|  | """ | 
|  | Python implementation of ``__torch_function__`` | 
|  |  | 
|  | While most of the torch API and handling for ``__torch_function__`` happens | 
|  | at the C++ level, some of the torch API is written in Python so we need | 
|  | python-level handling for ``__torch_function__`` overrides as well. The main | 
|  | developer-facing functionality in this file are handle_torch_function and | 
|  | has_torch_function. See torch/functional.py and test/test_overrides.py | 
|  | for usage examples. | 
|  |  | 
|  | Note | 
|  | ---- | 
|  | heavily inspired by NumPy's ``__array_function__`` (see: | 
|  | https://github.com/pytorch/pytorch/issues/24015 and | 
|  | https://www.numpy.org/neps/nep-0018-array-function-protocol.html | 
|  | ) | 
|  |  | 
|  | If changing this file in a way that can affect ``__torch_function__`` overhead, | 
|  | please report the benchmarks in ``benchmarks/overrides_benchmark``. See the | 
|  | instructions in the ``README.md`` in that directory. | 
|  | """ | 
|  |  | 
|  | import __future__ | 
|  |  | 
|  | import collections | 
|  | import functools | 
|  | import types | 
|  | import warnings | 
|  | from typing import Dict, Set, List, Any, Callable, Iterable, Type, Tuple | 
|  | import contextlib | 
|  |  | 
|  | import torch | 
|  | from torch._C import ( | 
|  | _has_torch_function, _has_torch_function_unary, | 
|  | _has_torch_function_variadic, _add_docstr, | 
|  | _push_on_torch_function_stack, _pop_torch_function_stack, _get_function_stack_at, _len_torch_function_stack, | 
|  | _is_torch_function_mode_enabled) | 
|  |  | 
|  | __all__ = [ | 
|  | "get_ignored_functions", | 
|  | "get_overridable_functions", | 
|  | "get_testing_overrides", | 
|  | "handle_torch_function", | 
|  | "has_torch_function", | 
|  | "resolve_name", | 
|  | "is_tensor_like", | 
|  | "is_tensor_method_or_property", | 
|  | "wrap_torch_function", | 
|  | "enable_reentrant_dispatch", | 
|  | "get_buffer", | 
|  | ] | 
|  |  | 
|  | @functools.lru_cache(None) | 
|  | def get_ignored_functions() -> Set[Callable]: | 
|  | """ | 
|  | Return public functions that cannot be overridden by ``__torch_function__``. | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | Set[Callable] | 
|  | A tuple of functions that are publicly available in the torch API but cannot | 
|  | be overridden with ``__torch_function__``. Mostly this is because none of the | 
|  | arguments of these functions are tensors or tensor-likes. | 
|  |  | 
|  | Examples | 
|  | -------- | 
|  | >>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions() | 
|  | True | 
|  | >>> torch.add in torch.overrides.get_ignored_functions() | 
|  | False | 
|  | """ | 
|  | Tensor = torch.Tensor | 
|  | return { | 
|  | torch.typename, | 
|  | torch.is_tensor, | 
|  | torch.is_storage, | 
|  | torch.set_default_tensor_type, | 
|  | torch.set_rng_state, | 
|  | torch.get_rng_state, | 
|  | torch.manual_seed, | 
|  | torch.initial_seed, | 
|  | torch.seed, | 
|  | torch.save, | 
|  | torch.load, | 
|  | torch.set_printoptions, | 
|  | torch.fork, | 
|  | torch.get_default_dtype, | 
|  | torch.get_num_interop_threads, | 
|  | torch.get_num_threads, | 
|  | torch.init_num_threads, | 
|  | torch.import_ir_module, | 
|  | torch.import_ir_module_from_buffer, | 
|  | torch.is_anomaly_enabled, | 
|  | torch.is_anomaly_check_nan_enabled, | 
|  | torch.is_grad_enabled, | 
|  | torch.merge_type_from_type_comment, | 
|  | torch.parse_ir, | 
|  | torch.parse_schema, | 
|  | torch.parse_type_comment, | 
|  | torch.set_anomaly_enabled, | 
|  | torch.set_flush_denormal, | 
|  | torch.set_num_interop_threads, | 
|  | torch.set_num_threads, | 
|  | torch.wait, | 
|  | torch.as_tensor, | 
|  | torch.from_numpy, | 
|  | torch.get_device, | 
|  | torch.tensor, | 
|  | torch.default_generator, | 
|  | torch.has_cuda, | 
|  | torch.has_cudnn, | 
|  | torch.has_lapack, | 
|  | torch.device, | 
|  | torch.dtype, | 
|  | torch.finfo, | 
|  | torch.has_mkl, | 
|  | torch.has_mps, | 
|  | torch.has_mkldnn, | 
|  | torch.has_openmp, | 
|  | torch.iinfo, | 
|  | torch.memory_format, | 
|  | torch.qscheme, | 
|  | torch.set_grad_enabled, | 
|  | torch.no_grad, | 
|  | torch.enable_grad, | 
|  | torch.inference_mode, | 
|  | torch.is_inference_mode_enabled, | 
|  | torch.layout, | 
|  | torch.align_tensors, | 
|  | torch.arange, | 
|  | torch.as_strided, | 
|  | torch.bartlett_window, | 
|  | torch.blackman_window, | 
|  | torch.broadcast_shapes, | 
|  | torch.can_cast, | 
|  | torch.cudnn_affine_grid_generator, | 
|  | torch.cudnn_batch_norm, | 
|  | torch.cudnn_convolution, | 
|  | torch.cudnn_convolution_transpose, | 
|  | torch.cudnn_convolution_relu, | 
|  | torch.cudnn_convolution_add_relu, | 
|  | torch.cudnn_grid_sampler, | 
|  | torch.cudnn_is_acceptable, | 
|  | torch.empty, | 
|  | torch.empty_strided, | 
|  | torch.empty_quantized, | 
|  | torch.eye, | 
|  | torch.fft.fftfreq, | 
|  | torch.fft.rfftfreq, | 
|  | torch.from_file, | 
|  | torch.full, | 
|  | torch.fill, | 
|  | torch.hamming_window, | 
|  | torch.hann_window, | 
|  | torch.kaiser_window, | 
|  | torch.linspace, | 
|  | torch.logspace, | 
|  | torch.mkldnn_adaptive_avg_pool2d, | 
|  | torch.mkldnn_convolution, | 
|  | torch.mkldnn_max_pool2d, | 
|  | torch.mkldnn_max_pool3d, | 
|  | torch.mkldnn_linear_backward_weights, | 
|  | torch.normal, | 
|  | torch.ones, | 
|  | torch.promote_types, | 
|  | torch.rand, | 
|  | torch.randn, | 
|  | torch.randint, | 
|  | torch.randperm, | 
|  | torch.range, | 
|  | torch.result_type, | 
|  | torch.scalar_tensor, | 
|  | torch.sparse_coo_tensor, | 
|  | torch.sparse_compressed_tensor, | 
|  | torch.sparse_csr_tensor, | 
|  | torch.sparse_csc_tensor, | 
|  | torch.sparse_bsr_tensor, | 
|  | torch.sparse_bsc_tensor, | 
|  | torch.tril_indices, | 
|  | torch.triu_indices, | 
|  | torch.vander, | 
|  | torch.zeros, | 
|  | torch._jit_internal.boolean_dispatch, | 
|  | torch.nn.functional.assert_int_or_pair, | 
|  | torch.nn.functional.upsample, | 
|  | torch.nn.functional.upsample_bilinear, | 
|  | torch.nn.functional.upsample_nearest, | 
|  | torch.nn.functional.has_torch_function, | 
|  | torch.nn.functional.has_torch_function_unary, | 
|  | torch.nn.functional.has_torch_function_variadic, | 
|  | torch.nn.functional.handle_torch_function, | 
|  | torch.nn.functional.sigmoid, | 
|  | torch.nn.functional.hardsigmoid, | 
|  | torch.nn.functional.tanh, | 
|  | # Doesn't actually take or return tensor arguments | 
|  | torch.nn.init.calculate_gain, | 
|  | # These are deprecated; don't test them | 
|  | torch.nn.init.uniform, | 
|  | torch.nn.init.normal, | 
|  | torch.nn.init.constant, | 
|  | torch.nn.init.eye, | 
|  | torch.nn.init.dirac, | 
|  | torch.nn.init.xavier_uniform, | 
|  | torch.nn.init.xavier_normal, | 
|  | torch.nn.init.kaiming_uniform, | 
|  | torch.nn.init.kaiming_normal, | 
|  | torch.nn.init.orthogonal, | 
|  | torch.nn.init.sparse, | 
|  | torch.nested.to_padded_tensor, | 
|  | has_torch_function, | 
|  | handle_torch_function, | 
|  | torch.set_autocast_enabled, | 
|  | torch.is_autocast_enabled, | 
|  | torch.clear_autocast_cache, | 
|  | torch.set_autocast_cpu_enabled, | 
|  | torch.is_autocast_cpu_enabled, | 
|  | torch.set_autocast_cpu_dtype, | 
|  | torch.get_autocast_cpu_dtype, | 
|  | torch.get_autocast_gpu_dtype, | 
|  | torch.set_autocast_gpu_dtype, | 
|  | torch.autocast_increment_nesting, | 
|  | torch.autocast_decrement_nesting, | 
|  | torch.is_autocast_cache_enabled, | 
|  | torch.set_autocast_cache_enabled, | 
|  | torch.nn.functional.hardswish, | 
|  | torch.is_vulkan_available, | 
|  | torch.are_deterministic_algorithms_enabled, | 
|  | torch.use_deterministic_algorithms, | 
|  | torch.is_deterministic_algorithms_warn_only_enabled, | 
|  | torch.set_deterministic_debug_mode, | 
|  | torch.get_deterministic_debug_mode, | 
|  | torch.set_float32_matmul_precision, | 
|  | torch.get_float32_matmul_precision, | 
|  | torch.unify_type_list, | 
|  | torch.is_warn_always_enabled, | 
|  | torch.set_warn_always, | 
|  | torch.vitals_enabled, | 
|  | torch.set_vital, | 
|  | torch.read_vitals, | 
|  | torch.frombuffer, | 
|  | torch.asarray, | 
|  | Tensor.__delitem__, | 
|  | Tensor.__dir__, | 
|  | Tensor.__getattribute__, | 
|  | Tensor.__init__, | 
|  | Tensor.__iter__, | 
|  | Tensor.__init_subclass__, | 
|  | Tensor.__delattr__, | 
|  | Tensor.__setattr__, | 
|  | Tensor.__torch_function__, | 
|  | Tensor.__torch_dispatch__, | 
|  | Tensor.__new__, | 
|  | Tensor.__class__, | 
|  | Tensor.__subclasshook__, | 
|  | Tensor.__hash__, | 
|  | Tensor.as_subclass, | 
|  | Tensor.eig, | 
|  | Tensor.lstsq, | 
|  | Tensor.reinforce, | 
|  | Tensor.new, | 
|  | Tensor.new_tensor, | 
|  | Tensor.new_empty, | 
|  | Tensor.new_empty_strided, | 
|  | Tensor.new_zeros, | 
|  | Tensor.new_ones, | 
|  | Tensor.new_full, | 
|  | Tensor._make_subclass, | 
|  | Tensor.solve, | 
|  | Tensor.stride, | 
|  | Tensor.unflatten, | 
|  | Tensor.to_sparse_coo, | 
|  | Tensor.to_sparse_csr, | 
|  | Tensor.to_sparse_csc, | 
|  | Tensor.to_sparse_bsr, | 
|  | Tensor.to_sparse_bsc, | 
|  | Tensor._reduce_ex_internal, | 
|  | Tensor._fix_weakref, | 
|  | Tensor._make_wrapper_subclass, | 
|  | Tensor._python_dispatch.__get__, | 
|  | Tensor._has_symbolic_sizes_strides.__get__, | 
|  | Tensor._conj, | 
|  | Tensor._conj_physical, | 
|  | Tensor._neg_view, | 
|  | Tensor._is_zerotensor, | 
|  | Tensor._addmm_activation, | 
|  | Tensor.to_padded_tensor, | 
|  | } | 
|  |  | 
|  |  | 
|  | @functools.lru_cache(None) | 
|  | def get_default_nowrap_functions() -> Set[Callable]: | 
|  | """ | 
|  | Return public functions that do not wrap in a subclass when invoked by | 
|  | the default ``Tensor.__torch_function__`` that preserves subclasses.  Typically, | 
|  | these functions represent field accesses (i.e., retrieving a Tensor that | 
|  | is stored somewhere on the Tensor) as opposed to computation.  Users of | 
|  | these functions expect object identity to be preserved over multiple accesses | 
|  | (e.g., ``a.grad is a.grad``) which cannot be upheld if we're wrapping on | 
|  | the fly every time (furthermore, the tensor stored here might already be | 
|  | the subclass, in which case wrapping really ought not to happen). | 
|  |  | 
|  | Not ALL property accessors have this property; for example ``Tensor.T`` actually | 
|  | just creates a new transposed tensor on the fly, and so we SHOULD interpose on | 
|  | these calls (you need to check the implementation of the function to see if | 
|  | this is the case or not).  Additionally, if a property accessor doesn't return a Tensor, | 
|  | it doesn't have to be on this list (though it is harmless if it is). | 
|  | """ | 
|  | Tensor = torch.Tensor | 
|  | return { | 
|  | Tensor._base.__get__, | 
|  | Tensor.grad.__get__, | 
|  | Tensor._grad.__get__, | 
|  | } | 
|  |  | 
|  |  | 
|  | @functools.lru_cache(None) | 
|  | def get_testing_overrides() -> Dict[Callable, Callable]: | 
|  | """Return a dict containing dummy overrides for all overridable functions | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | Dict[Callable, Callable] | 
|  | A dictionary that maps overridable functions in the PyTorch API to | 
|  | lambda functions that have the same signature as the real function | 
|  | and unconditionally return -1. These lambda functions are useful | 
|  | for testing API coverage for a type that defines ``__torch_function__``. | 
|  |  | 
|  | Examples | 
|  | -------- | 
|  | >>> import inspect | 
|  | >>> my_add = torch.overrides.get_testing_overrides()[torch.add] | 
|  | >>> inspect.signature(my_add) | 
|  | <Signature (input, other, out=None)> | 
|  | """ | 
|  | # Every function in the PyTorchAPI that can be overriden needs an entry | 
|  | # in this dict. | 
|  | # | 
|  | # Optimally we would use inspect to get the function signature and define | 
|  | # the lambda function procedurally but that is blocked by generating | 
|  | # function signatures for native kernels that can be consumed by inspect. | 
|  | # See Issue #28233. | 
|  | Tensor = torch.Tensor | 
|  | ret: Dict[Callable, Callable] = { | 
