| return match.type(); |
| } |
| return nullptr; |
| }) |
| .def( |
| "_jit_fuser_get_fused_kernel_code", |
| [](Graph& g, std::vector<at::Tensor> inps) { |
| return debugGetFusedKernelCode(g, inps); |
| }) |
| .def("_jit_pass_onnx_unpack_quantized_weights", |
| [](std::shared_ptr<Graph>& graph, |
| std::map<std::string, at::Tensor>& paramsDict){ |
| UnpackQuantizedWeights(graph, paramsDict); |
| return paramsDict; |
| }, |
| pybind11::return_value_policy::move); |
| |
| // NOLINTNEXTLINE(bugprone-unused-raii) |
| py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec") |
| .def("__repr__", [](CompleteArgumentSpec& self) { |
| std::ostringstream s; |
| s << self; |
| return s.str(); |
| }); |
| // NOLINTNEXTLINE(bugprone-unused-raii) |
| py::class_<ArgumentSpec>(m, "ArgumentSpec"); |
| py::class_<Code>(m, "Code").def("grad_executor_states", [](Code& c) { |
| std::vector<GraphExecutorState> states; |
| for (auto& e : c.grad_executors()) { |
| states.emplace_back(e->getDebugState()); |
| } |
| return states; |
| }); |
| |
| py::class_<ExecutionPlan>(m, "ExecutionPlan") |
| .def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; }) |
| .def_property_readonly("code", [](ExecutionPlan& s) { return s.code; }); |
| |
| py::class_<Gradient>(m, "Gradient") |
| .def_property_readonly("f", [](Gradient& m) { return m.f; }) |
| .def_property_readonly("df", [](Gradient& m) { return m.df; }) |
| .def_property_readonly( |
| "f_real_outputs", [](Gradient& m) { return m.f_real_outputs; }) |
| .def_property_readonly( |
| "df_input_vjps", [](Gradient& m) { return m.df_input_vjps; }) |
| .def_property_readonly( |
| "df_input_captured_inputs", |
| [](Gradient& m) { return m.df_input_captured_inputs; }) |
| .def_property_readonly( |
| "df_input_captured_outputs", |
| [](Gradient& m) { return m.df_input_captured_outputs; }) |
| .def_property_readonly( |
| "df_output_vjps", [](Gradient& m) { return m.df_output_vjps; }); |
| |
| py::class_<GraphExecutorState>(m, "GraphExecutorState") |
| .def_property_readonly( |
| "graph", [](GraphExecutorState& s) { return s.graph; }) |
| .def_property_readonly( |
| "execution_plans", |
| [](GraphExecutorState& s) { return s.execution_plans; }) |
| .def_property_readonly( |
| "fallback", [](GraphExecutorState& s) { return s.fallback; }); |
| |
| py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter") |
| .def(py::init<std::string>()) |
| .def(py::init([](const py::object &buffer) { |
| auto writer_func = [=](const void *data, size_t size) { |
| auto bytes = py::bytes(reinterpret_cast<const char *>(data), size); |
| buffer.attr("write")(std::move(bytes)); |
| return size; |
| }; |
| return caffe2::make_unique<PyTorchStreamWriter>(std::move(writer_func)); |
| })) |
| .def(py::init<const std::function<size_t(const void *, size_t)> &>()) |
| .def("write_record", |
| [](PyTorchStreamWriter &self, const std::string &name, |
| const char *data, |
| size_t size) { return self.writeRecord(name, data, size); }) |
| .def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile) |
| .def("write_record", |
| [](PyTorchStreamWriter &self, const std::string &name, |
| uintptr_t data, size_t size) { |
| return self.writeRecord(name, reinterpret_cast<const char *>(data), |
| size); |
| }); |
| |
| // This allows PyTorchStreamReader to read from a Python buffer. It requires |
| // that the buffer implement `seek()`, `tell()`, and `read()`. |
| class BufferAdapter : public caffe2::serialize::ReadAdapterInterface { |
| public: |
| BufferAdapter(const py::object& buffer) : buffer_(buffer) { |
| // Jump to the end of the buffer to get its size |
| auto current = buffer.attr("tell")(); |
| buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END")); |
