blob: 92f438441a8fed3401f351ccb085fb328a2d96cc [file] [log] [blame]
import os
import sys
import yaml
from optparse import OptionParser
import cwrap_parser
import nn_parse
import preprocess_declarations
import function_wrapper
import dispatch_macros
import copy_wrapper
from code_template import CodeTemplate
parser = OptionParser()
parser.add_option('-s', '--source-path', help='path to source director for tensorlib',
action='store', default='.')
parser.add_option('-p', '--print-dependencies',
help='only output a list of dependencies', action='store_true')
parser.add_option('-n', '--no-cuda', action='store_true')
options, files = parser.parse_args()
TEMPLATE_PATH = options.source_path + "/templates"
GENERATOR_DERIVED = CodeTemplate.from_file(
TEMPLATE_PATH + "/GeneratorDerived.h")
STORAGE_DERIVED_CPP = CodeTemplate.from_file(
TEMPLATE_PATH + "/StorageDerived.cpp")
STORAGE_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/StorageDerived.h")
TYPE_DERIVED_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.cpp")
TYPE_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.h")
TYPE_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Type.h")
TYPE_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/Type.cpp")
TENSOR_DERIVED_CPP = CodeTemplate.from_file(
TEMPLATE_PATH + "/TensorDerived.cpp")
TENSOR_SPARSE_CPP = CodeTemplate.from_file(
TEMPLATE_PATH + "/TensorSparse.cpp")
TENSOR_DENSE_CPP = CodeTemplate.from_file(
TEMPLATE_PATH + "/TensorDense.cpp")
TENSOR_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorDerived.h")
TENSOR_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Tensor.h")
TENSOR_METHODS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorMethods.h")
FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Functions.h")
generators = {
'CPUGenerator.h': {
'name': 'CPU',
'th_generator': 'THGenerator * generator;',
'header': 'TH/TH.h',
},
'CUDAGenerator.h': {
'name': 'CUDA',
'th_generator': '',
'header': 'THC/THC.h'
},
}
backends = ['CPU']
if not options.no_cuda:
backends.append('CUDA')
densities = ['Dense','Sparse']
scalar_types = [
('Byte', 'uint8_t', 'Long', 'unsigned char'),
('Char', 'int8_t', 'Long', 'char'),
('Double', 'double', 'Double', 'double'),
('Float', 'float', 'Double', 'float'),
('Int', 'int', 'Long', 'int'),
('Long', 'int64_t', 'Long', 'long'),
('Short', 'int16_t', 'Long', 'short'),
('Half', 'Half', 'Double', 'THHalf'),
]
# shared environment for non-derived base classes Type.h Tensor.h Storage.h
top_env = {
'type_registrations': [],
'type_headers': [],
'type_method_declarations': [],
'type_method_definitions': [],
'tensor_method_declarations': [],
'tensor_method_definitions': [],
'function_declarations': [],
'function_definitions': [],
'type_ids': [],
}
def write(filename, s):
filename = "ATen/" + filename
if options.print_dependencies:
sys.stderr.write(filename + ";")
return
with open(filename, "w") as f:
f.write(s)
def generate_storage_type_and_tensor(backend, density, scalar_type, declarations):
scalar_name, c_type, accreal, th_scalar_type = scalar_type
env = {}
density_tag = 'Sparse' if density == 'Sparse' else ''
th_density_tag = 'S' if density == 'Sparse' else ''
env['Density'] = density
env['ScalarName'] = scalar_name
env['ScalarType'] = c_type
env['THScalarType'] = th_scalar_type
env['AccScalarName'] = accreal
env['Storage'] = "{}{}Storage".format(backend, scalar_name)
env['Type'] = "{}{}{}Type".format(density_tag, backend, scalar_name)
env['Tensor'] = "{}{}{}Tensor".format(density_tag, backend, scalar_name)
env['Backend'] = density_tag+backend
# used for generating switch logic for external functions
tag = density_tag + backend + scalar_name
env['TypeID'] = 'TypeID::' + tag
top_env['type_ids'].append(tag + ',')
if backend == 'CUDA':
env['th_headers'] = ['#include <THC/THC.h>',
'#include <THCUNN/THCUNN.h>',
'#undef THNN_',
'#undef THCIndexTensor_']
if density == 'Sparse':
env['th_headers'] += ['#include <THCS/THCS.h>',
'#undef THCIndexTensor_']
