blob: efe3cc1b333f16313d8d1b844e19f30f41eabef8 [file] [log] [blame]
#pragma once
#include <torch/csrc/Device.h>
#include <ATen/core/ivalue.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/script/module.h>
#include <ATen/core/stack.h>
#include <ATen/core/jit_type.h>
#include <torch/csrc/utils/six.h>
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <ATen/core/function_schema.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
// The visibility attribute is to avoid a warning about storing a field in the
// struct that has a different visibility (from pybind) than the struct.
#ifdef _WIN32
#define VISIBILITY_HIDDEN
#else
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#endif
namespace torch {
namespace jit {
namespace detail {
using ::c10::Argument;
using ::c10::FunctionSchema;
// error reporting: when reporting user-caused errors, these functions should
// not use AT_ERROR macros, since these macros add stack trace information
// that is confusing to display to the end user since it always reports
// locations in libtorch code rather than user code.
inline void findErrorInKwargs(const FunctionSchema& schema, py::kwargs kwargs) {
const auto& arguments = schema.arguments();
// First check if any of the kwargs are unknown, i.e. don't match the name of
// any argument in the schema.
for (const auto& kwarg : kwargs) {
const auto key = py::cast<std::string>(kwarg.first);
if (!std::count_if(
arguments.begin(),
arguments.end(),
[&key](const Argument& argument) {
return argument.name() == key;
})) {
throw std::runtime_error(c10::str(
"Unknown keyword argument '",
key,
"' for operator '",
schema.name(),
"'. Schema: ",
schema));
}
}
// If there are unconsumed kwargs but none of them were unknown, the first
// positional argument present in the kwargs is duplicated.
for (const auto& argument : arguments) {
if (kwargs.contains(argument.name().c_str())) {
AT_ASSERT(!argument.default_value());
throw std::runtime_error(c10::str(
"Argument '",
argument.name(),
"' specified both as positional and ",
"keyword argument. Schema: ",
schema));
}
}
}
} // namespace detail
inline IValue toIValue(py::handle input) {
if (THPVariable_Check(input.ptr())) {
auto ten = py::cast<at::Tensor>(input);
if (ten.is_sparse()) {
AT_ERROR("sparse tensors not supported");
}
return ten;
} else if (six::isTuple(input)) {
py::tuple input_tuple = py::cast<py::tuple>(input);
Stack s;
s.reserve(input_tuple.size());
for (py::handle elem : input_tuple) {
s.push_back(toIValue(elem));
}
return Tuple::create(s);
} else {
AT_ERROR(
"Only tensors and (possibly nested) tuples of tensors are supported "
"as inputs or outputs of traced functions");
}
}
inline Stack toStack(const py::tuple& inputs) {
return toIValue(inputs).toTuple()->elements();
}
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N = c10::nullopt);
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
std::vector<IValue> elems;
for (auto elem : obj) {
elems.push_back(toIValue(elem, elem_type));
}
return List<IValue>::create(std::move(elems));
}
inline IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::DynamicType:
case TypeKind::TensorType:
case TypeKind::UndefinedTensorType:
case TypeKind::CompleteTensorType: {
auto var = py::cast<autograd::Variable>(obj);
if (var.is_sparse()) {
AT_ERROR("sparse tensors not supported");
}
return var;
}
case TypeKind::FloatType:
return py::cast<double>(obj);
case TypeKind::IntType:
return py::cast<int64_t>(obj);
case TypeKind::NoneType:
if (obj != Py_None)
throw py::cast_error();
return {};
case TypeKind::BoolType:
return py::cast<bool>(obj);
case TypeKind::TupleType: {
if (!PyTuple_Check(obj.ptr()))
throw py::cast_error(); // note: the py::cast does not throw cast_error
// because it attempts to iterate a non-tuple
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
const auto& elem_types = type->cast<TupleType>()->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error();
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (size_t i = 0; i < tuple_size; ++i) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return Tuple::create(std::move(values));
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
case TypeKind::ListType: {
const auto& elem_type = type->expect<ListType>()->getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return py::cast<std::vector<int64_t>>(obj);
} else {
double value = py::cast<int64_t>(obj);
std::vector<double> repeated(*N, value);
return repeated;
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return py::cast<std::vector<double>>(obj);
} else {
double value = py::cast<double>(obj);
std::vector<double> repeated(*N, value);
return repeated;
}
case TypeKind::TensorType:
case TypeKind::DynamicType:
return py::cast<std::vector<at::Tensor>>(obj);
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::OptionalType: {
const auto& elem_type = type->expect<OptionalType>()->getElementType();
// check if it's a none obj since optional accepts NoneType
if (obj == Py_None) {
if (elem_type->isSubtypeOf(DynamicType::get())) {
// return undefined tensor for Optional[Tensor]
return at::Tensor();
} else {
// for other optional types, return an IValue() to denote a None
return {};
}
}
return toIValue(obj, type->expect<OptionalType>()->getElementType());
}
case TypeKind::NumberType:
case TypeKind::GeneratorType:
case TypeKind::VarType:
case TypeKind::FutureType:
break;
}
AT_ERROR(
"Missing cases in toIValue for type: ",
type->str(),
"! File a bug report.");
}
inline IValue argumentToIValue(
const FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
const auto& argument = schema.arguments().at(argumentPosition);
try {
return toIValue(object, argument.type(), argument.N());
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
schema.name(),
"() expected value of type ",
argument.type()->str(),
" for argument '",
argument.name(),
"' in position ",
argumentPosition,
", but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object),
"\nDeclaration: ",
schema));
}
}
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
try {
return toIValue(object, type);
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
" expected value of type ",
type->str(),
" for return value but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object)));
}
}
inline py::object toPyObject(IValue&& ivalue) {
if (ivalue.isNone()) {
return py::none();
} else if (ivalue.isTensor()) {
auto tensor = std::move(ivalue).toTensor();
if (tensor.is_sparse()) {
AT_ERROR("sparse tensors not supported");
}
return py::cast(autograd::Variable(std::move(tensor)));
} else if (ivalue.isDouble()) {
return py::cast(ivalue.toDouble());
} else if (ivalue.isInt()) {
return py::cast(ivalue.toInt());
} else if (ivalue.isBool()) {
return py::cast(ivalue.toBool());
} else if (ivalue.isString()) {
return py::cast(ivalue.toStringRef());
} else if (ivalue.isIntList()) {
return py::cast(ivalue.toIntListRef());
} else if (ivalue.isDoubleList()) {
return py::cast(ivalue.toDoubleListRef());
} else if (ivalue.isBoolList()) {
return py::cast(ivalue.toBoolListRef());
} else if (ivalue.isTensorList()) {
return py::cast(ivalue.toTensorListRef());
} else if (ivalue.isGenericList()) {
auto list = ivalue.toGenericList();
const auto& elements = list->elements();
py::list t{elements.size()};
for (size_t i = 0; i < elements.size(); ++i) {
t[i] = toPyObject(IValue{elements[i]});
}
return t;
} else if (ivalue.isTuple()) {
auto tuple = ivalue.toTuple();
const auto& elements = tuple->elements();
py::tuple t{elements.size()};
for (size_t i = 0; i < elements.size(); ++i) {
t[i] = toPyObject(IValue{elements[i]});
}
return t;
} else if (ivalue.isDevice()) {
return py::cast<py::object>(THPDevice_New(ivalue.toDevice()));
} else {
AT_ERROR("Missing cases in 'toPyObject'! File a bug report.");
}
}
struct VISIBILITY_HIDDEN tuple_slice {
/*implicit*/ tuple_slice(py::tuple tup_)
: tup(std::move(tup_)), b(0), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_)
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
: tup(std::move(tup_)), b(b_), e(e_) {}
py::detail::tuple_iterator begin() const {
return {tup, b};
}
py::detail::tuple_iterator end() const {
return {tup, e};
}
size_t size() const {
return e - b;
}
py::detail::tuple_accessor operator[](size_t index) const {
return {tup, b + index};
}
private:
py::tuple tup;
int64_t b;
int64_t e;
};
inline Stack createStackForSchema(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs = py::kwargs()) {
if (args.size() + kwargs.size() > schema.arguments().size()) {
throw std::runtime_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
args.size() + kwargs.size(),
" argument(s). Declaration: ",
schema));
}
Stack stack;
stack.reserve(schema.arguments().size());
// First push all positional args.
for (size_t i = 0; i < args.size(); ++i) {
// Use the type information from the schema to convert the PyObject.
push(stack, argumentToIValue(schema, i, args[i]));
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = args.size(); i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
consumed_kwargs += 1;
} else if (arg.default_value()) {
push(stack, *arg.default_value());
} else {
throw std::runtime_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
detail::findErrorInKwargs(schema, kwargs);
}
return stack;
}
inline py::object createPyObjectForStack(Stack&& stack) {
if (stack.empty()) {
return py::none();
}
// Return a simple value and not a single-element tuple if there is only one
// return value.
if (stack.size() == 1) {
return toPyObject(std::move(stack[0]));
}
// If there is more than one return value, pop them into a py::tuple.
py::tuple return_values(stack.size());
for (size_t ret = 0; ret < return_values.size(); ++ret) {
return_values[ret] = toPyObject(std::move(stack[ret]));
}
return return_values;
}
// TODO: Remove once we clean up the GraphExecutor usage.
inline Stack evilDeprecatedBadCreateStackDoNotUse(
const py::tuple& tuple,
at::ArrayRef<Value*> inputs,
size_t reserve_extra_space = 0) {
if (tuple.size() != inputs.size()) {
AT_ERROR(
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
std::to_string(tuple.size()));
}
Stack result;
result.reserve(tuple.size() + reserve_extra_space);
for (size_t i = 0; i < inputs.size(); ++i) {
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
}
return result;
}
inline py::object invokeScriptMethodFromPython(
script::Method& method,
tuple_slice args,
py::kwargs kwargs) {
auto stack = createStackForSchema(
method.getSchema(), std::move(args), std::move(kwargs));
{
AutoNoGIL no_gil_guard;
method.run(stack);
}
return toPyObject(std::move(stack.back()));
}
inline py::object invokeOperatorFromPython(
const Operator& op,
py::args args,
py::kwargs kwargs) {
// Create a stack full of the arguments and keyword arguments.
auto stack =
createStackForSchema(op.schema(), std::move(args), std::move(kwargs));
// Invoke the operation, which puts the return values onto the stack.
op.getOperation()(stack);
return createPyObjectForStack(std::move(stack));
}
} // namespace jit
} // namespace torch