|  | torch.abs: lambda input, out=None: -1, | 
|  | torch.absolute: lambda input, out=None: -1, | 
|  | torch.adaptive_avg_pool1d: lambda input, output_size: -1, | 
|  | torch.adaptive_max_pool1d: lambda inputs, output_size: -1, | 
|  | torch.acos: lambda input, out=None: -1, | 
|  | torch.adjoint: lambda input: -1, | 
|  | torch.arccos: lambda input, out=None: -1, | 
|  | torch.acosh: lambda input, out=None: -1, | 
|  | torch.arccosh: lambda input, out=None: -1, | 
|  | torch.add: lambda input, other, out=None: -1, | 
|  | torch.addbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1, | 
|  | torch.addcdiv: lambda input, tensor1, tensor2, value=1, out=None: -1, | 
|  | torch.addcmul: lambda input, tensor1, tensor2, value=1, out=None: -1, | 
|  | torch.addmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, | 
|  | torch.addmv: lambda input, mat, vec, beta=1, alpha=1, out=None: -1, | 
|  | torch.addr: lambda input, vec1, vec2, beta=1, alpha=1, out=None: -1, | 
|  | torch.affine_grid_generator: lambda theta, size, align_corners: -1, | 
|  | torch.all: lambda input, dim=None: -1, | 
|  | torch.allclose: lambda input, other, trol=1e-05, atol=1e-08, equal_nan=False: -1, | 
|  | torch.alpha_dropout: lambda input, p, train, inplace=False: -1, | 
|  | torch.amax: lambda input, dim=None: -1, | 
|  | torch.amin: lambda input, dim=None: -1, | 
|  | torch.aminmax: lambda input, dim=None, keepdim=False, out=None: -1, | 
|  | torch.angle: lambda input, out=None: -1, | 
|  | torch.any: lambda input, dim=None, keepdim=False, out=None: -1, | 
|  | torch.argmax: lambda input: -1, | 
|  | torch.argmin: lambda input: -1, | 
|  | torch.argsort: lambda input, dim=None: -1, | 
|  | torch.asin: lambda input, out=None: -1, | 
|  | torch._assert_async: lambda input: -1, | 
|  | torch.arcsin: lambda input, out=None: -1, | 
|  | torch.asinh: lambda input, out=None: -1, | 
|  | torch.arcsinh: lambda input, out=None: -1, | 
|  | torch.atan: lambda input, out=None: -1, | 
|  | torch.arctan: lambda input, out=None: -1, | 
|  | torch.atan2: lambda input, other, out=None: -1, | 
|  | torch.arctan2: lambda input, other, out=None: -1, | 
|  | torch.atanh: lambda input, out=None: -1, | 
|  | torch.arctanh: lambda input, out=None: -1, | 
|  | torch.atleast_1d: lambda *tensors: -1, | 
|  | torch.atleast_2d: lambda *tensors: -1, | 
|  | torch.atleast_3d: lambda *tensors: -1, | 
|  | torch.avg_pool1d: lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True: -1, | 
|  | torch.baddbmm: lambda input, batch1, batch2, alpha=1, beta=1, out=None: -1, | 
|  | torch.batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled: -1, | 
|  | torch.batch_norm_backward_elemt: lambda grad_out, input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor: -1, | 
|  | torch.batch_norm_backward_reduce: lambda grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g: -1, | 
|  | torch.batch_norm_elemt: lambda input, weight, bias, mean, invstd, eps: -1, | 
|  | torch.batch_norm_gather_stats: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1, | 
|  | torch.batch_norm_gather_stats_with_counts: lambda input, mean, invstd, running_mean, running_var, momentum, eps, count: -1, | 
|  | torch.batch_norm_stats: lambda input, eps: -1, | 
|  | torch.batch_norm_update_stats: lambda input, running_mean, running_var, momentum: -1, | 
|  | torch.bernoulli: lambda input, generator=None, out=None: -1, | 
|  | torch.bilinear: lambda input1, input2, weight, bias: -1, | 
|  | torch.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None, reduce=None, | 
|  | reduction='mean', pos_weight=None: -1), | 
|  | torch.bincount: lambda input, weights=None, minlength=0: -1, | 
|  | torch.binomial: lambda count, prob, generator=None: -1, | 
|  | torch.bitwise_and: lambda input, other, out=None: -1, | 
|  | torch.bitwise_not: lambda input, out=None: -1, | 
|  | torch.bitwise_or: lambda input, other, out=None: -1, | 
|  | torch.bitwise_xor: lambda input, other, out=None: -1, | 
|  | torch.bitwise_left_shift: lambda input, other, out=None: -1, | 
|  | torch.bitwise_right_shift: lambda input, other, out=None: -1, | 
|  | torch.block_diag: lambda *tensors: -1, | 
|  | torch.bmm: lambda input, mat2, out=None: -1, | 
|  | torch.broadcast_tensors: lambda *tensors: -1, | 
|  | torch.broadcast_to: lambda self, size: -1, | 
|  | torch.bucketize: lambda input, boundaries, out_int32=False, right=False, out=None: -1, | 
|  | torch.cartesian_prod: lambda *tensors: -1, | 
|  | torch.cat: lambda tensors, dim=0, out=None: -1, | 
|  | torch.concat: lambda tensors, dim=0, out=None: -1,  # alias for torch.cat | 
|  | torch.concatenate: lambda tensors, dim=0, out=None: -1,  # alias for torch.concatenate | 
|  | torch.cdist: lambda x1, x2, p=2.0, compute_mode='use_mm_for_euclid_dist_if_necessary': -1, | 
|  | torch.ceil: lambda input, out=None: -1, | 
|  | torch.celu: lambda input, alpha=1., inplace=False: -1, | 
|  | torch.chain_matmul: lambda *matrices, out=None: -1, | 
|  | torch.channel_shuffle: lambda input, groups : -1, | 
|  | torch.cholesky: lambda input, upper=False, out=None: -1, | 
|  | torch.linalg.cholesky: lambda input, out=None: -1, | 
|  | torch.linalg.cholesky_ex: lambda input, check_errors=False, out=None: -1, | 
|  | torch.cholesky_inverse: lambda input, upper=False, out=None: -1, | 
|  | torch.cholesky_solve: lambda input1, input2, upper=False, out=None: -1, | 
|  | torch.choose_qparams_optimized: lambda input, numel, n_bins, ratio, bit_width: -1, | 
|  | torch.chunk: lambda input, chunks, dim=0: -1, | 
|  | torch.clamp: lambda input, min=None, max=None, out=None: -1, | 
|  | torch.clip: lambda input, min=None, max=None, out=None: -1, | 
|  | torch.clamp_min: lambda input, min, out=None: -1, | 
|  | torch.clamp_max: lambda input, max, out=None: -1, | 
|  | torch.column_stack: lambda tensors, out=None: -1, | 
|  | torch.cov: lambda input, correction=1, fweights=None, aweights=None: -1, | 
|  | torch.clone: lambda input: -1, | 
|  | torch.combinations: lambda input, r=2, with_replacement=False: -1, | 
|  | torch.complex: lambda real, imag: -1, | 
|  | torch.copysign: lambda input, other, out=None: -1, | 
|  | torch.polar: lambda abs, ang: -1, | 
|  | torch.linalg.cond: lambda input, ord=None: -1, | 
|  | torch.conj: lambda input, out=None: -1, | 
|  | torch.conj_physical: lambda input, out=None: -1, | 
|  | torch.resolve_conj: lambda input, out=None: -1, | 
|  | torch.resolve_neg: lambda input, out=None: -1, | 
|  | torch.constant_pad_nd: lambda input, pad, value=0: -1, | 
|  | torch.conv1d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, | 
|  | torch.conv2d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, | 
|  | torch.conv3d: lambda input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1: -1, | 
|  | torch.convolution: lambda input, weight, bias, stride, padding, dilation, transposed, output_adding, groups: -1, | 
|  | torch.conv_tbc: lambda input, weight, bias, pad=0: -1, | 
|  | torch.conv_transpose1d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, | 
|  | torch.conv_transpose2d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, | 
|  | torch.conv_transpose3d: lambda input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1: -1, | 
|  | torch.corrcoef: lambda input: -1, | 
|  | torch.cos: lambda input, out=None: -1, | 
|  | torch.cosine_embedding_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1, | 
|  | torch.cosh: lambda input, out=None: -1, | 
|  | torch.cosine_similarity: lambda x1, x2, dim=1, eps=1e-8: -1, | 
|  | torch.count_nonzero: lambda input: -1, | 
|  | torch.cross: lambda input, other, dim=None, out=None: -1, | 
|  | torch.linalg.cross: lambda input, other, dim=-1, out=None: -1, | 
|  | torch.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean', | 
|  | zero_infinity=False: -1), | 
|  | torch.cummax: lambda input, dim, out=None: -1, | 
|  | torch.cummin: lambda input, dim, out=None: -1, | 
|  | torch.cumprod: lambda input, dim, out=None, dtype=None: -1, | 
|  | torch.cumsum: lambda input, dim, out=None, dtype=None: -1, | 
|  | torch.cumulative_trapezoid: lambda y, x=None, dim=-1: -1, | 
|  | torch.logcumsumexp: lambda input, dim, out=None: -1, | 
|  | torch.deg2rad: lambda input, out=None: -1, | 
|  | torch.dequantize: lambda input: -1, | 
|  | torch.det: lambda input: -1, | 
|  | torch.linalg.det: lambda input: -1,  # alias for torch.det  # type: ignore[attr-defined] | 
|  | torch.detach: lambda input: -1, | 
|  | torch.diag: lambda input, diagonal=0, out=None: -1, | 
|  | torch.diag_embed: lambda input, diagonal=0, out=None: -1, | 
|  | torch.diagflat: lambda input, offset=0: -1, | 
|  | torch.diff: lambda input, n=1, dim=-1, prepend=None, append=None, out=None: -1, | 
|  | torch.diagonal: lambda input, offset=0, dim1=0, dim2=1: -1, | 
|  | torch.linalg.diagonal: lambda input, offset=0, dim1=-2, dim2=-1: -1, | 
|  | torch.diagonal_scatter: lambda input, src, offset=0, dim1=0, dim2=1: -1, | 
|  | torch.as_strided_scatter: lambda self, src, size, stride, storage_offset=None: -1, | 
|  | torch.digamma: lambda input, out=None: -1, | 
|  | torch.dist: lambda input, other, p=2: -1, | 
|  | torch.div: lambda input, other, rounding_mode=None, out=None: -1, | 
|  | torch.divide: lambda input, other, rounding_mode=None, out=None: -1, | 
|  | torch.dot: lambda input, other, out=None: -1, | 
|  | torch.dropout: lambda input, p, train, inplace=False: -1, | 
|  | torch.dsmm: lambda input, mat2: -1, | 
|  | torch.hsmm: lambda mat1, mat2: -1, | 
|  | torch.dsplit: lambda input, indices_or_sections: -1, | 
|  | torch.dstack: lambda tensors, out=None: -1, | 
|  | torch.linalg.eig: lambda input, out=None: -1, | 
|  | torch.linalg.eigvals: lambda input, out=None: -1, | 
|  | torch.linalg.eigh: lambda input, UPLO="L", out=None: -1, | 
|  | torch.linalg.eigvalsh: lambda input, UPLO="L", out=None: -1, | 
|  | torch.einsum: lambda equation, *operands: -1, | 
|  | torch.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, | 
|  | sparse=False: -1), | 
|  | torch.embedding_bag: (lambda input, weight, offsets, max_norm=None, norm_type=2, scale_grad_by_freq=False, | 
|  | mode='mean', sparse=False, per_sample_weights=None, padding_idx=None: -1), | 
|  | torch.empty_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, | 
|  | torch.eq: lambda input, other, out=None: -1, | 
|  | torch.equal: lambda input, other: -1, | 
|  | torch.erf: lambda input, out=None: -1, | 
|  | torch.erfc: lambda input, out=None: -1, | 
|  | torch.erfinv: lambda input, out=None: -1, | 
|  | torch.exp: lambda input, out=None: -1, | 
|  | torch.exp2: lambda input, out=None: -1, | 
|  | torch.expm1: lambda input, out=None: -1, | 
|  | torch.fake_quantize_per_channel_affine: lambda input, scale, zero_point, axis, quant_min, quant_max: -1, | 
|  | torch.fake_quantize_per_tensor_affine: lambda input, scale, zero_point, quant_min, quant_max: -1, | 
|  | torch.fused_moving_avg_obs_fake_quant: (lambda x, observer_on, fake_quant_on, averaging_const, running_min, | 
|  | running_max, scale, zero_point, quant_min, quant_max, ch_axis, | 
|  | per_row_fake_quant=False, symmetric_quant=False: -1), | 
|  | torch.fbgemm_linear_fp16_weight: lambda input, packed_weight, bias: -1, | 
|  | torch.fbgemm_linear_fp16_weight_fp32_activation: lambda input, packed_weight, bias: -1, | 
|  | torch.fbgemm_linear_int8_weight: lambda input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias: -1, | 
|  | torch.fbgemm_linear_int8_weight_fp32_activation: (lambda input, weight, packed, col_offsets, weight_scale, | 
|  | weight_zero_point, bias: -1), | 
|  | torch.fbgemm_linear_quantize_weight: lambda input: -1, | 
|  | torch.fbgemm_pack_gemm_matrix_fp16: lambda input: -1, | 
|  | torch.fbgemm_pack_quantized_matrix: lambda input, a, b: -1, | 
|  | torch.feature_alpha_dropout: lambda input, p, train: -1, | 
|  | torch.feature_dropout: lambda input, p, train: -1, | 
