blob: 1478ab5a20c9e7251fa7bf98f68d0b9b06bbcfa4 [file] [log] [blame]
import os
import sys
import tempfile
import tarfile
import pickle
import shutil
import struct
from contextlib import closing, contextmanager
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
import torch
DEFAULT_PROTOCOL = 2
LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size
def _add_to_tar(fn, tar_file, name):
tmp_file = tempfile.NamedTemporaryFile(delete=False)
fn(tmp_file)
tmp_file.close()
tar_file.add(tmp_file.name, arcname=name)
if os.path.isfile(tmp_file.name):
os.remove(tmp_file.name)
@contextmanager
def mkdtemp():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path)
# TODO: choose pickle protocol
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL):
serialized_tensors = {}
serialized_storages = {}
def persistent_id(obj):
if torch.isTensor(obj):
serialized_tensors[obj._cdata] = obj
return str(obj._cdata)
elif torch.isStorage(obj):
serialized_storages[obj._cdata] = obj
return str(obj._cdata)
return None
def save_tensors(f):
pickle_module.dump(len(serialized_tensors), f, protocol=pickle_protocol)
for key, tensor in serialized_tensors.items():
storage = tensor.storage()
serialized_storages[storage._cdata] = storage
pickle_module.dump((key, type(tensor), storage._cdata), f, protocol=pickle_protocol)
f.flush()
tensor._write_metadata(f)
def save_storages(f):
pickle_module.dump(len(serialized_storages), f, protocol=pickle_protocol)
for key, storage in serialized_storages.items():
pickle_module.dump((key, type(storage)), f, protocol=pickle_protocol)
f.flush()
storage._write_file(f)
def pickle_objects(f):
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
def save_sys_info(f):
sys_info = dict(
protocol_version=1000,
little_endian=sys.byteorder == 'little',
type_sizes = dict(
short=SHORT_SIZE,
int=INT_SIZE,
long=LONG_SIZE,
),
)
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
with closing(tarfile.open(fileobj=f, mode='w:', format=tarfile.PAX_FORMAT)) as tar:
_add_to_tar(save_sys_info, tar, 'sys_info')
_add_to_tar(pickle_objects, tar, 'pickle')
_add_to_tar(save_tensors, tar, 'tensors')
_add_to_tar(save_storages, tar, 'storages')
def load(f, pickle_module=pickle):
deserialized_objects = {}
def persistent_load(saved_id):
return deserialized_objects[int(saved_id)]
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
mkdtemp() as tmpdir:
def extract(name, init):
tar.extract(name, path=tmpdir)
with open(os.path.join(tmpdir, name), 'rb', 0) as f:
num_storages = pickle_module.load(f)
for i in range(num_storages):
args = pickle_module.load(f)
key, args = args[0], args[1:]
obj = init(f, *args)
deserialized_objects[key] = obj
extract('storages', lambda f, storage_type: storage_type._new_with_file(f))
extract('tensors', lambda f, tensor_type, storage_id: \
tensor_type._new_with_metadata_file(f, deserialized_objects[storage_id]))
pickle_file = tar.extractfile('pickle')
unpickler = pickle_module.Unpickler(pickle_file)
unpickler.persistent_load = persistent_load
result = unpickler.load()
return result