| size_ = py::cast<size_t>(buffer.attr("tell")()); |
| buffer.attr("seek")(current); |
| } |
| |
| size_t size() const override { |
| return size_; |
| } |
| |
| size_t read(uint64_t pos, void* buf, size_t n, const char* what) |
| const override { |
| // Seek to desired position |
| buffer_.attr("seek")(pos); |
| |
| // Read bytes into `buf` from the buffer |
| std::string bytes = py::cast<std::string>(buffer_.attr("read")(n)); |
| std::copy( |
| bytes.data(), |
| bytes.data() + bytes.size(), |
| reinterpret_cast<char*>(buf)); |
| return bytes.size(); |
| } |
| |
| py::object buffer_; |
| size_t size_; |
| }; |
| |
| py::class_<PyTorchStreamReader>(m, "PyTorchFileReader") |
| .def(py::init<std::string>()) |
| .def(py::init([](const py::object& buffer) { |
| auto adapter = caffe2::make_unique<BufferAdapter>(std::move(buffer)); |
| return caffe2::make_unique<PyTorchStreamReader>(std::move(adapter)); |
| })) |
| .def("get_record", [](PyTorchStreamReader& self, const std::string& key) { |
| at::DataPtr data; |
| size_t size; |
| std::tie(data, size) = self.getRecord(key); |
| return py::bytes(reinterpret_cast<const char*>(data.get()), size); |
| }) |
| .def("get_all_records", [](PyTorchStreamReader& self) { |
| return self.getAllRecords(); |
| }); |
| |
| m.def( |
| "_jit_get_operation", |
| [](const std::string& op_name) { |
| try { |
| auto symbol = Symbol::fromQualString(op_name); |
| auto operations = getAllOperatorsFor(symbol); |
| TORCH_CHECK(!operations.empty(), "No such operator ", op_name); |
| TORCH_CHECK( |
| operations.size() == 1, |
| "Found ", |
| operations.size(), |
| " overloads for operator ", |
| op_name, |
| "! Overloads are not supported from Python."); |
| std::shared_ptr<Operator> op = operations[0]; |
| AT_ASSERT(op != nullptr); |
| std::ostringstream docstring; |
| docstring << "Automatically bound operator '" << op_name |
| << "' with schema: " << op->schema(); |
| return py::cpp_function( |
| [op](py::args args, py::kwargs kwargs) { |
| return invokeOperatorFromPython( |
| *op, std::move(args), std::move(kwargs)); |
| }, |
| py::name(symbol.toUnqualString()), |
| py::doc(docstring.str().c_str())); |
| } catch (const c10::Error& error) { |
| throw std::runtime_error(error.what_without_backtrace()); |
| } |
| }, |
| py::arg("qualified_name")); |
| |
| m.def("parse_ir", [](const std::string& input) { |
| auto graph = std::make_shared<Graph>(); |
| script::parseIR(input, &*graph); |
| return graph; |
| }); |
| m.def("parse_schema", parseSchema); |
| |
| py::class_<FunctionSchema>(m, "FunctionSchema") |
| .def_property_readonly( |
| "name", [](FunctionSchema& self) { return self.name(); }) |
| .def_property_readonly( |
| "overload_name", |
| [](FunctionSchema& self) { return self.overload_name(); }) |
| .def_property_readonly( |
| "arguments", [](FunctionSchema& self) { return self.arguments(); }) |
| .def_property_readonly( |
| "returns", [](FunctionSchema& self) { return self.returns(); }) |
| .def("is_backward_compatible_with", |
| [](const FunctionSchema& self, const FunctionSchema& old_schema) { |
| return self.isBackwardCompatibleWith(old_schema); |
| }) |
| .def("__eq__", [](const FunctionSchema& self, |
| const FunctionSchema& other) { |
| return self == other; |
| }) |
| .def("__str__", [](FunctionSchema& self) { |
| std::stringstream ss; |
| ss << self; |
| return ss.str(); |
| }); |
| py::class_<Argument>(m, "Argument") |
| .def_property_readonly("name", [](Argument& self) { return self.name(); }) |
| .def_property_readonly("type", [](Argument& self) { return self.type(); }) |
| .def_property_readonly( |
| "N", |
| [](Argument& self) -> py::object { |
| return (self.N()) ? py::cast(*self.N()) : py::none(); |
| }) |