|  | torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.ifft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.rfft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.irfft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.hfft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.ihfft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fft.hfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.ihfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.hfftn: lambda input, s=None, dim=-1, norm=None: -1, | 
|  | torch.fft.ihfftn: lambda input, s=None, dim=-1, norm=None: -1, | 
|  | torch.fft.fftn: lambda input, s=None, dim=None, norm=None: -1, | 
|  | torch.fft.ifftn: lambda input, s=None, dim=None, norm=None: -1, | 
|  | torch.fft.rfftn: lambda input, s=None, dim=None, norm=None: -1, | 
|  | torch.fft.irfftn: lambda input, s=None, dim=None, norm=None: -1, | 
|  | torch.fft.fft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.ifft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.rfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.irfft2: lambda input, s=None, dim=(-2, -1), norm=None: -1, | 
|  | torch.fft.fftshift: lambda input, dim=None: -1, | 
|  | torch.fft.ifftshift: lambda input, dim=None: -1, | 
|  | torch.fft.fft: lambda input, n=None, dim=-1, norm=None: -1, | 
|  | torch.fix: lambda input, out=None: -1, | 
|  | torch.flatten: lambda input, start_dim=0, end_dim=-1: -1, | 
|  | torch.flip: lambda input, dims: -1, | 
|  | torch.fliplr: lambda input: -1, | 
|  | torch.flipud: lambda input: -1, | 
|  | torch.frobenius_norm: lambda input, dim=None, keepdim=False, out=None: -1, | 
|  | torch.floor: lambda input, out=None: -1, | 
|  | torch.floor_divide: lambda input, other: -1, | 
|  | torch.float_power: lambda input, exponent, out=None: -1, | 
|  | torch.fmod: lambda input, other, out=None: -1, | 
|  | torch.frac: lambda input, out=None: -1, | 
|  | torch.frexp: lambda input, out=None: -1, | 
|  | torch.full_like: lambda input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1, | 
|  | torch.lu_unpack: lambda LU_data, LU_pivots, unpack_data=True, unpack_pivots=True: -1, | 
|  | torch.gather: lambda input, dim, index, out=None, sparse_grad=False: -1, | 
|  | torch.gcd: lambda input, other, out=None: -1, | 
|  | torch.ge: lambda input, other, out=None: -1, | 
|  | torch.greater_equal: lambda input, other, out=None: -1, | 
|  | torch.geqrf: lambda input, out=None: -1, | 
|  | torch.i0: lambda input, out=None: -1, | 
|  | torch.inner: lambda input, other, out=None: -1, | 
|  | torch.outer: lambda input, vec2, out=None: -1, | 
|  | torch.ger: lambda input, vec2, out=None: -1,  # alias for torch.outer | 
|  | torch.gradient: lambda input, spacing=None, dim=None, edge_order=1: -1, | 
|  | torch.grid_sampler: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, | 
|  | torch.grid_sampler_2d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, | 
|  | torch.grid_sampler_3d: lambda input, grid, interpolation_mode, padding_mode, align_corners: -1, | 
|  | torch.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05, cudnn_enabled=True: -1, | 
|  | torch.gru: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, | 
|  | torch.gru_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, | 
|  | torch.gt: lambda input, other, out=None: -1, | 
|  | torch.greater: lambda input, other, out=None: -1, | 
|  | torch.hardshrink: lambda input, lambd=0.5: -1, | 
|  | torch.heaviside: lambda input, values, out=None: -1, | 
|  | torch.hinge_embedding_loss: lambda input, target, margin=1.0, size_average=None, reduce=None, reduction='mean': -1, | 
|  | torch.histc: lambda input, bins=100, min=0, max=0, out=None: -1, | 
|  | torch.histogram: lambda input, bins=100, min=None, max=None, weight=None, density=False, out=None: -1, | 
|  | torch.histogramdd: lambda input, bins, range=None, weight=None, density=False: -1, | 
|  | torch.linalg.householder_product: lambda input, tau: -1, | 
|  | torch.hspmm: lambda mat1, mat2, out=None: -1, | 
|  | torch.hsplit: lambda input, indices_or_sections: -1, | 
|  | torch.hstack: lambda tensors, out=None: -1, | 
|  | torch.hypot: lambda input, other, out=None: -1, | 
|  | torch.igamma: lambda input, other, out=None: -1, | 
|  | torch.igammac: lambda input, other, out=None: -1, | 
|  | torch.imag: lambda input, out=None: -1, | 
|  | torch.index_add: lambda input, dim, index, source: -1, | 
|  | torch.index_copy: lambda input, dim, index, source: -1, | 
|  | torch.index_put: lambda input, indices, values, accumulate=False: -1, | 
|  | torch.index_select: lambda input, dim, index, out=None: -1, | 
|  | torch.index_fill: lambda input, dim, index, value: -1, | 
|  | torch.index_reduce: lambda input, dim, index, source, reduce, include_input=True: -1, | 
|  | torch.isfinite: lambda tensor: -1, | 
|  | torch.isin: lambda e, te, assume_unique=False, invert=False: -1, | 
|  | torch.isinf: lambda tensor: -1, | 
|  | torch.isreal: lambda tensor: -1, | 
|  | torch.isposinf: lambda input, out=None: -1, | 
|  | torch.isneginf: lambda input, out=None: -1, | 
|  | torch.instance_norm: (lambda input, running_mean, running_var, weight, bias, use_input_stats, momentum, eps, | 
|  | cudnn_enabled: -1), | 
|  | torch.int_repr: lambda input: -1, | 
|  | torch.inverse: lambda input, out=None: -1, | 
|  | torch.linalg.inv: lambda input, out=None: -1, | 
|  | torch.linalg.inv_ex: lambda input, check_errors=False, out=None: -1, | 
|  | torch.is_complex: lambda input: -1, | 
|  | torch.is_conj: lambda input: -1, | 
|  | torch.is_neg: lambda input: -1, | 
|  | torch.is_distributed: lambda input: -1, | 
|  | torch.is_inference: lambda input: -1, | 
|  | torch.is_floating_point: lambda input: -1, | 
|  | torch.is_nonzero: lambda input: -1, | 
|  | torch.is_same_size: lambda input, other: -1, | 
|  | torch.is_signed: lambda input: -1, | 
|  | torch.isclose: lambda input, other, rtol=1e-05, atol=1e-08, equal_nan=False: -1, | 
|  | torch.isnan: lambda input: -1, | 
|  | torch.istft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True, | 
|  | normalized=False, onesided=None, length=None, return_complex=False: -1), | 
|  | torch.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1, | 
|  | torch.kron: lambda input, other: -1, | 
|  | torch.kthvalue: lambda input, k, dim=None, keepdim=False, out=None: -1, | 
|  | torch.linalg.ldl_factor_ex: lambda input, hermitian=False, check_errors=False, out=None: -1, | 
|  | torch.linalg.ldl_factor: lambda input, hermitian=False, out=None: -1, | 
|  | torch.linalg.ldl_solve: lambda LD, pivots, B, hermitian=False, out=None: -1, | 
|  | torch.layer_norm: lambda input, normalized_shape, weight=None, bias=None, esp=1e-05, cudnn_enabled=True: -1, | 
|  | torch.lcm: lambda input, other, out=None: -1, | 
|  | torch.ldexp: lambda input, other, out=None: -1, | 
|  | torch.le: lambda input, other, out=None: -1, | 
|  | torch.less_equal: lambda input, other, out=None: -1, | 
|  | torch.lerp: lambda input, end, weight, out=None: -1, | 
|  | torch.lgamma: lambda input, out=None: -1, | 
|  | torch.lobpcg: lambda input, k=None, B=None, X=None, n=None, iK=None, niter=None, tol=None, largest=None, method=None, | 
|  | tracker=None, ortho_iparams=None, ortho_fparams=None, ortho_bparams=None: -1, | 
|  | torch.log: lambda input, out=None: -1, | 
|  | torch.log_softmax: lambda input, dim, dtype=None: -1, | 
|  | torch.log10: lambda input, out=None: -1, | 
|  | torch.log1p: lambda input, out=None: -1, | 
|  | torch.log2: lambda input, out=None: -1, | 
|  | torch.logaddexp: lambda input, other, out=None: -1, | 
|  | torch.logaddexp2: lambda input, other, out=None: -1, | 
|  | torch.logdet: lambda input: -1, | 
|  | torch.xlogy: lambda x, y, out=None: -1, | 
|  | torch.logical_and: lambda input, other, out=None: -1, | 
|  | torch.logical_not: lambda input, out=None: -1, | 
|  | torch.logical_or: lambda input, other, out=None: -1, | 
|  | torch.logical_xor: lambda input, other, out=None: -1, | 
|  | torch.logsumexp: lambda input, names, keepdim=False, out=None: -1, | 
|  | torch.logit: lambda input, eps=None: -1, | 
|  | torch.logsumexp: lambda input, names, keepdim=False, out=None: -1, | 
|  | torch.lstm: lambda data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional: -1, | 
|  | torch.lstm_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, | 
|  | torch.lt: lambda input, other, out=None: -1, | 
|  | torch.less: lambda input, other, out=None: -1, | 
|  | torch.lu: lambda A, pivot=True, get_infos=False, out=None: -1, | 
|  | torch.lu_solve: lambda b, LU_data, LU_pivots, out=None: -1, | 
|  | torch.margin_ranking_loss: lambda input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean': -1,  # type: ignore[attr-defined]  # noqa: B950 | 
|  | torch.masked_fill: lambda input, mask, value: -1, | 
|  | torch.masked_scatter: lambda input, mask, source: -1, | 
|  | torch.masked_select: lambda input, mask, out=None: -1, | 
|  | torch.matmul: lambda input, other, out=None: -1, | 
|  | torch.linalg.lu: lambda input, pivot=True, out=None: -1, | 
|  | torch.linalg.lu_factor: lambda input, pivot=True, out=None: -1, | 
|  | torch.linalg.lu_factor_ex: lambda input, pivot=True, check_errors=False, out=None: -1, | 
|  | torch.linalg.lu_solve: lambda LU, pivots, B, left=True, adjoint=False, out=None: -1, | 
|  | torch.linalg.matmul: lambda input, other, out=None: -1,  # alias for torch.matmul | 
|  | torch.matrix_power: lambda input, n: -1, | 
|  | torch.linalg.matrix_power: lambda input, n, out=None: -1, | 
|  | torch.linalg.matrix_rank: lambda input, tol=None, hermitian=False: -1, | 
|  | torch.linalg.multi_dot: lambda tensors, out=None: -1, | 
|  | torch.matrix_exp: lambda input: -1, | 
|  | torch.linalg.matrix_exp: lambda input: -1, | 
|  | torch.max: lambda input, out=None: -1, | 
|  | torch.maximum: lambda input, other, out=None: -1, | 
|  | torch.fmax: lambda input, other, out=None: -1, | 
|  | torch.max_pool1d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, | 
|  | torch.max_pool2d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, | 
|  | torch.max_pool3d: lambda input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False: -1, | 
|  | torch.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | return_indices=False, ceil_mode=False: -1), | 
|  | torch.mean: lambda input, dim=None: -1, | 
|  | torch.nanmean: lambda input, dim=None, keepdim=False, dtype=None, out=None: -1, | 
|  | torch.median: lambda input, dim=None: -1, | 
|  | torch.nanmedian: lambda input, dim=None: -1, | 
|  | torch.meshgrid: lambda *tensors, **kwargs: -1, | 
|  | torch.min: lambda input, out=None: -1, | 
|  | torch.minimum: lambda input, other, out=None: -1, | 
|  | torch.fmin: lambda input, other, out=None: -1, | 
|  | torch.miopen_batch_norm: (lambda input, weight, bias, running_mean, running_var, training, | 
|  | exponential_average_factor, epsilon: -1), | 
|  | torch.miopen_convolution: lambda input, weight, bias, padding, stride, dilation, groups, benchmark, deterministic: -1, | 
|  | torch.miopen_convolution_add_relu: lambda input, weight, z, alpha, bias, stride, padding, dilation, groups: -1, | 
|  | torch.miopen_convolution_relu: lambda input, weight, bias, stride, padding, dilation, groups: -1, | 
|  | torch.miopen_convolution_transpose: (lambda input, weight, bias, padding, output_padding, stride, dilation, | 
|  | groups, benchmark, deterministic: -1), | 
|  | torch.miopen_depthwise_convolution: (lambda input, weight, bias, padding, stride, dilation, groups, benchmark, | 
|  | deterministic: -1), | 
|  | torch.miopen_rnn: (lambda input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, | 
|  | dropout, train, bidirectional, batch_sizes, dropout_state: -1), | 
|  | torch.mm: lambda input, mat2, out=None: -1, | 
|  | torch.mode: lambda input, dim=-1, keepdim=False, out=None: -1, | 
|  | torch.movedim: lambda input, source, destination: -1, | 
|  | torch.moveaxis: lambda input, source, destination: -1, | 
|  | torch.msort: lambda input, descending=False, out=None: -1, | 
|  | torch.mul: lambda input, other, out=None: -1, | 
|  | torch.multiply: lambda input, other, out=None: -1, | 
|  | torch.multinomial: lambda input, num_samples, replacement=False, out=None: -1, | 
|  | torch.mv: lambda input, vec, out=None: -1, | 
|  | torch.mvlgamma: lambda input, p: -1, | 
|  | torch.narrow: lambda input, dim, start, length: -1, | 
