blob: cbf08be66541dbdad9f6f6fa97ba25b3c0377b17 [file] [log] [blame]
import torch
from torch.fx import ( # type: ignore
GraphModule,
Proxy,
map_arg
)
from torch.fx.graph import (
Graph,
Node,
)
from torch.fx.node import Argument
from torch.quantization import (
propagate_qconfig_,
convert,
)
from ..quantization_mappings import (
get_default_qat_module_mappings,
)
from ..quantize import (
_remove_qconfig,
is_activation_post_process
)
from ..utils import (
get_combined_dict,
get_swapped_custom_module_class,
weight_is_quantized,
activation_is_statically_quantized,
activation_is_int8_quantized,
activation_dtype,
weight_dtype,
)
from .pattern_utils import (
is_match,
get_default_quant_patterns,
get_default_output_activation_post_process_map,
input_output_observed,
Pattern,
)
from .graph_module import (
is_observed_module,
is_observed_standalone_module,
ObservedGraphModule,
ObservedStandaloneGraphModule,
QuantizedGraphModule,
)
from .quantization_patterns import *
from .utils import (
_parent_name,
all_node_args_have_no_tensors,
quantize_node,
get_custom_module_class_keys,
get_new_attr_name_with_prefix,
collect_producer_nodes,
graph_module_from_producer_nodes,
assert_and_get_unique_device,
node_return_type_is_int,
)
from .qconfig_utils import *
from collections import defaultdict
from typing import Optional, Dict, Any, List, Tuple, Set, Callable
# Define helper types
MatchResult = Tuple[Node, List[Node], Optional[Pattern], QuantizeHandler,
QConfigAny]
# ------------------------
# Helper Functions
# ------------------------
def insert_observer(
node: Node, observer: torch.quantization.ObserverBase,
model: torch.nn.Module,
activation_post_process_map: Dict[str, List[torch.quantization.ObserverBase]],
activation_post_process_indexes: Dict[str, int],
env: Dict[Any, Any], observed_graph: Graph, load_arg: Callable,
observed_node_names_set: Set[str],
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]):
"""Insert observer for node by modifying the observed_graph and
attach observer module to the model
Args:
node: Node
observer: observer/fake_quantize module instance
"""
# In eval mode fixed qparams node are the same as CopyNode and we
# won't insert observer for them
if not model.training and isinstance(observer, torch.quantization.FixedQParamsFakeQuantize):
return
# respect device affinity when adding observers
model_device = assert_and_get_unique_device(model)
if model_device:
observer.to(model_device)
# add observer module as attribute
prefix = node.name + '_activation_post_process_'
get_new_observer_name = get_new_attr_name_with_prefix(prefix)
observer_name = get_new_observer_name(model)
setattr(model, observer_name, observer)
# put observer instance activation_post_process map
assert activation_post_process_map is not None
activation_post_process_map[node.name].append(observer)
# initialize index map for activation_post_process
if node.name not in activation_post_process_indexes:
activation_post_process_indexes[node.name] = 0
# insert observer call
env[node.name] = observed_graph.create_node(
'call_module', observer_name, (load_arg(node),), {})
observed_node_names_set.add(node.name)
def maybe_insert_observer_for_special_module(
quantize_handler: QuantizeHandler, modules: Dict[str, torch.nn.Module],
prepare_custom_config_dict: Any, qconfig: Any, node: Node) -> Optional[List[int]]:
""" Insert observer for custom module and standalone module
Returns: standalone_module_input_idxs: the indexs for inputs that
needs to be observed by parent module
"""
assert modules is not None
standalone_module_input_idxs = None
if isinstance(quantize_handler, CustomModuleQuantizeHandler):
custom_module = modules[node.target] # type: ignore
custom_module_class_mapping = prepare_custom_config_dict.get(
"float_to_observed_custom_module_class", {})
observed_custom_module_class = \
get_swapped_custom_module_class(
custom_module, custom_module_class_mapping, qconfig)
observed_custom_module = \
observed_custom_module_class.from_float(custom_module)
