| import torch |
| from . import _functional as F |
| from .optimizer import Optimizer |
| |
| |
| class Adagrad(Optimizer): |
| """Implements Adagrad algorithm. |
| |
| It has been proposed in `Adaptive Subgradient Methods for Online Learning |
| and Stochastic Optimization`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| lr_decay (float, optional): learning rate decay (default: 0) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-10) |
| |
| .. _Adaptive Subgradient Methods for Online Learning and Stochastic |
| Optimization: http://jmlr.org/papers/v12/duchi11a.html |
| """ |
| |
| def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= lr_decay: |
| raise ValueError("Invalid lr_decay value: {}".format(lr_decay)) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| if not 0.0 <= initial_accumulator_value: |
| raise ValueError("Invalid initial_accumulator_value value: {}".format(initial_accumulator_value)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| |
| defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay, |
| initial_accumulator_value=initial_accumulator_value) |
| super(Adagrad, self).__init__(params, defaults) |
| |
| for group in self.param_groups: |
| for p in group['params']: |
| state = self.state[p] |
| state['step'] = 0 |
| state['sum'] = torch.full_like(p, initial_accumulator_value, memory_format=torch.preserve_format) |
| |
| def share_memory(self): |
| for group in self.param_groups: |
| for p in group['params']: |
| state = self.state[p] |
| state['sum'].share_memory_() |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| state_sums = [] |
| state_steps = [] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| grads.append(p.grad) |
| state = self.state[p] |
| state_sums.append(state['sum']) |
| # update the steps for each param group update |
| state['step'] += 1 |
| # record the step after step update |
| state_steps.append(state['step']) |
| |
| F.adagrad(params_with_grad, |
| grads, |
| state_sums, |
| state_steps, |
| lr=group['lr'], |
| weight_decay=group['weight_decay'], |
| lr_decay=group['lr_decay'], |
| eps=group['eps']) |
| |
| return loss |