|  | torch.narrow_copy: lambda input, dim, start, length: -1, | 
|  | torch.nan_to_num: lambda input, nan=0.0, posinf=None, neginf=None, out=None: -1, | 
|  | torch.native_batch_norm: lambda input, weight, bias, running_mean, running_var, training, momentum, eps: -1, | 
|  | torch.native_dropout: lambda input, p, train: -1, | 
|  | torch.native_layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1, | 
|  | torch.native_group_norm: lambda input, weight, bias, N, C, HxW, group, eps: -1, | 
|  | torch.native_norm: lambda input, p=2: -1, | 
|  | torch.native_norm: lambda input, p=2: -1, | 
|  | torch.native_norm: lambda input, p=2, dim=None, keepdim=False, dtype=None: -1, | 
|  | torch.native_channel_shuffle: lambda input, groups : -1, | 
|  | torch.ne: lambda input, other, out=None: -1, | 
|  | torch.not_equal: lambda input, other, out=None: -1, | 
|  | torch.neg: lambda input, out=None: -1, | 
|  | torch.negative: lambda input, out=None: -1, | 
|  | torch.nextafter: lambda input, other, out=None: -1, | 
|  | torch.nn.functional.adaptive_avg_pool2d: lambda input, output_size: -1, | 
|  | torch.nn.functional.adaptive_avg_pool3d: lambda input, output_size: -1, | 
|  | torch.nn.functional.adaptive_max_pool1d: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.adaptive_max_pool1d_with_indices: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.adaptive_max_pool2d: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.adaptive_max_pool2d_with_indices: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.adaptive_max_pool3d: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.adaptive_max_pool3d_with_indices: lambda input, output_size, return_indices=False: -1, | 
|  | torch.nn.functional.affine_grid: lambda theta, size, align_corners=None: -1, | 
|  | torch.nn.functional.alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1, | 
|  | torch.nn.functional.avg_pool2d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, | 
|  | count_include_pad=True, divisor_override=None: -1), | 
|  | torch.nn.functional.avg_pool3d: (lambda input, kernel_size, stride=None, padding=0, ceil_mode=False, | 
|  | count_include_pad=True, divisor_override=None: -1), | 
|  | torch.nn.functional.batch_norm: (lambda input, running_mean, running_var, weight=None, bias=None, training=False, | 
|  | momentum=0.1, eps=1e-05: -1), | 
|  | torch.nn.functional.bilinear: lambda input1, input2, weight, bias=None: -1, | 
|  | torch.nn.functional.binary_cross_entropy: (lambda input, target, weight=None, size_average=None, reduce=None, | 
|  | reduction="mean": -1), | 
|  | torch.nn.functional.binary_cross_entropy_with_logits: (lambda input, target, weight=None, size_average=None, | 
|  | reduce=None, reduction="mean", pos_weight=None: -1), | 
|  | torch.nn.functional.celu: lambda input, alpha=1.0, inplace=False: -1, | 
|  | torch.nn.functional.cosine_embedding_loss: (lambda input1, input2, target, margin=0, size_average=None, | 
|  | reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.cross_entropy: (lambda input, target, weight=None, size_average=None, ignore_index=-100, | 
|  | reduce=None, reduction="mean", label_smoothing=0.0: -1), | 
|  | torch.nn.functional.ctc_loss: (lambda log_probs, targets, input_lengths, target_lengths, blank=0, | 
|  | reduction='mean', zero_infinity=False: -1), | 
|  | torch.nn.functional.dropout: lambda input, p=0.5, training=True, inplace=False: -1, | 
|  | torch.nn.functional.dropout1d: lambda input, p=0.5, training=True, inplace=False: -1, | 
|  | torch.nn.functional.dropout2d: lambda input, p=0.5, training=True, inplace=False: -1, | 
|  | torch.nn.functional.dropout3d: lambda input, p=0.5, training=True, inplace=False: -1, | 
|  | torch.nn.functional.elu: lambda input, alpha=1.0, inplace=False: -1, | 
|  | torch.nn.functional.embedding: (lambda input, weight, padding_idx=None, max_norm=None, norm_type=2.0, | 
|  | scale_grad_by_freq=False, sparse=False: -1), | 
|  | torch.nn.functional.embedding_bag: (lambda input, weight, offsets=None, max_norm=None, norm_type=2, | 
|  | scale_grad_by_freq=False, mode='mean', sparse=False, per_sample_weights=None, | 
|  | include_last_offset=False, padding_idx=None: -1), | 
|  | torch.nn.functional.feature_alpha_dropout: lambda input, p=0.5, training=False, inplace=False: -1, | 
|  | torch.nn.functional.fold: lambda input, output_size, kernel_size, dilation=1, padding=0, stride=1: -1, | 
|  | torch.nn.functional.fractional_max_pool2d: (lambda input, kernel_size, output_size=None, output_ratio=None, | 
|  | return_indices=False, _random_samples=None: -1), | 
|  | torch.nn.functional.fractional_max_pool2d_with_indices: ( | 
|  | lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, | 
|  | _random_samples=None: -1), | 
|  | torch.nn.functional.fractional_max_pool3d: (lambda input, kernel_size, output_size=None, output_ratio=None, | 
|  | return_indices=False, _random_samples=None: -1), | 
|  | torch.nn.functional.fractional_max_pool3d_with_indices: ( | 
|  | lambda input, kernel_size, output_size=None, output_ratio=None, return_indices=False, | 
|  | _random_samples=None: -1), | 
|  | torch.nn.functional.gaussian_nll_loss: lambda input, target, var, full=False, eps=1e-06, reduction='mean': -1, | 
|  | torch.nn.functional.gelu: lambda input, approximate='none': -1, | 
|  | torch.nn.functional.glu: lambda input, dim=-1: -1, | 
|  | torch.nn.functional.grid_sample: lambda input, grid, mode='bilinear', padding_mode='zeros', align_corners=None: -1, | 
|  | torch.nn.functional.group_norm: lambda input, num_groups, weight=None, bias=None, eps=1e-05: -1, | 
|  | torch.nn.functional.gumbel_softmax: lambda logits, tau=1, hard=False, eps=1e-10, dim=-1: -1, | 
|  | torch.nn.functional.hardshrink: lambda input, lambd=0.5: -1, | 
|  | torch.nn.functional.hardtanh: lambda input, min_val=-1., max_val=1., inplace=False: -1, | 
|  | torch.nn.functional.hinge_embedding_loss: (lambda input, target, margin=1.0, size_average=None, reduce=None, | 
|  | reduction='mean': -1), | 
|  | torch.nn.functional.instance_norm: (lambda input, running_mean=None, running_var=None, weight=None, bias=None, | 
|  | use_input_stats=True, momentum=0.1, eps=1e-05: -1), | 
|  | torch.nn.functional.interpolate: (lambda input, size=None, scale_factor=None, mode='nearest', align_corners=None, | 
|  | recompute_scale_factor=None, antialias=False: -1), | 
|  | torch.nn.functional.kl_div: lambda input, target, size_average=None, reduce=None, reduction='mean', log_target=False: -1, | 
|  | torch.nn.functional.l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1, | 
|  | torch.nn.functional.layer_norm: lambda input, normalized_shape, weight=None, bias=None, eps=1e-05: -1, | 
|  | torch.nn.functional.leaky_relu: lambda input, negative_slope=0.01, inplace=False: -1, | 
|  | torch.nn.functional.linear: lambda input, weight, bias=None: -1, | 
|  | torch.nn.functional.local_response_norm: lambda input, size, alpha=0.0001, beta=0.75, k=1.0: -1, | 
|  | torch.nn.functional.log_softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1, | 
|  | torch.nn.functional.logsigmoid: lambda input: -1, | 
|  | torch.nn.functional.lp_pool1d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1, | 
|  | torch.nn.functional.lp_pool2d: lambda input, norm_type, kernel_size, stride=None, ceil_mode=False: -1, | 
|  | torch.nn.functional.margin_ranking_loss: (lambda input1, input2, target, margin=0, size_average=None, | 
|  | reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.max_pool1d: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | ceil_mode=False, return_indices=False: -1), | 
|  | torch.nn.functional.max_pool1d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | return_indices=False, ceil_mode=False: -1), | 
|  | torch.nn.functional.max_pool2d: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | ceil_mode=False, return_indices=False: -1), | 
|  | torch.nn.functional.max_pool2d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | return_indices=False, ceil_mode=False: -1), | 
|  | torch.nn.functional.max_pool3d: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | return_indices=False, ceil_mode=False: -1), | 
|  | torch.nn.functional.max_pool3d_with_indices: (lambda input, kernel_size, stride=None, padding=0, dilation=1, | 
|  | return_indices=False, ceil_mode=False: -1), | 
|  | torch.nn.functional.max_unpool1d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, | 
|  | torch.nn.functional.max_unpool2d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, | 
|  | torch.nn.functional.max_unpool3d: lambda input, indices, kernel_size, stride=None, padding=0, output_size=None: -1, | 
|  | torch.nn.functional.mse_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1, | 
|  | torch.nn.functional.multi_head_attention_forward: ( | 
|  | lambda query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, | 
|  | add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=True, key_padding_mask=None, | 
|  | need_weights=True, attn_mask=None, use_separate_proj_weight=False, q_proj_weight=None, k_proj_weight=None, | 
|  | v_proj_weight=None, static_k=None, static_v=None, average_attn_weights=None: -1), | 
|  | torch.nn.functional.multi_margin_loss: (lambda input, target, p=1, margin=1.0, weight=None, size_average=None, | 
|  | reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.multilabel_margin_loss: (lambda input, target, size_average=None, reduce=None, | 
|  | reduction='mean': -1), | 
|  | torch.nn.functional.multilabel_soft_margin_loss: (lambda input, target, weight=None, size_average=None, | 
|  | reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.nll_loss: (lambda input, target, weight=None, size_average=None, ignore_index=-100, | 
|  | reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.normalize: lambda input, p=2, dim=1, eps=1e-12, out=None: -1, | 
|  | torch.nn.functional.one_hot: lambda tensor, num_classes=-1: -1, | 
|  | torch.nn.functional.pad: lambda input, pad, mode='constant', value=0: -1, | 
|  | torch.nn.functional.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1, | 
|  | torch.nn.functional.poisson_nll_loss: (lambda input, target, log_input=True, full=False, size_average=None, | 
|  | eps=1e-08, reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.prelu: lambda input, weight: -1, | 
|  | torch.nn.functional.relu: lambda input, inplace=False: -1, | 
|  | torch.nn.functional.relu6: lambda input, inplace=False: -1, | 
|  | torch.nn.functional.rrelu: lambda input, lower=0.125, upper=0.3333333333333333, training=False, inplace=False: -1, | 
|  | torch.nn.functional.selu: lambda input, inplace=False: -1, | 
|  | torch.nn.functional.silu: lambda input, inplace=False: -1, | 
|  | torch.nn.functional.mish: lambda input, inplace=False: -1, | 
|  | torch.nn.functional.smooth_l1_loss: lambda input, target, size_average=None, reduce=None, reduction='mean', beta=1.: -1, | 
|  | torch.nn.functional.huber_loss: lambda input, target, reduction='mean', delta=1.: -1, | 
|  | torch.nn.functional.soft_margin_loss: lambda input, target, size_average=None, reduce=None, reduction='mean': -1, | 
|  | torch.nn.functional.softmax: lambda input, dim=None, _stacklevel=3, dtype=None: -1, | 
|  | torch.nn.functional.softmin: lambda input, dim=None, _stacklevel=3, dtype=None: -1, | 
|  | torch.nn.functional.softplus: lambda input, beta=1, threshold=20: -1, | 
|  | torch.nn.functional.softshrink: lambda input, lambd=0.5: -1, | 
|  | torch.nn.functional.softsign: lambda input: -1, | 
|  | torch.nn.functional.tanhshrink: lambda input: -1, | 
|  | torch.nn.functional.threshold: lambda input, threshold, value, inplace=False: -1, | 
|  | torch.nn.functional.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, | 
|  | swap=False, size_average=None, reduce=None, reduction='mean': -1), | 
|  | torch.nn.functional.triplet_margin_with_distance_loss: (lambda anchor, positive, negative, *, | 
|  | distance_function=None, margin=1.0, | 
|  | swap=False, reduction='mean': -1), | 
|  | torch.nn.functional.unfold: lambda input, kernel_size, dilation=1, padding=0, stride=1: -1, | 
|  | torch.nn.init.uniform_: lambda tensor, a=0., b=1.: -1, | 