parent_name, name = _parent_name(node.target)
setattr(modules[parent_name], name, observed_custom_module)
elif isinstance(quantize_handler, StandaloneModuleQuantizeHandler):
# observe standalone module
standalone_module = modules[node.target] # type: ignore
standalone_module_name_configs = prepare_custom_config_dict.get("standalone_module_name", [])
standalone_module_class_configs = prepare_custom_config_dict.get("standalone_module_class", [])
class_config_map = {x[0]: (x[1], x[2]) for x in standalone_module_class_configs}
name_config_map = {x[0]: (x[1], x[2]) for x in standalone_module_name_configs}
config = class_config_map.get(type(standalone_module), (None, None))
config = name_config_map.get(node.target, config)
sm_qconfig_dict = {"": qconfig} if config[0] is None else config[0]
sm_prepare_config_dict = {} if config[1] is None else config[1]
prepare = \
torch.quantization.quantize_fx._prepare_standalone_module_fx # type: ignore
observed_standalone_module = \
prepare(standalone_module, sm_qconfig_dict, sm_prepare_config_dict)
standalone_module_input_idxs = observed_standalone_module.\
_standalone_module_input_quantized_idxs.int().tolist()
observed_standalone_module = ObservedStandaloneGraphModule(
observed_standalone_module, observed_standalone_module.graph)
parent_name, name = _parent_name(node.target)
setattr(modules[parent_name], name,
observed_standalone_module)
modules[node.target] = observed_standalone_module # type: ignore
return standalone_module_input_idxs
def insert_observer_for_output_of_the_node(
node: Node,
quantize_handler: QuantizeHandler,
qconfig: Any,
modules: Dict[str, torch.nn.Module],
model: torch.nn.Module,
pattern: Any,
activation_post_process_map: Dict[str, List[torch.quantization.ObserverBase]],
activation_post_process_indexes: Dict[str, int],
env: Dict[Any, Any],
observed_graph: Graph,
load_arg: Callable,
observed_node_names_set: Set[str],
matched_nodes: Optional[List[Node]],
standalone_module_input_idxs: Optional[List[int]],
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]):
""" Insert observer/fake_quantize module for output of the observed
module if needed
"""
# don't need to insert observer for output if activation does not
# need to be statically quantized
assert modules is not None
# TODO: Add warnings in the quantize handlers that does not support fp16 quantization
inserted_observer = False
if activation_is_statically_quantized(qconfig):
if isinstance(quantize_handler, FixedQParamsOpQuantizeHandler) \
and model.training:
# we only insert fake quantize module in qat
assert pattern is not None
if activation_dtype(qconfig) == torch.float16:
activation_post_process_ctr = qconfig.activation
else:
activation_post_process_ctr = \
get_default_output_activation_post_process_map().get(
pattern, None)
assert activation_post_process_ctr is not None, \
"activation_post_process constructor not provided " + \
"for pattern:" + str(pattern)
insert_observer(
node, activation_post_process_ctr(),
model, activation_post_process_map,
activation_post_process_indexes,
env, observed_graph,
load_arg, observed_node_names_set, quants)
inserted_observer = True
elif (isinstance(quantize_handler,
FixedQParamsOpQuantizeHandler) and
not model.training) or \
isinstance(quantize_handler, CopyNodeQuantizeHandler):
# inserting observers for output of observed module, or
# mark the output as observed
assert node.op in [
'call_module',
'call_function',
'call_method'], \
'CopyNodeQuantizeHandler of type ' + node.op + ' is not handled'
def is_observed(input_arg):
if isinstance(input_arg, Node):
return input_arg.name in observed_node_names_set
elif isinstance(input_arg, list):
return all(map(is_observed, input_arg))
# insert observers for fixedqparams ops like sigmoid, since
# it supports fp16 static quantization
if isinstance(quantize_handler, FixedQParamsOpQuantizeHandler) and \
activation_dtype(qconfig) == torch.float16:
insert_observer(
node, qconfig.activation(),
model, activation_post_process_map,
activation_post_process_indexes,
