| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class NAdam(Optimizer): |
| r"""Implements NAdam algorithm. |
| |
| It has been proposed in `Incorporating Nesterov Momentum into Adam`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 2e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| momentum_decay (float, optional): momentum momentum_decay (default: 4e-3) |
| |
| .. _Incorporating Nesterov Momentum into Adam: |
| https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ |
| """ |
| |
| def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, |
| weight_decay=0, momentum_decay=4e-3): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| if not 0.0 <= momentum_decay: |
| raise ValueError("Invalid momentum_decay value: {}".format(momentum_decay)) |
| defaults = dict(lr=lr, betas=betas, eps=eps, |
| weight_decay=weight_decay, momentum_decay=momentum_decay) |
| super(NAdam, self).__init__(params, defaults) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| mu_products = [] |
| state_steps = [] |
| beta1, beta2 = group['betas'] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError('NAdam does not support sparse gradients') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| # Lazy state initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| state['mu_product'] = 1. |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| exp_avgs.append(state['exp_avg']) |
| exp_avg_sqs.append(state['exp_avg_sq']) |
| mu_products.append(state['mu_product']) |
| |
| # update the steps for each param group update |
| state['step'] += 1 |
| # record the step after step update |
| state_steps.append(state['step']) |
| |
| F.nadam(params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| mu_products, |
| state_steps, |
| beta1=beta1, |
| beta2=beta2, |
| lr=group['lr'], |
| weight_decay=group['weight_decay'], |
| momentum_decay=group['momentum_decay'], |
| eps=group['eps']) |
| |
| # update mu_product |
| for p, mu_product in zip(params_with_grad, mu_products): |
| state = self.state[p] |
| state['mu_product'] = state['mu_product'] * beta1 * \ |
| (1. - 0.5 * (0.96 ** (state['step'] * group['momentum_decay']))) |
| |
| return loss |