|  | torch.nn.init.constant_: lambda tensor, val: -1, | 
|  | torch.nn.init.normal_: lambda tensor, mean=0., std=1.: -1, | 
|  | torch.nn.init.constant_: lambda tensor, val: -1, | 
|  | torch.nn.init.kaiming_uniform_: lambda tensor, a=0, mode='fan_in', nonlinearity='leaky_relu': -1, | 
|  | torch.nonzero: lambda input, as_tuple=False: -1, | 
|  | torch.argwhere: lambda input: -1, | 
|  | torch.norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1, | 
|  | torch.linalg.norm: lambda input, ord=None, dim=None, keepdim=False, out=None, dtype=None: -1, | 
|  | torch.linalg.vector_norm: lambda input, ord=2, dim=None, keepdim=False, out=None, dtype=None: -1, | 
|  | torch.linalg.matrix_norm: lambda input, ord='fro', dim=(-2, -1), keepdim=False, out=None, dtype=None: -1, | 
|  | torch.norm_except_dim: lambda v, pow=2, dim=0: -1, | 
|  | torch.nuclear_norm: lambda input, p='fro', dim=None, keepdim=False, out=None, dtype=None: -1, | 
|  | torch.numel: lambda input: -1, | 
|  | torch.orgqr: lambda input, tau: -1, | 
|  | torch.ormqr: lambda input, input2, input3, left=True, transpose=False: -1, | 
|  | torch.pairwise_distance: lambda x1, x2, p=2.0, eps=1e-06, keepdim=False: -1, | 
|  | torch.permute: lambda self, dim: -1, | 
|  | torch.pca_lowrank: lambda input, q=None, center=True, niter=2: -1, | 
|  | torch.pdist: lambda input, p=2: -1, | 
|  | torch.pinverse: lambda input, rcond=1e-15: -1, | 
|  | torch.linalg.pinv: lambda input, rcond=1e-15, hermitian=False: -1, | 
|  | torch.pixel_shuffle: lambda input, upscale_factor: -1, | 
|  | torch.pixel_unshuffle: lambda input, downscale_factor: -1, | 
|  | torch.poisson: lambda input, generator=None: -1, | 
|  | torch.poisson_nll_loss: lambda input, target, log_input, full, eps, reduction: -1, | 
|  | torch.polygamma: lambda input, n, out=None: -1, | 
|  | torch.positive: lambda input, out=None: -1, | 
|  | torch.prelu: lambda input, weight: -1, | 
|  | torch.ones_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, | 
|  | torch.pow: lambda input, exponent, out=None: -1, | 
|  | torch.prod: lambda input, dtype=None: -1, | 
|  | torch.put: lambda input, index, source, accumulate=False: -1, | 
|  | torch.q_per_channel_axis: lambda input: -1, | 
|  | torch.q_per_channel_scales: lambda input: -1, | 
|  | torch.q_per_channel_zero_points: lambda input: -1, | 
|  | torch.q_scale: lambda input: -1, | 
|  | torch.q_zero_point: lambda input: -1, | 
|  | torch.qr: lambda input, some=True, out=None: -1, | 
|  | torch.linalg.qr: lambda input, mode='reduced', out=None: -1, | 
|  | torch.quantile: lambda input, q, dim=None, keepdim=False, interpolation='linear', out=None: -1, | 
|  | torch.nanquantile: lambda input, q, dim=None, keepdim=False, interpolation='linear', out=None: -1, | 
|  | torch.quantize_per_channel: lambda input, scales, zero_points, axis, dtype: -1, | 
|  | torch.quantize_per_tensor: lambda input, scale, zero_point, dtype: -1, | 
|  | torch.quantize_per_tensor_dynamic: lambda input, dtype, reduce_range: -1, | 
|  | torch.quantized_batch_norm: lambda input, weight, bias, mean, var, eps, output_scale, output_zero_point: -1, | 
|  | torch.quantized_gru_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, | 
|  | col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1), | 
|  |  | 
|  | torch.quantized_lstm_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, | 
|  | col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1), | 
|  | torch.quantized_max_pool1d: (lambda input, kernel_size, stride=tuple(), padding=(0,), | 
|  | dilation=(1,), ceil_mode=False: -1), | 
|  | torch.quantized_max_pool2d: (lambda input, kernel_size, stride=tuple(), padding=(0, 0), | 
|  | dilation=(1, 1), ceil_mode=False: -1), | 
|  | torch.quantized_rnn_relu_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, | 
|  | col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1), | 
|  | torch.quantized_rnn_tanh_cell: (lambda input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, | 
|  | col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh: -1), | 
|  | torch.rad2deg: lambda input, out=None: -1, | 
|  | torch.rand_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, | 
|  | torch.randint_like: lambda input, high, dtype=None, layout=torch.strided, device=None, requires_grad=False: -1, | 
|  | torch.randn_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, | 
|  | torch.ravel: lambda input: -1, | 
|  | torch.real: lambda input, out=None: -1, | 
|  | torch.vdot: lambda input, other, out=None: -1, | 
|  | torch.linalg.vecdot: lambda input, other, dim=-1, out=None: -1, | 
|  | torch.view_as_real: lambda input: -1, | 
|  | torch.view_as_complex: lambda input: -1, | 
|  | torch.reciprocal: lambda input, out=None: -1, | 
|  | torch.relu: lambda input, inplace=False: -1, | 
|  | torch.remainder: lambda input, other, out=None: -1, | 
|  | torch.renorm: lambda input, p, dim, maxnorm, out=None: -1, | 
|  | torch.repeat_interleave: lambda input, dim=None: -1, | 
|  | torch.reshape: lambda input, shape: -1, | 
|  | torch.rnn_relu: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, | 
|  | torch.rnn_relu_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, | 
|  | torch.rnn_tanh: lambda input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first: -1, | 
|  | torch.rnn_tanh_cell: lambda input, hx, w_ih, w_hh, b_ih=None, b_hh=None: -1, | 
|  | torch.roll: lambda input, shifts, dims=None: -1, | 
|  | torch.rot90: lambda input, k=1, dims=(0, 1): -1, | 
|  | torch.round: lambda input, out=None: -1, | 
|  | torch.row_stack: lambda tensors, out=None: -1,  # alias for torch.vstack | 
|  | torch._rowwise_prune: (lambda weight, mask, compressed_indices_dtype: -1), | 
|  | torch.rrelu: lambda input, lower=1. / 8, upper=1. / 3, training=False, inplace=False: -1, | 
|  | torch.rsqrt: lambda input, out=None: -1, | 
|  | torch.rsub: lambda input, other, alpha=1: -1, | 
|  | torch.saddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, | 
|  | torch.scatter: lambda input, dim, index, src: -1, | 
|  | torch.scatter_add: lambda input, dim, index, src: -1, | 
|  | torch.scatter_reduce: lambda input, dim, index, src, reduce, include_self=True: -1, | 
|  | torch.searchsorted: lambda sorted_sequence, input, out_int32=False, right=False, out=None: -1, | 
|  | torch.segment_reduce: lambda data, reduce="max", lengths=None, indices=None, offsets=None, axis=0, unsafe=False: -1, | 
|  | torch.select: lambda input, dim, index: -1, | 
|  | torch.select_scatter: lambda input, src, dim, index: -1, | 
|  | torch.slice_scatter: lambda input, src, dim=0, start=None, end=None, step=1: -1, | 
|  | torch.selu: lambda input, inplace=False: -1, | 
|  | torch.sigmoid: lambda input, out=None: -1, | 
|  | torch.sign: lambda input, out=None: -1, | 
|  | torch.signbit: lambda input, out=None: -1, | 
|  | torch.sgn: lambda input, out=None: -1, | 
|  | torch.sin: lambda input, out=None: -1, | 
|  | torch.sinc: lambda input, out=None: -1, | 
|  | torch.sinh: lambda input, out=None: -1, | 
|  | torch.slogdet: lambda input: -1, | 
|  | torch.linalg.slogdet: lambda input: -1, | 
|  | torch.smm: lambda input, mat2: -1, | 
|  | torch.spmm: lambda input, mat2: -1, | 
|  | torch.softmax: lambda input, dim, dtype=None: -1, | 
|  | torch.linalg.solve: lambda A, B, left=True, out=None: -1, | 
|  | torch.linalg.solve_ex: lambda A, B, left=True, check_errors=False, out=None: -1, | 
|  | torch.sort: lambda input, dim=-1, descending=False, *, stable=False, out=None: -1, | 
|  | torch.split: lambda tensor, split_size_or_sections, dim=0: -1, | 
|  | torch.split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1, | 
|  | torch.sqrt: lambda input, out=None: -1, | 
|  | torch.square: lambda input, out=None: -1, | 
|  | torch.squeeze: lambda input, dim=None, out=None: -1, | 
|  | torch.sspaddmm: lambda input, mat1, mat2, beta=1, alpha=1, out=None: -1, | 
|  | torch.stack: lambda tensors, dim=0, out=None: -1, | 
|  | torch.std: lambda input, dim=None: -1, | 
|  | torch.std_mean: lambda input, dim=None: -1, | 
|  | torch.stft: (lambda input, n_fft, hop_length=None, win_length=None, window=None, center=True, | 
|  | pad_mode='reflect', normalized=False, onesided=True, return_complex=None: -1), | 
|  | torch.sub: lambda input, other, out=None: -1, | 
|  | torch.subtract: lambda input, other, out=None: -1, | 
|  | torch.sum: lambda input, dim=None: -1, | 
|  | torch.nansum: lambda input, dim=None: -1, | 
|  | torch.svd: lambda input, some=True, compute_uv=True, out=None: -1, | 
|  | torch.svd_lowrank: lambda input, q=6, niter=2, M=None: -1, | 
|  | torch.linalg.svd: lambda input, full_matrices=True, out=None: -1, | 
|  | torch.linalg.svdvals: lambda input, out=None: -1, | 
|  | torch.symeig: lambda input, eigenvectors=False, upper=True, out=None: -1, | 
|  | torch.swapaxes: lambda input, dim0, dim1: -1, | 
|  | torch.swapdims: lambda input, axis0, axis1: -1, | 
|  | torch.special.airy_ai: lambda input: -1, | 
|  | torch.special.bessel_j0: lambda input: -1, | 
|  | torch.special.bessel_j1: lambda input: -1, | 
|  | torch.special.bessel_y0: lambda input: -1, | 
|  | torch.special.bessel_y1: lambda input: -1, | 
|  | torch.special.chebyshev_polynomial_t: lambda input, n, out=None: -1, | 
|  | torch.special.chebyshev_polynomial_u: lambda input, n, out=None: -1, | 
|  | torch.special.chebyshev_polynomial_v: lambda input, n, out=None: -1, | 
|  | torch.special.chebyshev_polynomial_w: lambda input, n, out=None: -1, | 
|  | torch.special.digamma: lambda input: -1, | 
|  | torch.special.entr: lambda input: -1, | 
|  | torch.special.erf: lambda input: -1, | 
|  | torch.special.erfc: lambda input: -1, | 
|  | torch.special.erfcx: lambda input: -1, | 
|  | torch.special.erfinv: lambda input: -1, | 
|  | torch.special.exp2: lambda input: -1, | 
|  | torch.special.expit: lambda input: -1, | 
|  | torch.special.expm1: lambda input: -1, | 
|  | torch.special.gammainc: lambda input, other, out=None: -1, | 
|  | torch.special.gammaincc: lambda input, other, out=None: -1, | 
|  | torch.special.gammaln: lambda input: -1, | 
|  | torch.special.hermite_polynomial_h: lambda input, n, out=None: -1, | 
|  | torch.special.hermite_polynomial_he: lambda input, n, out=None: -1, | 
|  | torch.special.i0: lambda input: -1, | 
|  | torch.special.i0e: lambda input: -1, | 
|  | torch.special.i1: lambda input: -1, | 
|  | torch.special.i1e: lambda input: -1, | 
|  | torch.special.laguerre_polynomial_l: lambda input, n, out=None: -1, | 
|  | torch.special.legendre_polynomial_p: lambda input, n, out=None: -1, | 
|  | torch.special.log1p: lambda input: -1, | 
|  | torch.special.log_ndtr: lambda input: -1, | 
|  | torch.special.log_softmax: lambda input, dim, dtype=None: -1, | 
|  | torch.special.logit: lambda input: -1, | 
|  | torch.special.logsumexp: lambda input, dim, keepdim=False, out=None: -1, | 
|  | torch.special.modified_bessel_i0: lambda input: -1, | 
|  | torch.special.modified_bessel_i1: lambda input: -1, | 
|  | torch.special.modified_bessel_k0: lambda input: -1, | 
|  | torch.special.modified_bessel_k1: lambda input: -1, | 
|  | torch.special.multigammaln: lambda input, p: -1, | 
|  | torch.special.ndtr: lambda input: -1, | 
|  | torch.special.ndtri: lambda input: -1, | 
|  | torch.special.polygamma: lambda input, n, out=None: -1, | 
|  | torch.special.psi: lambda input: -1, | 
|  | torch.special.round: lambda input: -1, | 
|  | torch.special.scaled_modified_bessel_k0: lambda input: -1, | 
|  | torch.special.scaled_modified_bessel_k1: lambda input: -1, | 
|  | torch.special.shifted_chebyshev_polynomial_t: lambda input, n, out=None: -1, | 
|  | torch.special.shifted_chebyshev_polynomial_u: lambda input, n, out=None: -1, | 
|  | torch.special.shifted_chebyshev_polynomial_v: lambda input, n, out=None: -1, | 
|  | torch.special.shifted_chebyshev_polynomial_w: lambda input, n, out=None: -1, | 
|  | torch.special.sinc: lambda input: -1, | 
|  | torch.special.softmax: lambda input, dim, dtype=None: -1, | 
|  | torch.special.spherical_bessel_j0: lambda input: -1, | 
|  | torch.special.xlog1py: lambda input, other, out=None: -1, | 