| .def_property_readonly("default_value", [](Argument& self) -> py::object { |
| if (!self.default_value()) |
| return py::none(); |
| IValue v = *self.default_value(); |
| return toPyObject(std::move(v)); |
| }); |
| m.def( |
| "_jit_get_all_schemas", []() { |
| const std::vector<std::shared_ptr<Operator>>& operations = getAllOperators(); |
| return fmap(operations, [](const std::shared_ptr<Operator>& op) { |
| return op->schema(); |
| }); |
| }); |
| m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) { |
| auto symbol = Symbol::fromQualString(qualified_name); |
| auto operations = getAllOperatorsFor(symbol); |
| return fmap(operations, [](const std::shared_ptr<Operator>& op) { |
| return op->schema(); |
| }); |
| }); |
| |
| struct PythonFutureWrapper { |
| explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut) |
| : fut(std::move(fut)) {} |
| |
| c10::intrusive_ptr<c10::ivalue::Future> fut; |
| }; |
| |
| py::class_<PythonFutureWrapper>(m, "Future"); |
| |
| m.def("fork", [](py::args args) { |
| AT_ASSERT(args.size() >= 1); |
| |
| py::function f = py::cast<py::function>(args[0]); |
| py::tuple args_tup(args.size() - 1); |
| |
| for (size_t i = 1; i < args.size(); ++i) { |
| args_tup[i - 1] = args[i]; |
| } |
| |
| if (jit::tracer::isTracing()) { |
| auto graph = jit::tracer::getTracingState()->graph; |
| auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1)); |
| auto body_block = fork_node->addBlock(); |
| |
| Value* node_output; |
| py::object py_func_output; |
| // Insert new trace ops into the fork op's sub-block |
| WithInsertPoint guard(body_block); |
| IValue output_ivalue; |
| { |
| tracer::WithNestedTracingFrame env_guard; |
| |
| // Run the user-supplied function |
| py_func_output = f(*args_tup); |
| |
| // Convert the output of the user-supplied funciton to IValue. The type |
| // information of this IValue is used both to record the correct type in |
| // the trace. |
| output_ivalue = toTypeInferredIValue(py_func_output); |
| Value* out_val = jit::tracer::getValueTrace(output_ivalue); |
| body_block->registerOutput(out_val); |
| node_output = |
| fork_node->output()->setType(FutureType::create(out_val->type())); |
| } |
| |
| auto retval = |
| c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type()); |
| |
| // Record the ivalue in the tracer |
| jit::tracer::setValueTrace(retval, node_output); |
| |
| // stuff the ivalue output in the Future |
| retval->markCompleted(output_ivalue); |
| |
| return PythonFutureWrapper(retval); |
| } else { |
| auto result = toTypeInferredIValue(f(*args_tup)); |
| auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type()); |
| retval->markCompleted(std::move(result)); |
| return PythonFutureWrapper(retval); |
| } |
| }); |
| |
| m.def("wait", [](PythonFutureWrapper& fut) { |
| if (jit::tracer::isTracing()) { |
| auto graph = jit::tracer::getTracingState()->graph; |
| |
| Value* fut_val = jit::tracer::getValueTrace(fut.fut); |
| auto output = graph->insert(aten::wait, {fut_val}); |
| jit::tracer::setValueTrace(fut.fut->value(), output); |
| } |
| return fut.fut->value(); |
| }); |
| |
| m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) { |
| toIValue(obj, type); |
| }); |
| |
| initPythonIRBindings(module); |
| tracer::initPythonTracerBindings(module); |
| script::initTreeViewBindings(module); |
| script::initJitScriptBindings(module); |
| |
| setPrintHandler([](const std::string& str) { |
| py::gil_scoped_acquire acquire; |
| try { |
| auto _stdout = py::module::import("sys").attr("stdout"); |
| _stdout.attr("write")(str); |
| } catch (py::error_already_set& e) { |
| throw std::runtime_error(e.what()); |
| } |
| }); |
| } |
| } // namespace jit |
| } // namespace torch |