| #include <torch/csrc/utils/auto_gil.h> |
| #include <torch/csrc/utils/pybind.h> |
| |
| #include <torch/csrc/jit/argument_spec.h> |
| #include <torch/csrc/jit/batched/BatchTensor.h> |
| #include <torch/csrc/jit/export.h> |
| #include <torch/csrc/jit/fuser/interface.h> |
| #include <torch/csrc/jit/fuser/kernel_cache.h> |
| #include <torch/csrc/jit/graph_executor.h> |
| #include <torch/csrc/jit/import.h> |
| #include <torch/csrc/jit/operator.h> |
| #include <torch/csrc/jit/passes/canonicalize.h> |
| #include <torch/csrc/jit/passes/canonicalize_ops.h> |
| #include <torch/csrc/jit/passes/common_subexpression_elimination.h> |
| #include <torch/csrc/jit/passes/constant_pooling.h> |
| #include <torch/csrc/jit/passes/constant_propagation.h> |
| #include <torch/csrc/jit/passes/create_autodiff_subgraphs.h> |
| #include <torch/csrc/jit/passes/dead_code_elimination.h> |
| #include <torch/csrc/jit/passes/erase_number_types.h> |
| #include <torch/csrc/jit/passes/graph_fuser.h> |
| #include <torch/csrc/jit/passes/inline_fork_wait.h> |
| #include <torch/csrc/jit/passes/loop_unrolling.h> |
| #include <torch/csrc/jit/passes/lower_tuples.h> |
| #include <torch/csrc/jit/passes/onnx.h> |
| #include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h> |
| #include <torch/csrc/jit/passes/onnx/peephole.h> |
| #include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h> |
| #include <torch/csrc/jit/passes/peephole.h> |
| #include <torch/csrc/jit/passes/remove_expands.h> |
| #include <torch/csrc/jit/passes/remove_inplace_ops.h> |
| #include <torch/csrc/jit/passes/shape_analysis.h> |
| #include <torch/csrc/jit/passes/specialize_undef.h> |
| #include <torch/csrc/jit/passes/to_batch.h> |
| #include <torch/csrc/jit/passes/utils/check_alias_annotation.h> |
| #include <torch/csrc/jit/pybind_utils.h> |
| #include <torch/csrc/jit/python_arg_flatten.h> |
| #include <torch/csrc/jit/python_ir.h> |
| #include <torch/csrc/jit/python_tracer.h> |
| #include <torch/csrc/jit/script/compiler.h> |
| #include <torch/csrc/jit/script/init.h> |
| #include <torch/csrc/jit/script/jit_exception.h> |
| #include <torch/csrc/jit/script/python_tree_views.h> |
| #include <torch/csrc/jit/tracer.h> |
| |
| #include <caffe2/serialize/inline_container.h> |
| |
| #include <ATen/core/function_schema.h> |
| |
| #include <pybind11/functional.h> |
| |
| #include <memory> |
| #include <sstream> |
| #include <stdexcept> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| namespace torch { |
| namespace jit { |
| |
| using ::c10::Argument; |
| using ::c10::FunctionSchema; |
| using caffe2::serialize::PyTorchStreamReader; |
| using caffe2::serialize::PyTorchStreamWriter; |
| |
| namespace { |
| |
| using autograd::variable_list; |
| |
| bool loadPythonClasses() { |
| // Leaving this code here, because it will likely be useful at some point |
| // PyObject *jit_module = PyImport_ImportModule("torch.jit"); |
| // THPUtils_assert(jit_module, "class loader couldn't access " |
| //"torch.jit module"); |
| // PyObject *jit_dict = PyModule_GetDict(jit_module); |
| |
| return true; |
| } |
| |
| } // anonymous namespace |
| |
| #if defined(_WIN32) |
| std::string runJITCPPTests() { |
| AT_ERROR("JIT tests not yet supported on Windows"); |
| } |
| #else |
| std::string runJITCPPTests(); |
| #endif |
| |
| void initJITBindings(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| py::register_exception<JITException>(m, "JITException"); |
| |
| py::class_<python::IODescriptor> iodescriptor( |
| m, "IODescriptor"); // NOLINT(bugprone-unused-raii) |
| |
| m.def("_jit_init", loadPythonClasses) |
| .def( |
| "_jit_debug_fuser_num_cached_kernel_specs", |
| torch::jit::fuser::debugNumCachedKernelSpecs) |
| .def("_jit_pass_onnx", ToONNX) |
| .def("_jit_pass_lower_all_tuples", LowerAllTuples) |
| .def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX) |
| .def("_jit_pass_fuse", FuseGraph) |
| .def( |
| "_jit_pass_dce", |
| [](std::shared_ptr<Graph>& g) { |
| return EliminateDeadCode(g->block()); // overload resolution |
| }) |
| .def( |
| "_jit_pass_cse", |
| [](std::shared_ptr<Graph>& g) { |