|  | torch.special.xlogy: lambda input, other, out=None: -1, | 
|  | torch.special.zeta: lambda self, other, out=None: -1, | 
|  | torch.t: lambda input: -1, | 
|  | torch.take: lambda input, index: -1, | 
|  | torch.take_along_dim: lambda input, indices, dim=None, out=None: -1, | 
|  | torch.tan: lambda input, out=None: -1, | 
|  | torch.tanh: lambda input, out=None: -1, | 
|  | torch.linalg.tensorinv: lambda a, ind=2: -1, | 
|  | torch.linalg.tensorsolve: lambda a, b, dims=None: -1, | 
|  | torch.tensordot: lambda a, b, dims=2, out=None: -1, | 
|  | torch.tensor_split: lambda input, indices_or_sections, dim=0: -1, | 
|  | torch.threshold: lambda input, threshold, value, inplace=False: -1, | 
|  | torch.tile: lambda input, dims: -1, | 
|  | torch.topk: lambda input, k, dim=-1, descending=False, out=None: -1, | 
|  | torch.trace: lambda input: -1, | 
|  | torch.transpose: lambda input, dim0, dim1: -1, | 
|  | torch.trapz: lambda y, x=None, dim=-1: -1, | 
|  | torch.trapezoid: lambda y, x=None, dim=-1: -1, | 
|  | torch.triangular_solve: lambda input, A, upper=True, transpose=False, unitriangular=False: -1, | 
|  | torch.linalg.solve_triangular: lambda input, B, upper, left=True, unitriangular=False: -1, | 
|  | torch.tril: lambda input, diagonal=0, out=None: -1, | 
|  | torch.triplet_margin_loss: (lambda anchor, positive, negative, margin=1.0, p=2, eps=1e-06, swap=False, | 
|  |  | 
|  | size_average=None, reduce=None, reduction='mean': -1), | 
|  | torch.triu: lambda input, diagonal=0, out=None: -1, | 
|  | torch.true_divide: lambda input, other: -1, | 
|  | torch.trunc: lambda input, out=None: -1, | 
|  | torch.unbind: lambda input, dim=0: -1, | 
|  | torch.unflatten: lambda input, dim, sizes, names: -1, | 
|  | torch.unique: lambda input, sorted=True, return_inverse=False, return_counts=False, dim=None: -1, | 
|  | torch.unique_consecutive: lambda input, return_inverse=False, return_counts=False, dim=None: -1, | 
|  | torch.unsafe_chunk: lambda input, chunks, dim=0: -1, | 
|  | torch.unsafe_split: lambda tensor, split_size_or_sections, dim=0: -1, | 
|  | torch.unsafe_split_with_sizes: lambda tensor, split_size_or_sections, dim=0: -1, | 
|  | torch.unsqueeze: lambda input, dim, out=None: -1, | 
|  | torch.linalg.vander: lambda x, N=None: -1, | 
|  | torch.var: lambda input, dim=None: -1, | 
|  | torch.var_mean: lambda input, dim=None: -1, | 
|  | torch.vsplit: lambda input, indices_or_sections: -1, | 
|  | torch.vstack: lambda tensors, out=None: -1, | 
|  | torch.where: lambda condition, x=None, y=None: -1, | 
|  | torch.zeros_like: lambda input, dtype=None, layout=None, device=None, requires_grad=False: -1, | 
|  | torch._fw_primal_copy: lambda self, level: -1, | 
|  | torch._make_dual_copy: lambda primal, tangent, level: -1, | 
|  | torch.view_as_real_copy: lambda self: -1, | 
|  | torch.view_as_complex_copy: lambda self: -1, | 
|  | torch._conj_copy: lambda self: -1, | 
|  | torch._neg_view_copy: lambda self: -1, | 
|  | torch.as_strided_copy: lambda self, size, stride, storage_offset=None: -1, | 
|  | torch._sparse_broadcast_to_copy: lambda self, size: -1, | 
|  | torch.diagonal_copy: lambda self, offset=0, dim1=0, dim2=1: -1, | 
|  | torch.expand_copy: lambda self, size, *, implicit=False: -1, | 
|  | torch.narrow_copy: lambda self, dim, start, length: -1, | 
|  | torch.permute_copy: lambda self, dims: -1, | 
|  | torch._reshape_alias_copy: lambda self, size, stride: -1, | 
|  | torch.select_copy: lambda self, dim, index: -1, | 
|  | torch.detach_copy: lambda self: -1, | 
|  | torch.slice_copy: lambda self, dim=0, start=None, end=None, step=1: -1, | 
|  | torch.split_copy: lambda self, split_size, dim=0: -1, | 
|  | torch.split_with_sizes_copy: lambda self, split_sizes, dim=0: -1, | 
|  | torch.squeeze_copy: lambda self: -1, | 
|  | torch.squeeze_copy: lambda self, dim: -1, | 
|  | torch.t_copy: lambda self: -1, | 
|  | torch.transpose_copy: lambda self, dim0, dim1: -1, | 
|  | torch.unsqueeze_copy: lambda self, dim: -1, | 
|  | torch._indices_copy: lambda self: -1, | 
|  | torch._values_copy: lambda self: -1, | 
|  | torch.indices_copy: lambda self: -1, | 
|  | torch.values_copy: lambda self: -1, | 
|  | torch.crow_indices_copy: lambda self: -1, | 
|  | torch.col_indices_copy: lambda self: -1, | 
|  | torch.ccol_indices_copy: lambda self: -1, | 
|  | torch.row_indices_copy: lambda self: -1, | 
|  | torch.unbind_copy: lambda self, dim=0: -1, | 
|  | torch.view_copy: lambda self, size: -1, | 
|  | torch.view_copy: lambda self, dtype: -1, | 
|  | torch.unfold_copy: lambda self, dimension, size, step: -1, | 
|  | torch.alias_copy: lambda self: -1, | 
|  | Tensor.__floordiv__: lambda self, other: -1, | 
|  | Tensor.__rfloordiv__: lambda self, other: -1, | 
|  | Tensor.__ifloordiv__: lambda self, other: -1, | 
|  | Tensor.__truediv__: lambda self, other: -1, | 
|  | Tensor.__rtruediv__: lambda self, other: -1, | 
|  | Tensor.__itruediv__: lambda self, other: -1, | 
|  | Tensor.__lshift__: lambda self, other: -1, | 
|  | Tensor.__rlshift__: lambda self, other: -1, | 
|  | Tensor.__ilshift__: lambda self, other: -1, | 
|  | Tensor.__rshift__: lambda self, other: -1, | 
|  | Tensor.__rrshift__: lambda self, other: -1, | 
|  | Tensor.__irshift__: lambda self, other: -1, | 
|  | Tensor.__and__: lambda self, other: -1, | 
|  | Tensor.__or__: lambda self, other: -1, | 
|  | Tensor.__xor__: lambda self, other: -1, | 
|  | Tensor.__float__: lambda self: -1, | 
|  | Tensor.__complex__: lambda self: -1, | 
|  | Tensor.__array__: lambda self, dtype: -1, | 
|  | Tensor.__bool__: lambda self: -1, | 
|  | Tensor.__contains__: lambda self, other: -1, | 
|  | Tensor.__neg__: lambda self: -1, | 
|  | Tensor.__invert__: lambda self: -1, | 
|  | Tensor.__mod__: lambda self, other: -1, | 
|  | Tensor.__rmod__: lambda self, other: -1, | 
|  | Tensor.__imod__: lambda self, other: -1, | 
|  | Tensor.__array_wrap__: lambda self, array: -1, | 
|  | Tensor.__getitem__: lambda self, idx: -1, | 
|  | Tensor.__deepcopy__: lambda self, memo: -1, | 
|  | Tensor.__int__: lambda self: -1, | 
|  | Tensor.__long__: lambda self: -1, | 
|  | Tensor.__index__: lambda self: -1, | 
|  | Tensor.__len__: lambda self: -1, | 
|  | Tensor.__format__: lambda self, format_spec: -1, | 
|  | Tensor.__reduce_ex__: lambda self, proto: -1, | 
|  | Tensor.__reversed__: lambda self: -1, | 
|  | Tensor.__repr__: lambda self, *, tensor_contents=None: -1, | 
|  | Tensor.__setitem__: lambda self, k, v: -1, | 
|  | Tensor.__setstate__: lambda self, d: -1, | 
|  | Tensor.T.__get__: lambda self: -1, | 
|  | Tensor.H.__get__: lambda self: -1, | 
|  | Tensor.mT.__get__: lambda self: -1, | 
|  | Tensor.mH.__get__: lambda self: -1, | 
|  | Tensor._backward_hooks.__get__: lambda self: -1, | 
|  | Tensor._base.__get__: lambda self: -1, | 
|  | Tensor._cdata.__get__: lambda self: -1, | 
|  | Tensor.grad.__get__: lambda self: -1, | 
|  | Tensor._grad.__get__: lambda self: -1, | 
|  | Tensor._grad_fn.__get__: lambda self: -1, | 
|  | Tensor.grad_fn.__get__: lambda self: -1, | 
|  | Tensor._version.__get__: lambda self: -1, | 
|  | Tensor._autocast_to_reduced_precision: lambda self, cuda_enabled, cpu_enabled, cuda_dtype, cpu_dtype: -1, | 
|  | Tensor._autocast_to_full_precision: lambda self, cuda_enabled, cpu_enabled: -1, | 
|  | Tensor.data.__get__: lambda self: -1, | 
|  | Tensor.device.__get__: lambda self: -1, | 
|  | Tensor.dtype.__get__: lambda self: -1, | 
|  | Tensor.is_cuda.__get__: lambda self: -1, | 
|  | Tensor.is_cpu.__get__: lambda self: -1, | 
|  | Tensor.is_xpu.__get__: lambda self: -1, | 
|  | Tensor.is_ipu.__get__: lambda self: -1, | 
|  | Tensor.is_leaf.__get__: lambda self: -1, | 
|  | Tensor.retains_grad.__get__: lambda self: -1, | 
|  | Tensor.is_meta.__get__: lambda self: -1, | 
|  | Tensor.is_mps.__get__: lambda self: -1, | 
|  | Tensor.is_nested.__get__: lambda self: -1, | 
|  | Tensor.is_ort.__get__: lambda self: -1, | 
|  | Tensor.is_mkldnn.__get__: lambda self: -1, | 
|  | Tensor.is_quantized.__get__: lambda self: -1, | 
|  | Tensor.is_sparse.__get__: lambda self: -1, | 
|  | Tensor.is_sparse_csr.__get__: lambda self: -1, | 
|  | Tensor.is_vulkan.__get__: lambda self: -1, | 
|  | Tensor.layout.__get__: lambda self: -1, | 
|  | Tensor.name.__get__: lambda self: -1, | 
|  | Tensor.names.__get__: lambda self: -1, | 
|  | Tensor.ndim.__get__: lambda self: -1, | 
|  | Tensor.output_nr.__get__: lambda self: -1, | 
|  | Tensor.requires_grad.__get__: lambda self: -1, | 
|  | Tensor.shape.__get__: lambda self: -1, | 
|  | Tensor.volatile.__get__: lambda self: -1, | 
|  | Tensor.real.__get__: lambda self: -1, | 
|  | Tensor.imag.__get__: lambda self: -1, | 
|  | Tensor.__cuda_array_interface__.__get__: lambda self: -1, | 
|  | Tensor.type: lambda self, dtype=None, non_blocking=False, **kwargs: -1, | 
|  | Tensor._coalesced_: lambda self: -1, | 
|  | Tensor._dimI: lambda self: -1, | 
|  | Tensor._dimV: lambda self: -1, | 
|  | Tensor._indices: lambda self: -1, | 
|  | Tensor._is_view: lambda self: -1, | 
|  | Tensor._nnz: lambda self: -1, | 
|  | Tensor.crow_indices: lambda self: -1, | 
|  | Tensor.col_indices: lambda self: -1, | 
|  | Tensor.ccol_indices: lambda self: -1, | 
|  | Tensor.row_indices: lambda self: -1, | 
|  | Tensor._update_names: lambda self, names, inplace: -1, | 
|  | Tensor._values: lambda self: -1, | 
|  | Tensor.adjoint: lambda self: -1, | 
|  | Tensor.align_as: lambda self, other: -1, | 
|  | Tensor.align_to: lambda self, order, ellipsis_idx: -1, | 
|  | Tensor.apply_: lambda self, callable: -1, | 
|  | Tensor.as_strided: lambda self, size, stride: -1, | 
|  | Tensor.as_strided_: lambda self, size, stride: -1, | 
|  | Tensor.backward: lambda self, gradient=None, retain_graph=None, create_graph=False, inputs=None: -1, | 
|  | Tensor.bfloat16: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.bool: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.byte: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.char: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.cauchy_: lambda self, median=0, sigma=1, *, generator=None: -1, | 
|  | Tensor.coalesce: lambda self: -1, | 
|  | Tensor._coalesced_: lambda self, coalesced: -1, | 
|  | Tensor.contiguous: lambda self, memory_format=torch.contiguous_format: -1, | 
|  | Tensor.copy_: lambda self, src, non_blocking=False: -1, | 
|  | Tensor.cpu: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.cuda: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.xpu: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.ipu: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.data_ptr: lambda self: -1, | 
|  | Tensor.dense_dim: lambda self: -1, | 
|  | Tensor.diagonal_scatter: lambda self, src, offset=0, dim1=0, dim2=1: -1, | 
|  | Tensor.dim: lambda self: -1, | 
|  | Tensor.double: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.cdouble: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.element_size: lambda self: -1, | 
|  | Tensor.expand: lambda self, size: -1, | 
|  | Tensor.expand_as: lambda self, other: -1, | 
|  | Tensor.exponential_: lambda self, lambd=1, *, generator=None: -1, | 
|  | Tensor.fill_: lambda self, value: -1, | 
|  | Tensor.fill_diagonal_: lambda self, value: -1, | 
|  | Tensor.float: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.cfloat: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.geometric_: lambda self, p, *, generator=None: -1, | 
|  | Tensor.get_device: lambda self: -1, | 
|  | Tensor.half: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.chalf: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.has_names: lambda self: -1, | 
|  | Tensor.indices: lambda self: -1, | 
|  | Tensor.int: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.is_coalesced: lambda self: -1, | 
|  | Tensor.is_contiguous: lambda self: -1, | 
|  | Tensor.is_inference: lambda self: -1, | 
|  | Tensor.is_pinned: lambda self: -1, | 
|  | Tensor.is_set_to: lambda self, tensor: -1, | 
|  | Tensor.is_shared: lambda self: -1, | 
|  | Tensor.item: lambda self: -1, | 
|  | Tensor.log_normal_: lambda self, mean=1, std=2, *, generator=None: -1, | 
|  | Tensor.log_softmax: lambda self, dim: -1, | 