env, observed_graph,
load_arg, observed_node_names_set, quants)
inserted_observer = True
else:
# propagate observed property from input
if is_observed(node.args[0]):
observed_node_names_set.add(node.name)
inserted_observer = True
elif (isinstance(quantize_handler, BinaryOpQuantizeHandler) and
quantize_handler.num_tensor_args == 1):
assert matched_nodes is not None
input_node = matched_nodes[-1] # first node in the sequence
def input_is_observed(arg):
return (isinstance(arg, Node) and
arg.name in observed_node_names_set)
# This is checking if one of the argument of add/mul
# is an observed node
# If both of the inputs are number,
# we will not consider the output to be observed
if (input_is_observed(input_node.args[0]) or
input_is_observed(input_node.args[1])):
observed_node_names_set.add(node.name)
inserted_observer = True
if activation_dtype(qconfig) == torch.float16:
# observer for outputs
new_observer = qconfig.activation()
insert_observer(
node, new_observer, model,
activation_post_process_map,
activation_post_process_indexes,
env, observed_graph,
load_arg, observed_node_names_set, quants)
inserted_observer = True
elif isinstance(quantize_handler,
StandaloneModuleQuantizeHandler):
assert node.op == "call_module"
assert isinstance(node.target, str)
sm_out_qidxs = modules[node.target]._standalone_module_output_quantized_idxs.tolist() # type: ignore
output_is_quantized = 0 in sm_out_qidxs
if output_is_quantized:
observed_node_names_set.add(node.name)
elif (quantize_handler.all_node_args_are_tensors and
input_output_observed(quantize_handler)):
# observer for outputs
new_observer = qconfig.activation()
insert_observer(
node, new_observer, model,
activation_post_process_map,
activation_post_process_indexes,
env, observed_graph,
load_arg, observed_node_names_set, quants)
inserted_observer = True
# insert observer for input of standalone module
if standalone_module_input_idxs is not None:
for idx in standalone_module_input_idxs:
if node.args[idx].name not in observed_node_names_set: # type: ignore
new_observer = qconfig.activation()
insert_observer(
node, new_observer, model,
activation_post_process_map,
activation_post_process_indexes,
env, observed_graph,
load_arg, observed_node_names_set, quants)
inserted_observer = True
# we already inserted activation_post_process for the outputvalue
# which is the same as the input value of the next op, so we
# can skip inserting one activation_post_process for the input
if node.name in quants and inserted_observer:
quants[node.name].pop(0)
def insert_observer_for_input_arg_of_observed_node(
node: Node, observed_node_names_set: Set[str],
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]],
model: torch.nn.Module,
activation_post_process_map: Dict[str, List[torch.quantization.ObserverBase]],
activation_post_process_indexes: Dict[str, int],
env: Dict[str, str], observed_graph: Graph,
load_arg: Callable):
if node.name in quants:
quant_act_ctrs = quants[node.name][:]
for _, activation_post_process_ctr in quant_act_ctrs:
if activation_post_process_ctr is not None:
insert_observer(
node, activation_post_process_ctr(),
model, activation_post_process_map,
activation_post_process_indexes,
env, observed_graph, load_arg, observed_node_names_set, quants)
# A dictionary for querying the weight index for a given op
WEIGHT_INDEX_DICT = {
torch.nn.functional.conv1d : [1],
torch.nn.functional.conv2d : [1],
torch.nn.functional.conv3d : [1],
torch.nn.functional.linear : [1],
}
def node_arg_is_weight(node: Node, arg: Any) -> bool:
if isinstance(node, Node) and node.op == 'call_function' and \
node.target in WEIGHT_INDEX_DICT:
for i, node_arg in enumerate(node.args):
if arg is node_arg and i in \
WEIGHT_INDEX_DICT[node.target]: # type: ignore
return True
return False
CONV_OPS_WITH_BIAS = {
torch.nn.functional.conv1d,
torch.nn.functional.conv2d,
torch.nn.functional.conv3d,
}
CONV_BIAS_ARG_INDEX = 2
def node_arg_is_bias(node: Node, arg: Any) -> bool:
if isinstance(node, Node) and node.op == 'call_function':