| return EliminateCommonSubexpression(g); // overload resolution |
| }) |
| .def( |
| "_jit_pass_remove_inplace_ops", |
| [](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); }) |
| .def("_jit_pass_constant_pooling", ConstantPooling) |
| .def( |
| "_jit_pass_peephole", |
| [](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) { |
| return PeepholeOptimize(g, addmm_fusion_enabled); |
| }, |
| py::arg("graph"), |
| py::arg("addmm_fusion_enabled") = false) |
| .def( |
| "_jit_pass_canonicalize", |
| [](const std::shared_ptr<Graph>& g) { return Canonicalize(g); }) |
| .def("_jit_pass_lint", LintGraph) |
| .def( |
| "_jit_pass_shape_analysis", |
| [](std::shared_ptr<Graph> graph, |
| std::vector<at::Tensor> inputs, |
| bool with_grad) { |
| setInputTypes( |
| *graph, |
| ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size())); |
| PropagateInputShapes(graph); |
| }) |
| .def( |
| "_jit_pass_complete_shape_analysis", |
| [](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) { |
| CompleteArgumentSpec spec( |
| with_grad, |
| evilDeprecatedBadCreateStackDoNotUse(inputs, graph->inputs())); |
| auto graph_inputs = graph->inputs(); |
| AT_ASSERT(spec.size() == graph_inputs.size()); |
| for (size_t i = 0; i < graph_inputs.size(); ++i) { |
| graph_inputs[i]->setType(spec.at(i)); |
| } |
| PropagateInputShapes(graph); |
| }) |
| .def("_jit_pass_remove_expands", RemoveExpands) |
| .def("_jit_pass_erase_number_types", EraseNumberTypes) |
| .def("_jit_pass_inline_fork_wait", InlineForkWait) |
| .def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX) |
| .def("_jit_pass_loop_unrolling", UnrollLoops) |
| .def( |
| "_jit_pass_constant_propagation", |
| [](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); }) |
| .def("_jit_pass_erase_shape_information", EraseShapeInformation) |
| .def( |
| "_jit_pass_create_autodiff_subgraphs", |
| [](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); }) |
| .def( |
| "_jit_run_cpp_tests", |
| [] { |
| // We have to release the GIL inside this method, because if we |
| // happen to initialize the autograd engine in these tests, the |
| // newly spawned worker threads will try to initialize their |
| // PyThreadState*, and they need the GIL for this. |
| AutoNoGIL _no_gil; |
| return runJITCPPTests(); |
| }) |
| .def( |
| "_jit_flatten", |
| [](py::handle& obj) { |
| auto res = python::flatten(obj); |
| return std::make_pair(res.vars, res.desc); |
| }) |
| .def( |
| "_jit_unflatten", |
| [](autograd::variable_list vars, python::IODescriptor& desc) { |
| return py::reinterpret_steal<py::object>( |
| python::unflatten(vars, desc)); |
| }) |
| .def("_jit_pass_onnx_block", BlockToONNX) |
| .def("_jit_pass_fixup_onnx_loops", FixupONNXLoops) |
| .def("_jit_pass_canonicalize_ops", CanonicalizeOps) |
| .def("_jit_pass_specialize_undef", specializeUndef) |
| .def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU) |
| .def( |
| "_jit_differentiate", |
| [](Graph& g) { |
| // the python binding slightly differs in semantics |
| // it makes a copy of the input Graph, and works on that |
| // jit::differentiate mutates the input Graph |
| auto g_clone = g.copy(); |
| return differentiate(g_clone); |
| }) |
| .def( |
| "_jit_check_alias_annotation", |
| [](std::shared_ptr<Graph> g, |
| py::tuple args, |
| const std::string& unqualified_op_name) { |
| auto stack = toStack(args); |
| checkAliasAnnotation(g, std::move(stack), unqualified_op_name); |
| }); |
| |
| // NOLINTNEXTLINE(bugprone-unused-raii) |
| py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec") |
| .def("__repr__", [](CompleteArgumentSpec& self) { |
| std::ostringstream s; |
| s << self; |
| return s.str(); |
| }); |
| // NOLINTNEXTLINE(bugprone-unused-raii) |
| py::class_<ArgumentSpec>(m, "ArgumentSpec"); |
| py::class_<Code>(m, "Code").def("grad_executors", [](Code& c) { |
| return py::make_iterator( |
| c.grad_executors().begin(), c.grad_executors().end()); |
| }); |
| |
| py::class_<ExecutionPlanState>(m, "ExecutionPlanState") |
| .def_property_readonly( |
| "graph", [](ExecutionPlanState& s) { return s.graph; }) |
| .def_property_readonly( |