|  | Tensor.long: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.map_: lambda self, tensor, callable: -1, | 
|  | Tensor.map2_: lambda self, x, y, callable: -1, | 
|  | Tensor.mm: lambda self, mat2: -1, | 
|  | Tensor.narrow_copy: lambda self, dimension, start, length: -1, | 
|  | Tensor.ndimension: lambda self: -1, | 
|  | Tensor.nelement: lambda self: -1, | 
|  | Tensor._nested_tensor_size: lambda self: -1, | 
|  | Tensor.normal_: lambda self: -1, | 
|  | Tensor.numpy: lambda self: -1, | 
|  | Tensor.permute: lambda self, dim: -1, | 
|  | Tensor.pin_memory: lambda self: -1, | 
|  | Tensor.put_: lambda self, indices, tensor, accumulate=False: -1, | 
|  | Tensor.qscheme: lambda self: -1, | 
|  | Tensor.random_: lambda self, from_=0, to=None, *, generator=None: -1, | 
|  | Tensor.record_stream: lambda self, stream: -1, | 
|  | Tensor.refine_names: lambda self, names: -1, | 
|  | Tensor.register_hook: lambda self, hook: -1, | 
|  | Tensor.rename: lambda self, name: -1, | 
|  | Tensor.repeat: lambda self, *size: -1, | 
|  | Tensor.requires_grad_: lambda self, requires_grad=True: -1, | 
|  | Tensor.reshape_as: lambda self, other: -1, | 
|  | Tensor.resize: lambda self, *size: -1, | 
|  | Tensor.resize_: lambda self, size: -1, | 
|  | Tensor.resize_as: lambda self, other: -1, | 
|  | Tensor.resize_as_sparse_: lambda self, other: -1, | 
|  | Tensor.retain_grad: lambda self: -1, | 
|  | Tensor.set_: lambda self, source=None, storage_offset=0, size=None, stride=None: -1, | 
|  | Tensor.select_scatter: lambda self, src, dim, index: -1, | 
|  | Tensor.share_memory_: lambda self: -1, | 
|  | Tensor.short: lambda self, memory_format=torch.preserve_format: -1, | 
|  | Tensor.size: lambda self: -1, | 
|  | Tensor.slice_scatter: lambda self, src, dim=0, start=None, end=None, step=1: -1, | 
|  | Tensor.sparse_dim: lambda self: -1, | 
|  | Tensor.sparse_mask: lambda self, mask: -1, | 
|  | Tensor.sparse_resize_: lambda self, size1, size2, dense_dim: -1, | 
|  | Tensor.sparse_resize_and_clear_: lambda self, size1, size2, dense_dim: -1, | 
|  | Tensor.sspaddmm: lambda self, mat1, mat2, beta=1, alpha=1, out=None: -1, | 
|  | Tensor.storage: lambda self: -1, | 
|  | Tensor._storage: lambda self: -1, | 
|  | Tensor.storage_offset: lambda self: -1, | 
|  | Tensor.storage_type: lambda self: -1, | 
|  | Tensor.sum_to_size: lambda self, size: -1, | 
|  | Tensor.tile: lambda self, *reps: -1, | 
|  | Tensor.to: lambda self, dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format: -1, | 
|  | Tensor.to_dense: lambda self, dtype=None: -1, | 
|  | Tensor._to_dense: lambda self, dtype=None: -1, | 
|  | Tensor.to_sparse: lambda self: -1, | 
|  | Tensor.tolist: lambda self: -1, | 
|  | Tensor.to_mkldnn: lambda self: -1, | 
|  | Tensor.type_as: lambda self, other: -1, | 
|  | Tensor.unfold: lambda self, dimension, size, step: -1, | 
|  | Tensor.uniform_: lambda self, from_=0, to=1: -1, | 
|  | Tensor.values: lambda self: -1, | 
|  | Tensor.view: lambda self, shape: -1, | 
|  | Tensor.view_as: lambda self, other: -1, | 
|  | Tensor.zero_: lambda self: -1, | 
|  | Tensor.__dlpack__: lambda self, stream=None: -1, | 
|  | Tensor.__dlpack_device__: lambda self: -1, | 
|  | torch.linalg.lstsq: lambda self, b, cond=None, driver=None: -1, | 
|  | } | 
|  |  | 
|  | ret2 = {} | 
|  | ignored = get_ignored_functions() | 
|  |  | 
|  | for k, v in ret.items(): | 
|  | # Generate methods like __add__ and add_ by default from add | 
|  | names = [ | 
|  | k.__name__,  # Default method | 
|  | k.__name__ + "_",  # Inplace variant | 
|  | "__" + k.__name__ + "__",  # Dunder method | 
|  | "__i" + k.__name__ + "__",  # Inplace dunder method | 
|  | "__r" + k.__name__ + "__",  # Reverse dunder method | 
|  | ] | 
|  |  | 
|  | if k.__name__.startswith("bitwise_"): | 
|  | # bitwise_<op> have dunder methods of the form __<op>__ | 
|  | # And so on. | 
|  | subname = k.__name__[len("bitwise_"):] | 
|  | names.extend([ | 
|  | "__" + subname + "__", | 
|  | "__i" + subname + "__", | 
|  | "__r" + subname + "__" | 
|  | ]) | 
|  |  | 
|  | for name in names: | 
|  | func = getattr(Tensor, name, None) | 
|  | if callable(func) and func not in ret and func not in ignored: | 
|  | ret2[func] = v | 
|  |  | 
|  | ret.update(ret2) | 
|  | return ret | 
|  |  | 
|  | def wrap_torch_function(dispatcher: Callable): | 
|  | """Wraps a given function with ``__torch_function__`` -related functionality. | 
|  |  | 
|  | Parameters | 
|  | ---------- | 
|  | dispatcher: Callable | 
|  | A callable that returns an iterable of Tensor-likes passed into the function. | 
|  |  | 
|  | Note | 
|  | ---- | 
|  | This decorator may reduce the performance of your code. Generally, it's enough to express | 
|  | your code as a series of functions that, themselves, support __torch_function__. If you | 
|  | find yourself in the rare situation where this is not the case, e.g. if you're wrapping a | 
|  | low-level library and you also need it to work for Tensor-likes, then this function is available. | 
|  |  | 
|  | Examples | 
|  | -------- | 
|  | >>> def dispatcher(a): # Must have the same signature as func | 
|  | ...     return (a,) | 
|  | >>> @torch.overrides.wrap_torch_function(dispatcher) | 
|  | >>> def func(a): # This will make func dispatchable by __torch_function__ | 
|  | ...     return a + 0 | 
|  | """ | 
|  | def inner(func): | 
|  | @functools.wraps(func) | 
|  | def wrapped(*args, **kwargs): | 
|  | relevant_args = dispatcher(*args, **kwargs) | 
|  | if has_torch_function(relevant_args): | 
|  | return handle_torch_function(wrapped, relevant_args, *args, **kwargs) | 
|  |  | 
|  | return func(*args, **kwargs) | 
|  |  | 
|  | return wrapped | 
|  |  | 
|  | return inner | 
|  |  | 
|  | def _get_overloaded_args(relevant_args: Iterable[Any]) -> List[Any]: | 
|  | """Returns a list of arguments on which to call __torch_function__. | 
|  |  | 
|  | Checks arguments in relevant_args for __torch_function__ implementations, | 
|  | storing references to the arguments and their types in overloaded_args and | 
|  | overloaded_types in order of calling precedence. Only distinct types are | 
|  | considered. If a type is a subclass of another type it will have higher | 
|  | precedence, otherwise the precedence order is the same as the order of | 
|  | arguments in relevant_args, that is, from left-to-right in the argument list. | 
|  |  | 
|  | The precedence-determining algorithm implemented in this function is | 
|  | described in `NEP-0018`_. | 
|  |  | 
|  | See torch::append_overloaded_arg for the equivalent function in the C++ | 
|  | implementation. | 
|  |  | 
|  | Parameters | 
|  | ---------- | 
|  | relevant_args : iterable of array-like | 
|  | Iterable of array-like arguments to check for __torch_function__ | 
|  | methods. | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | overloaded_args : list | 
|  | Arguments from relevant_args on which to call __torch_function__ | 
|  | methods, in the order in which they should be called. | 
|  |  | 
|  | .. _NEP-0018: | 
|  | https://numpy.org/neps/nep-0018-array-function-protocol.html | 
|  | """ | 
|  | # If torch function is not enabled, there are no overloaded types | 
|  | if not torch._C._is_torch_function_enabled(): | 
|  | return [] | 
|  | # Runtime is O(num_arguments * num_unique_types) | 
|  | overloaded_types: Set[Type] = set() | 
|  | overloaded_args: List[Any] = [] | 
|  | for arg in relevant_args: | 
|  | arg_type = type(arg) | 
|  | # We only collect arguments if they have a unique type, which ensures | 
|  | # reasonable performance even with a long list of possibly overloaded | 
|  | # arguments. | 
|  | # | 
|  | # NB: Important to exclude _disabled_torch_function_impl, otherwise | 
|  | # https://github.com/pytorch/pytorch/issues/64687 | 
|  | if (arg_type not in overloaded_types and hasattr(arg_type, '__torch_function__') and | 
|  | arg_type.__torch_function__ != torch._C._disabled_torch_function_impl): | 
|  | # Create lists explicitly for the first type (usually the only one | 
|  | # done) to avoid setting up the iterator for overloaded_args. | 
|  | if overloaded_types: | 
|  | overloaded_types.add(arg_type) | 
|  | # By default, insert argument at the end, but if it is | 
|  | # subclass of another argument, insert it before that argument. | 
|  | # This ensures "subclasses before superclasses". | 
|  | index = len(overloaded_args) | 
|  | for i, old_arg in enumerate(overloaded_args): | 
|  | if issubclass(arg_type, type(old_arg)): | 
|  | index = i | 
|  | break | 
|  | overloaded_args.insert(index, arg) | 
|  | else: | 
|  | overloaded_types = {arg_type} | 
|  | overloaded_args = [arg] | 
|  | return overloaded_args | 
|  |  | 
|  |  | 
|  | def handle_torch_function( | 
|  | public_api: Callable, relevant_args: Iterable[Any], *args, **kwargs) -> Any: | 
|  | """Implement a function with checks for ``__torch_function__`` overrides. | 
|  |  | 
|  | See torch::autograd::handle_torch_function for the equivalent of this | 
|  | function in the C++ implementation. | 
|  |  | 
|  | Arguments | 
|  | --------- | 
|  | public_api : function | 
|  | Function exposed by the public torch API originally called like | 
|  | ``public_api(*args, **kwargs)`` on which arguments are now being | 
|  | checked. | 
|  | relevant_args : iterable | 
|  | Iterable of arguments to check for __torch_function__ methods. | 
|  | args : tuple | 
|  | Arbitrary positional arguments originally passed into ``public_api``. | 
|  | kwargs : tuple | 
|  | Arbitrary keyword arguments originally passed into ``public_api``. | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | object | 
|  | Result from calling ``implementation`` or an ``__torch_function__`` | 
|  | method, as appropriate. | 
|  |  | 
|  | Raises | 
|  | ------ | 
|  | TypeError : if no implementation is found. | 
|  |  | 
|  | Example | 
|  | ------- | 
|  | >>> def func(a): | 
|  | ...     if has_torch_function_unary(a): | 
|  | ...         return handle_torch_function(func, (a,), a) | 
|  | ...     return a + 0 | 
|  | """ | 
|  | # Check for __torch_function__ methods. | 
|  | overloaded_args = _get_overloaded_args(relevant_args) | 
|  | # overloaded_args already have unique types. | 
|  | types = tuple(map(type, overloaded_args)) | 
|  |  | 
|  | # Check for __torch_function__ mode. | 
|  | if _is_torch_function_mode_enabled(): | 
|  | # if we're here, the mode must be set to a TorchFunctionStackMode | 
|  | # this unsets it and calls directly into TorchFunctionStackMode's torch function | 
|  | with _pop_mode_temporarily() as mode: | 
|  | result = mode.__torch_function__(public_api, types, args, kwargs) | 
|  | if result is not NotImplemented: | 
|  | return result | 
|  |  | 
|  | # Call overrides | 
|  | for overloaded_arg in overloaded_args: | 
|  | # This call needs to become a classmethod call in the future. | 
|  | # See https://github.com/pytorch/pytorch/issues/63767 | 
|  | torch_func_method = overloaded_arg.__torch_function__ | 
|  | if hasattr(torch_func_method, "__self__") and torch_func_method.__self__ is overloaded_arg and \ | 
|  | torch_func_method is not torch._C._disabled_torch_function_impl: | 
|  | warnings.warn("Defining your `__torch_function__ as a plain method is deprecated and " | 
|  | "will be an error in future, please define it as a classmethod.", | 
|  | DeprecationWarning) | 
|  |  | 
|  | # Use `public_api` instead of `implementation` so __torch_function__ | 
|  | # implementations can do equality/identity comparisons. | 
|  | result = torch_func_method(public_api, types, args, kwargs) | 
|  |  | 
|  | if result is not NotImplemented: | 
|  | return result | 
|  |  | 
|  | func_name = '{}.{}'.format(public_api.__module__, public_api.__name__) | 
|  | msg = ( | 
|  | "no implementation found for '{}' on types that implement " | 
|  | '__torch_function__: {}' | 
|  | ).format(func_name, [type(arg) for arg in overloaded_args]) | 
|  | if _is_torch_function_mode_enabled(): | 
|  | msg += f" nor in mode {_get_current_function_mode()}" | 
|  | raise TypeError(msg) | 
|  |  | 
|  | has_torch_function = _add_docstr( | 
