blob: 4cdf4adcfbb2fa4b1bd4ed615474859797b19ee3 [file] [log] [blame]
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/jit/argument_spec.h>
#include <torch/csrc/jit/batched/BatchTensor.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/fuser/interface.h>
#include <torch/csrc/jit/fuser/kernel_cache.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_undef.h>
#include <torch/csrc/jit/passes/to_batch.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/python_arg_flatten.h>
#include <torch/csrc/jit/python_ir.h>
#include <torch/csrc/jit/python_tracer.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/init.h>
#include <torch/csrc/jit/script/jit_exception.h>
#include <torch/csrc/jit/script/python_tree_views.h>
#include <torch/csrc/jit/tracer.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if defined(_WIN32)
std::string runJITCPPTests() {
AT_ERROR("JIT tests not yet supported on Windows");
}
#else
std::string runJITCPPTests();
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_shape_analysis",
[](std::shared_ptr<Graph> graph,
std::vector<at::Tensor> inputs,
bool with_grad) {
setInputTypes(
*graph,
ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size()));
PropagateInputShapes(graph);
})
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
CompleteArgumentSpec spec(
with_grad,
evilDeprecatedBadCreateStackDoNotUse(inputs, graph->inputs()));
auto graph_inputs = graph->inputs();
AT_ASSERT(spec.size() == graph_inputs.size());
for (size_t i = 0; i < graph_inputs.size(); ++i) {
graph_inputs[i]->setType(spec.at(i));
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
.def(
"_jit_run_cpp_tests",
[] {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
AutoNoGIL _no_gil;
return runJITCPPTests();
})
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_canonicalize_ops", CanonicalizeOps)
.def("_jit_pass_specialize_undef", specializeUndef)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code").def("grad_executors", [](Code& c) {
return py::make_iterator(
c.grad_executors().begin(), c.grad_executors().end());
});
py::class_<ExecutionPlanState>(m, "ExecutionPlanState")
.def_property_readonly(
"graph", [](ExecutionPlanState& s) { return s.graph; })
.def_property_readonly(
"code", [](ExecutionPlanState& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<GraphExecutor>(m, "GraphExecutor", py::dynamic_attr())
.def(
py::init([](py::function func,
py::tuple inputs,
py::function var_name_lookup_fn,
bool optimize,
bool _force_outplace) {
auto graph = tracer::createGraphByTracing(
func, toStack(inputs), var_name_lookup_fn, _force_outplace);
return GraphExecutor(graph, optimize);
}),
py::arg("func"),
py::arg("inputs"),
py::arg("var_name_lookup_fn"),
py::arg("optimize") = true,
py::arg("_force_outplace") = false)
.def(
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
return GraphExecutor(std::move(graph), optimize);
}),
py::arg("graph"),
py::arg("optimize") = true)
.def(
"graph_for",
[](GraphExecutor& ge, py::args args) {
return ge.graphFor(evilDeprecatedBadCreateStackDoNotUse(
args, ge.graph()->inputs()));
})
.def_property_readonly(
"graph", [](GraphExecutor& ge) { return ge.graph(); })
.def(
"get_debug_state",
[](GraphExecutor& ge) { return ge.getDebugState(); })
.def("__call__", [](GraphExecutor& ge, py::args args) -> py::object {
const auto& graph = ge.graph();
auto stack =
evilDeprecatedBadCreateStackDoNotUse(args, graph->inputs());
{
AutoNoGIL no_gil_guard;
ge.run(stack);
}
return createPyObjectForStack(std::move(stack));
});
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
const char* data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile);
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def("get_record", [](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
});
m.def(
"_jit_get_operation",
[](const std::string& qualified_name) {
try {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
AT_CHECK(!operations.empty(), "No such operator ", qualified_name);
AT_CHECK(
operations.size() == 1,
"Found ",
operations.size(),
" overloads for operator ",
qualified_name,
"! Overloads are not supported from Python.");
std::shared_ptr<Operator> op = operations[0];
AT_ASSERT(op != nullptr);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << qualified_name
<< "' with schema: " << op->schema();
return py::cpp_function(
[op](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
*op, std::move(args), std::move(kwargs));
},
py::name(qualified_name.c_str()),
py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); });
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly("default_value", [](Argument& self) -> py::object {
if (!self.default_value())
return py::none();
IValue v = *self.default_value();
return toPyObject(std::move(v));
});
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
struct PythonFutureWrapper {
explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut)
: fut(std::move(fut)) {}
c10::intrusive_ptr<c10::ivalue::Future> fut;
};
py::class_<PythonFutureWrapper>(m, "Future");
m.def("fork", [](py::args args) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::fork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
auto retval = c10::make_intrusive<c10::ivalue::Future>();
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup);
// Convert the output of the user-supplied funciton to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toIValue(py_func_output);
Value* out_val = jit::tracer::getNestedValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
// Lambda lift into a Subgraph attribute
torch::jit::script::lambdaLiftFork(fork_node);
}
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return PythonFutureWrapper(retval);
} else {
auto retval = c10::make_intrusive<c10::ivalue::Future>();
retval->markCompleted(toIValue(f(*args_tup)));
return PythonFutureWrapper(retval);
}
});
m.def("wait", [](PythonFutureWrapper& fut) {
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut.fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut.fut->value(), output);
}
return fut.fut->value();
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
initBatchTensorBindings(module);
initRegisterBatchOpsBindings(module);
}
} // namespace jit
} // namespace torch