| "code", [](ExecutionPlanState& s) { return s.code; }); |
| |
| py::class_<Gradient>(m, "Gradient") |
| .def_property_readonly("f", [](Gradient& m) { return m.f; }) |
| .def_property_readonly("df", [](Gradient& m) { return m.df; }) |
| .def_property_readonly( |
| "f_real_outputs", [](Gradient& m) { return m.f_real_outputs; }) |
| .def_property_readonly( |
| "df_input_vjps", [](Gradient& m) { return m.df_input_vjps; }) |
| .def_property_readonly( |
| "df_input_captured_inputs", |
| [](Gradient& m) { return m.df_input_captured_inputs; }) |
| .def_property_readonly( |
| "df_input_captured_outputs", |
| [](Gradient& m) { return m.df_input_captured_outputs; }) |
| .def_property_readonly( |
| "df_output_vjps", [](Gradient& m) { return m.df_output_vjps; }); |
| |
| py::class_<GraphExecutorState>(m, "GraphExecutorState") |
| .def_property_readonly( |
| "graph", [](GraphExecutorState& s) { return s.graph; }) |
| .def_property_readonly( |
| "execution_plans", |
| [](GraphExecutorState& s) { return s.execution_plans; }) |
| .def_property_readonly( |
| "fallback", [](GraphExecutorState& s) { return s.fallback; }); |
| |
| py::class_<GraphExecutor>(m, "GraphExecutor", py::dynamic_attr()) |
| .def( |
| py::init([](py::function func, |
| py::tuple inputs, |
| py::function var_name_lookup_fn, |
| bool optimize, |
| bool _force_outplace) { |
| auto graph = tracer::createGraphByTracing( |
| func, toStack(inputs), var_name_lookup_fn, _force_outplace); |
| return GraphExecutor(graph, optimize); |
| }), |
| py::arg("func"), |
| py::arg("inputs"), |
| py::arg("var_name_lookup_fn"), |
| py::arg("optimize") = true, |
| py::arg("_force_outplace") = false) |
| .def( |
| py::init([](std::shared_ptr<Graph> graph, bool optimize) { |
| return GraphExecutor(std::move(graph), optimize); |
| }), |
| py::arg("graph"), |
| py::arg("optimize") = true) |
| .def( |
| "graph_for", |
| [](GraphExecutor& ge, py::args args) { |
| return ge.graphFor(evilDeprecatedBadCreateStackDoNotUse( |
| args, ge.graph()->inputs())); |
| }) |
| .def_property_readonly( |
| "graph", [](GraphExecutor& ge) { return ge.graph(); }) |
| .def( |
| "get_debug_state", |
| [](GraphExecutor& ge) { return ge.getDebugState(); }) |
| .def("__call__", [](GraphExecutor& ge, py::args args) -> py::object { |
| const auto& graph = ge.graph(); |
| auto stack = |
| evilDeprecatedBadCreateStackDoNotUse(args, graph->inputs()); |
| { |
| AutoNoGIL no_gil_guard; |
| ge.run(stack); |
| } |
| return createPyObjectForStack(std::move(stack)); |
| }); |
| |
| py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter") |
| .def(py::init<std::string>()) |
| .def( |
| "write_record", |
| [](PyTorchStreamWriter& self, |
| const std::string& name, |
| const char* data, |
| size_t size) { return self.writeRecord(name, data, size); }) |
| .def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile); |
| |
| py::class_<PyTorchStreamReader>(m, "PyTorchFileReader") |
| .def(py::init<std::string>()) |
| .def("get_record", [](PyTorchStreamReader& self, const std::string& key) { |
| at::DataPtr data; |
| size_t size; |
| std::tie(data, size) = self.getRecord(key); |
| return py::bytes(reinterpret_cast<const char*>(data.get()), size); |
| }); |
| |
| m.def( |
| "_jit_get_operation", |
| [](const std::string& qualified_name) { |
| try { |
| auto symbol = Symbol::fromQualString(qualified_name); |
| auto operations = getAllOperatorsFor(symbol); |
| AT_CHECK(!operations.empty(), "No such operator ", qualified_name); |
| AT_CHECK( |
| operations.size() == 1, |
| "Found ", |
| operations.size(), |
| " overloads for operator ", |
| qualified_name, |
| "! Overloads are not supported from Python."); |
| std::shared_ptr<Operator> op = operations[0]; |
| AT_ASSERT(op != nullptr); |
| std::ostringstream docstring; |
| docstring << "Automatically bound operator '" << qualified_name |
| << "' with schema: " << op->schema(); |
| return py::cpp_function( |
| [op](py::args args, py::kwargs kwargs) { |
| return invokeOperatorFromPython( |
| *op, std::move(args), std::move(kwargs)); |
| }, |
| py::name(qualified_name.c_str()), |
| py::doc(docstring.str().c_str())); |