|  | _has_torch_function, | 
|  | r"""Check for __torch_function__ implementations in the elements of an iterable | 
|  | or if a __torch_function__ mode is enabled.  Considers exact ``Tensor`` s | 
|  | and ``Parameter`` s non-dispatchable.  Use this to guard a call to | 
|  | :func:`handle_torch_function`; don't use it to test if something | 
|  | is Tensor-like, use :func:`is_tensor_like` instead. | 
|  | Arguments | 
|  | --------- | 
|  | relevant_args : iterable | 
|  | Iterable or aguments to check for __torch_function__ methods. | 
|  | Returns | 
|  | ------- | 
|  | bool | 
|  | True if any of the elements of relevant_args have __torch_function__ | 
|  | implementations, False otherwise. | 
|  | See Also | 
|  | ________ | 
|  | torch.is_tensor_like | 
|  | Checks if something is a Tensor-like, including an exact ``Tensor``. | 
|  | """ | 
|  | ) | 
|  |  | 
|  | has_torch_function_unary = _add_docstr( | 
|  | _has_torch_function_unary, | 
|  | r"""Special case of `has_torch_function` for single inputs. | 
|  | Instead of: | 
|  | `has_torch_function((t,))` | 
|  | call: | 
|  | `has_torch_function_unary(t)` | 
|  | which skips unnecessary packing and unpacking work. | 
|  | """ | 
|  | ) | 
|  |  | 
|  | has_torch_function_variadic = _add_docstr( | 
|  | _has_torch_function_variadic, | 
|  | r"""Special case of `has_torch_function` that skips tuple creation. | 
|  |  | 
|  | This uses the METH_FASTCALL protocol introduced in Python 3.7 | 
|  |  | 
|  | Instead of: | 
|  | `has_torch_function((a, b))` | 
|  | call: | 
|  | `has_torch_function_variadic(a, b)` | 
|  | which skips unnecessary packing and unpacking work. | 
|  | """ | 
|  | ) | 
|  |  | 
|  | @functools.lru_cache(None) | 
|  | def _get_overridable_functions() -> Tuple[Dict[Any, List[Callable]], Dict[Callable, str]]: | 
|  | overridable_funcs = collections.defaultdict(list) | 
|  | index = {} | 
|  | tested_namespaces = [ | 
|  | ("torch", torch, torch.__all__ + dir(torch._C._VariableFunctions)), | 
|  | ("torch.functional", torch.functional, torch.functional.__all__), | 
|  | ("torch.nn.functional", torch.nn.functional, dir(torch.nn.functional)), | 
|  | ("torch.nn.init", torch.nn.init, dir(torch.nn.init)), | 
|  | ("torch.Tensor", torch.Tensor, dir(torch.Tensor)), | 
|  | ("torch.linalg", torch.linalg, dir(torch.linalg)), | 
|  | ("torch.fft", torch.fft, dir(torch.fft)), | 
|  | ("torch.special", torch.special, dir(torch.special)), | 
|  | ] | 
|  | for namespace_str, namespace, ns_funcs in tested_namespaces: | 
|  | for func_name in ns_funcs: | 
|  | ignore = False | 
|  | # ignore private functions or functions that are deleted in torch.__init__ | 
|  | if namespace is not torch.Tensor: | 
|  | if func_name.startswith('__'): | 
|  | continue | 
|  | elif func_name.startswith('_'): | 
|  | ignore = True | 
|  | elif func_name.endswith('_'): | 
|  | ignore = True | 
|  | elif not func_name[0].islower(): | 
|  | ignore = True | 
|  | elif func_name == 'unique_dim': | 
|  | continue | 
|  | else: | 
|  | func = getattr(namespace, func_name) | 
|  | if getattr(object, func_name, None) == func: | 
|  | continue | 
|  | if func_name == '__weakref__': | 
|  | continue | 
|  | func = getattr(namespace, func_name) | 
|  | if namespace is torch.Tensor and getattr(object, func_name, None) == func: | 
|  | continue | 
|  | # ignore re-exported modules | 
|  | if isinstance(func, types.ModuleType): | 
|  | continue | 
|  | # ignore __future__ imports | 
|  | if isinstance(func, __future__._Feature): | 
|  | continue | 
|  |  | 
|  | if not callable(func) and hasattr(func, "__get__"): | 
|  | index[func.__get__] = f"{namespace_str}.{func_name}.__get__" | 
|  | index[func.__set__] = f"{namespace_str}.{func_name}.__set__" | 
|  | if ignore: | 
|  | continue | 
|  | if func.__get__ in get_ignored_functions(): | 
|  | msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions " | 
|  | "but still has an explicit override") | 
|  | assert func.__get__ not in get_testing_overrides(), msg.format(namespace, func.__name__) | 
|  | continue | 
|  | else: | 
|  | overridable_funcs[func].append(func.__get__) | 
|  | continue | 
|  |  | 
|  | if not callable(func): | 
|  | continue | 
|  |  | 
|  | index[func] = f"{namespace_str}.{func_name}" | 
|  |  | 
|  | if ignore: | 
|  | continue | 
|  |  | 
|  | # cannot be overriden by __torch_function__ | 
|  | if func in get_ignored_functions(): | 
|  | msg = ("{}.{} is in the tuple returned by torch._overrides.get_ignored_functions " | 
|  | "but still has an explicit override") | 
|  | assert func not in get_testing_overrides(), msg.format(namespace, func.__name__) | 
|  | continue | 
|  | overridable_funcs[namespace].append(func) | 
|  | return overridable_funcs, index | 
|  |  | 
|  | def get_overridable_functions() -> Dict[Any, List[Callable]]: | 
|  | """List functions that are overridable via __torch_function__ | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | Dict[Any, List[Callable]] | 
|  | A dictionary that maps namespaces that contain overridable functions | 
|  | to functions in that namespace that can be overridden. | 
|  | """ | 
|  | return _get_overridable_functions()[0] | 
|  |  | 
|  | def resolve_name(f): | 
|  | """Get a human readable string name for a function passed to | 
|  | __torch_function__ | 
|  |  | 
|  | Arguments | 
|  | --------- | 
|  | callable : Callable | 
|  | Function to resolve the name of. | 
|  |  | 
|  | Returns | 
|  | ------- | 
|  | str | 
|  | Name of the function; if eval'ed it should give back the input | 
|  | function. | 
|  | """ | 
|  | if isinstance(f, torch._ops.OpOverload) or isinstance(f, torch._ops.OpOverloadPacket): | 
|  | return str(f) | 
|  | return _get_overridable_functions()[1].get(f) | 
|  |  | 
|  | @functools.lru_cache(None) | 
|  | def _get_tensor_methods() -> Set[Callable]: | 
|  | """ Returns a set of the overridable methods on ``torch.Tensor`` """ | 
|  | overridable_funcs = get_overridable_functions() | 
|  | methods = set(overridable_funcs[torch.Tensor]) | 
|  | return methods | 
|  |  | 
|  | def is_tensor_method_or_property(func: Callable) -> bool: | 
|  | """ | 
|  | Returns True if the function passed in is a handler for a | 
|  | method or property belonging to ``torch.Tensor``, as passed | 
|  | into ``__torch_function__``. | 
|  |  | 
|  | .. note:: | 
|  | For properties, their ``__get__`` method must be passed in. | 
|  |  | 
|  | This may be needed, in particular, for the following reasons: | 
|  |  | 
|  | 1. Methods/properties sometimes don't contain a `__module__` slot. | 
|  | 2. They require that the first passed-in argument is an instance | 
|  | of ``torch.Tensor``. | 
|  |  | 
|  | Examples | 
|  | -------- | 
|  | >>> is_tensor_method_or_property(torch.Tensor.add) | 
|  | True | 
|  | >>> is_tensor_method_or_property(torch.add) | 
|  | False | 
|  | """ | 
|  | return func in _get_tensor_methods() or func.__name__ == "__get__" | 
|  |  | 
|  | def is_tensor_like(inp): | 
|  | """ | 
|  | Returns ``True`` if the passed-in input is a Tensor-like. | 
|  |  | 
|  | Currently, this occurs whenever there's a ``__torch_function__`` | 
|  | attribute on the type of the input. | 
|  |  | 
|  | Examples | 
|  | -------- | 
|  | A subclass of tensor is generally a Tensor-like. | 
|  |  | 
|  | >>> class SubTensor(torch.Tensor): ... | 
|  | >>> is_tensor_like(SubTensor([0])) | 
|  | True | 
|  |  | 
|  | Built-in or user types aren't usually Tensor-like. | 
|  |  | 
|  | >>> is_tensor_like(6) | 
|  | False | 
|  | >>> is_tensor_like(None) | 
|  | False | 
|  | >>> class NotATensor: ... | 
|  | >>> is_tensor_like(NotATensor()) | 
|  | False | 
|  |  | 
|  | But, they can be made Tensor-like by implementing __torch_function__. | 
|  |  | 
|  | >>> class TensorLike: | 
|  | ...     @classmethod | 
|  | ...     def __torch_function__(cls, func, types, args, kwargs): | 
|  | ...         return -1 | 
|  | >>> is_tensor_like(TensorLike()) | 
|  | True | 
|  | """ | 
|  | return type(inp) is torch.Tensor or hasattr(type(inp), "__torch_function__") | 
|  |  | 
|  | class TorchFunctionMode: | 
|  | """ | 
|  | A ``TorchFunctionMode`` allows you to override the meaning of all | 
|  | ``__torch_function__`` overrideable functions within a dynamic scope, | 
|  | without having to actually create a tensor subclass or manually | 
|  | monkey-patch functions in the PyTorch API.  Some common situations | 
|  | where you should use a mode: | 
|  |  | 
|  | * You want to override the meaning of factory functions, or other | 
|  | functions that do not otherwise take a tensor as an argument | 
|  | (these cannot be overridden with tensor subclasses). | 
|  |  | 
|  | * You want to override the behavior of all functions without needing | 
|  | to wrap your inputs in tensor subclasses; e.g., if you are just | 
|  | interested in logging intermediate computations. | 
|  |  | 
|  | * You want to control the order of execution of various tensor | 
|  | subclasses explicitly, rather than implicitly via the return of | 
|  | ``NotImplemented``. | 
|  |  | 
|  | Independent subclasses of :class:`TorchFunctionMode` are compositional: | 
|  | modes can be pushed onto a stack using ``with MyMode():``. | 
|  | When you call functions in the PyTorch API inside your | 
|  | ``__torch_function__`` implementation, by default, they will forward on to | 
|  | the next mode on the mode stack.  If you want recursively call back into | 
|  | your current ``__torch_function__`` implementation, either explicitly | 
|  | invoke ``self.__torch_function__(...)``, or use the context manager | 
|  | ``enable_torch_function_mode(self, replace=self.inner)`` to make PyTorch | 
|  | API self-referential (beware of infinite loops, in this case!) | 
|  | """ | 
|  | inner: "TorchFunctionMode" | 
|  |  | 
|  | # Force metaclass to generate constructor at the base of the hierarchy | 
|  | def __init__(self): | 
|  | pass | 
|  |  | 
|  | def __torch_function__(self, func, types, args=(), kwargs=None): | 
|  | raise NotImplementedError() | 
|  |  | 
|  | def __enter__(self): | 
|  | _push_mode(self) | 
|  | return self | 
|  |  | 
|  | def __exit__(self, exc_type, exc_val, exc_tb): | 
|  | _pop_mode() | 
|  |  | 
|  | @classmethod | 
|  | def push(cls, *args, **kwargs): | 
|  | warnings.warn("`Mode.push()` is no longer necessary and can be replaced with just `with Mode()`") | 
|  | instance = cls(*args, **kwargs) | 
|  | return instance | 
|  |  | 
|  |  | 
|  | def _get_current_function_mode(): | 
|  | stack_len = _len_torch_function_stack() | 
|  | return _get_function_stack_at(stack_len - 1) if stack_len > 0 else None | 
|  |  | 
|  |  | 
|  | def _get_current_function_mode_stack(): | 
|  | stack_len = _len_torch_function_stack() | 
|  | return [_get_function_stack_at(i) for i in range(stack_len)] | 
|  |  | 
|  | def _push_mode(mode): | 
|  | _push_on_torch_function_stack(mode) | 
|  |  | 
|  |  | 
|  | def _pop_mode(): | 
|  | old = _pop_torch_function_stack() | 
|  | return old | 
|  |  | 
|  |  | 
|  | @contextlib.contextmanager | 
|  | def _pop_mode_temporarily(): | 
|  | old = _pop_mode() | 
|  | try: | 
|  | yield old | 
|  | finally: | 
|  | _push_mode(old) | 
|  |  | 
|  | class BaseTorchFunctionMode(TorchFunctionMode): | 
|  | def __torch_function__(self, func, types, args=(), kwargs=None): | 
|  | if kwargs is None: | 
|  | kwargs = {} | 
|  | return func(*args, **kwargs) | 
|  |  | 
|  |  | 
|  | class enable_reentrant_dispatch(): | 
|  | def __enter__(self): | 
|  | self._raii_guard = torch._C._RestorePythonTLSSnapshot() | 
|  |  | 
|  | def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: | 
|  | del self._raii_guard | 
|  |  | 
|  | def get_buffer(tensor_subclass, data, prefix): | 
|  | import ctypes | 
|  | assert prefix in {"stride", "size", "sym_size"} | 
|  | buffer_name = f"_{prefix}_buffer" | 
|  | if not hasattr(tensor_subclass, buffer_name): | 
|  | SizeType = ctypes.c_longlong * len(data) | 
|  | setattr(tensor_subclass, buffer_name, SizeType(*data)) | 
|  | ptr = ctypes.addressof(getattr(tensor_subclass, buffer_name)) | 
|  | return (ptr, len(data)) |