sname = '' if scalar_name == "Float" else scalar_name
env['THType'] = 'Cuda{}'.format(sname)
env['THStorage'] = 'THCuda{}Storage'.format(sname)
if density == 'Dense':
env['THTensor'] = 'THCuda{}Tensor'.format(sname)
else:
env['THTensor'] = 'THCS{}Tensor'.format(scalar_name)
env['THIndexTensor'] = 'THCudaLongTensor'
env['state'] = ['context->thc_state']
env['isCUDA'] = 'true'
env['storage_device'] = 'return storage->device;'
env['Generator'] = 'CUDAGenerator'
else:
env['th_headers'] = ['#include <TH/TH.h>',
'#include <THNN/THNN.h>',
'#undef THNN_']
if density == 'Sparse':
env['th_headers'].append('#include <THS/THS.h>')
env['THType'] = scalar_name
env['THStorage'] = "TH{}Storage".format(scalar_name)
env['THTensor'] = 'TH{}{}Tensor'.format(th_density_tag,scalar_name)
env['THIndexTensor'] = 'THLongTensor'
env['state'] = []
env['isCUDA'] = 'false'
env['storage_device'] = 'throw std::runtime_error("CPU storage has no device");'
env['Generator'] = 'CPUGenerator'
env['AS_REAL'] = env['ScalarType']
if scalar_name == "Half":
if backend == "CUDA":
env['to_th_type'] = 'HalfFix<__half,Half>'
env['to_at_type'] = 'HalfFix<Half,__half>'
env['AS_REAL'] = 'convert<half,double>'
env['THScalarType'] = 'half'
else:
env['to_th_type'] = 'HalfFix<THHalf,Half>'
env['to_at_type'] = 'HalfFix<Half,THHalf>'
elif scalar_name == 'Long':
env['to_th_type'] = 'long'
env['to_at_type'] = 'int64_t'
else:
env['to_th_type'] = ''
env['to_at_type'] = ''
declarations, definitions = function_wrapper.create_derived(
env, declarations)
env['type_derived_method_declarations'] = declarations
env['type_derived_method_definitions'] = definitions
if density != 'Sparse':
# there are no special storage types for Sparse, they are composed
# of Dense tensors
write(env['Storage'] + ".cpp", STORAGE_DERIVED_CPP.substitute(env))
write(env['Storage'] + ".h", STORAGE_DERIVED_H.substitute(env))
env['TensorDenseOrSparse'] = TENSOR_DENSE_CPP.substitute(env)
else:
env['TensorDenseOrSparse'] = TENSOR_SPARSE_CPP.substitute(env)
write(env['Type'] + ".cpp", TYPE_DERIVED_CPP.substitute(env))
write(env['Type'] + ".h", TYPE_DERIVED_H.substitute(env))
write(env['Tensor'] + ".cpp", TENSOR_DERIVED_CPP.substitute(env))
write(env['Tensor'] + ".h", TENSOR_DERIVED_H.substitute(env))
type_register = (('context->type_registry[static_cast<int>(Backend::{})]' +
'[static_cast<int>(ScalarType::{})].reset(new {}(context));')
.format(env['Backend'], scalar_name, env['Type']))
top_env['type_registrations'].append(type_register)
top_env['type_headers'].append(
'#include "ATen/{}.h"'.format(env['Type']))
return env
cwrap_files = [f for f in files if f.endswith('.cwrap')]
nn_files = [f for f in files if f.endswith('.h')]
declarations = [d
for file in cwrap_files
for d in cwrap_parser.parse(file)]
declarations += nn_parse.run(nn_files)
declarations = preprocess_declarations.run(declarations)
# print(yaml.dump(declarations))
for fname, env in generators.items():
write(fname, GENERATOR_DERIVED.substitute(env))
# note: this will fill in top_env['type/tensor_method_declarations/definitions']
# and modify the declarations to include any information that will all_backends
# be used by function_wrapper.create_derived
function_wrapper.create_generic(top_env, declarations)
# populated by generate_storage_type_and_tensor
all_types = []
for backend in backends:
for density in densities:
for scalar_type in scalar_types:
if density == 'Sparse' and scalar_type[0] == 'Half':
# THS does not do half type yet.
continue
all_types.append(generate_storage_type_and_tensor(
backend, density, scalar_type, declarations))
write('Type.h', TYPE_H.substitute(top_env))
write('Type.cpp', TYPE_CPP.substitute(top_env))
write('Tensor.h', TENSOR_H.substitute(top_env))
write('TensorMethods.h', TENSOR_METHODS_H.substitute(top_env))
write('Functions.h', FUNCTIONS_H.substitute(top_env))
write('Dispatch.h', dispatch_macros.create(all_types))
write('Copy.cpp', copy_wrapper.create(all_types))