| } catch (const c10::Error& error) { |
| throw std::runtime_error(error.what_without_backtrace()); |
| } |
| }, |
| py::arg("qualified_name")); |
| |
| py::class_<FunctionSchema>(m, "FunctionSchema") |
| .def_property_readonly( |
| "name", [](FunctionSchema& self) { return self.name(); }) |
| .def_property_readonly( |
| "arguments", [](FunctionSchema& self) { return self.arguments(); }) |
| .def_property_readonly( |
| "returns", [](FunctionSchema& self) { return self.returns(); }); |
| py::class_<Argument>(m, "Argument") |
| .def_property_readonly("name", [](Argument& self) { return self.name(); }) |
| .def_property_readonly("type", [](Argument& self) { return self.type(); }) |
| .def_property_readonly( |
| "N", |
| [](Argument& self) -> py::object { |
| return (self.N()) ? py::cast(*self.N()) : py::none(); |
| }) |
| .def_property_readonly("default_value", [](Argument& self) -> py::object { |
| if (!self.default_value()) |
| return py::none(); |
| IValue v = *self.default_value(); |
| return toPyObject(std::move(v)); |
| }); |
| m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) { |
| auto symbol = Symbol::fromQualString(qualified_name); |
| auto operations = getAllOperatorsFor(symbol); |
| return fmap(operations, [](const std::shared_ptr<Operator>& op) { |
| return op->schema(); |
| }); |
| }); |
| |
| struct PythonFutureWrapper { |
| explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut) |
| : fut(std::move(fut)) {} |
| |
| c10::intrusive_ptr<c10::ivalue::Future> fut; |
| }; |
| |
| py::class_<PythonFutureWrapper>(m, "Future"); |
| |
| m.def("fork", [](py::args args) { |
| AT_ASSERT(args.size() >= 1); |
| |
| py::function f = py::cast<py::function>(args[0]); |
| py::tuple args_tup(args.size() - 1); |
| |
| for (size_t i = 1; i < args.size(); ++i) { |
| args_tup[i - 1] = args[i]; |
| } |
| |
| if (jit::tracer::isTracing()) { |
| auto graph = jit::tracer::getTracingState()->graph; |
| auto fork_node = graph->insertNode(graph->create(prim::fork, 1)); |
| auto body_block = fork_node->addBlock(); |
| |
| Value* node_output; |
| py::object py_func_output; |
| auto retval = c10::make_intrusive<c10::ivalue::Future>(); |
| // Insert new trace ops into the fork op's sub-block |
| WithInsertPoint guard(body_block); |
| IValue output_ivalue; |
| { |
| tracer::WithNestedTracingFrame env_guard; |
| |
| // Run the user-supplied function |
| py_func_output = f(*args_tup); |
| |
| // Convert the output of the user-supplied funciton to IValue. The type |
| // information of this IValue is used both to record the correct type in |
| // the trace. |
| output_ivalue = toIValue(py_func_output); |
| Value* out_val = jit::tracer::getNestedValueTrace(output_ivalue); |
| body_block->registerOutput(out_val); |
| node_output = |
| fork_node->output()->setType(FutureType::create(out_val->type())); |
| |
| // Lambda lift into a Subgraph attribute |
| torch::jit::script::lambdaLiftFork(fork_node); |
| } |
| |
| // Record the ivalue in the tracer |
| jit::tracer::setValueTrace(retval, node_output); |
| |
| // stuff the ivalue output in the Future |
| retval->markCompleted(output_ivalue); |
| |
| return PythonFutureWrapper(retval); |
| } else { |
| auto retval = c10::make_intrusive<c10::ivalue::Future>(); |
| retval->markCompleted(toIValue(f(*args_tup))); |
| return PythonFutureWrapper(retval); |
| } |
| }); |
| |
| m.def("wait", [](PythonFutureWrapper& fut) { |
| if (jit::tracer::isTracing()) { |
| auto graph = jit::tracer::getTracingState()->graph; |
| |
| Value* fut_val = jit::tracer::getValueTrace(fut.fut); |
| auto output = graph->insert(aten::wait, {fut_val}); |
| jit::tracer::setValueTrace(fut.fut->value(), output); |
| } |
| return fut.fut->value(); |
| }); |
| |
| m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) { |
| toIValue(obj, type); |
| }); |
| |
| initPythonIRBindings(module); |
| tracer::initPythonTracerBindings(module); |
| script::initTreeViewBindings(module); |
| script::initJitScriptBindings(module); |
| initBatchTensorBindings(module); |
| initRegisterBatchOpsBindings(module); |
| } |
| |
| } // namespace jit |
| } // namespace torch |