if node.target in CONV_OPS_WITH_BIAS:
for i, node_arg in enumerate(node.args):
if arg is node_arg and i == CONV_BIAS_ARG_INDEX:
return True
elif node.target is torch.nn.functional.linear:
for kwarg_name, kwarg_value in node.kwargs.items():
if kwarg_name == 'bias' and arg is kwarg_value:
return True
return False
# weight prepacking ops
WEIGHT_PREPACK_OPS = {
torch._ops.ops.quantized.linear_prepack,
torch._ops.ops.quantized.linear_prepack_fp16,
torch._ops.ops.quantized.conv2d_prepack,
torch._ops.ops.quantized.conv3d_prepack,
}
class Quantizer:
def __init__(self):
# mapping from matched node to activation_post_process
# must be filled before convert
self.activation_post_process_map: Optional[
Dict[str, List[torch.quantization.observer.ObserverBase]]] = None
# mapping from matched node to the index of activation_post_process that we are
# using currently
self.activation_post_process_indexes: Dict[str, int] = {}
# mapping from node name to qconfig that should be used for that node
# filled out for a model during _generate_qconfig_map
self.qconfig_map: Optional[Dict[str, QConfigAny]] = None
# mapping from fully qualified module name to module instance
# for example,
# {
# '': Model(...),
# 'linear': Linear(...),
# 'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
# }
self.modules: Optional[Dict[str, torch.nn.Module]] = None
# mapping from a tuple of nodes in reverse order to uninitialized
# QuantizeHandler subclass. For example,
# {
# # match a single node
# (<class 'torch.nn.modules.conv.Conv3d'>:
# <class 'torch.quantization.fx.quantize.ConvRelu'>),
# # match multiple nodes in reverse order
# ((<function relu at 0x7f766a7360d0>, <built-in function add>):
# <class 'torch.quantization.fx.quantize.Add'>),
# }
self.patterns: Optional[Dict[Pattern, QuantizeHandler]] = None
self.prepare_custom_config_dict: Dict[str, Any] = {}
# mapping from node name to the scope of the module which contains the node.
self.node_name_to_scope: Dict[str, Tuple[str, type]] = {}
def _qat_swap_modules(
self, root: torch.nn.Module,
additional_qat_module_mapping: Dict[Callable, Callable]) -> None:
all_mappings = get_combined_dict(
get_default_qat_module_mappings(), additional_qat_module_mapping)
convert(root, mapping=all_mappings, inplace=True, remove_qconfig=False)
def _generate_qconfig_map(
self,
root: torch.nn.Module,
input_graph: Graph,
qconfig_dict: Any,
node_name_to_scope: Dict[str, Tuple[str, type]]) -> None:
global_qconfig = qconfig_dict.get("", None)
self.node_name_to_scope = node_name_to_scope
self.qconfig_map = dict()
for node in input_graph.nodes:
if node.op == "get_attr":
module_name, _ = _parent_name(node.target)
assert self.modules is not None
self.qconfig_map[node.name] = get_qconfig(
qconfig_dict, type(self.modules[module_name]), module_name, global_qconfig)
elif node.op == "call_function":
# precedence: [TODO] module_name_qconfig (need scope support
# from fx)
# > function_qconfig > global_qconfig
# module_name takes precedence over function qconfig
function_qconfig = get_object_type_qconfig(
qconfig_dict, node.target, global_qconfig)
module_path, module_type = node_name_to_scope[node.name]
qconfig = get_qconfig(
qconfig_dict, module_type, module_path, function_qconfig)
self.qconfig_map[node.name] = qconfig
elif node.op == "call_method":
module_path, module_type = node_name_to_scope[node.name]
# use the qconfig of the module that the node belongs to
qconfig = get_qconfig(
qconfig_dict, module_type, module_path, global_qconfig)
self.qconfig_map[node.name] = qconfig
elif node.op == 'call_module':
assert self.modules is not None
module_qconfig = get_qconfig(
qconfig_dict, type(self.modules[node.target]), node.target, global_qconfig)
# regex is not supported eager mode propagate_qconfig_, we'll
# need to set the qconfig explicitly here in case regex
# is used
self.modules[node.target].qconfig = module_qconfig
self.qconfig_map[node.name] = module_qconfig
def _prepare(
self,
model: GraphModule,
qconfig_dict: Any,
node_name_to_scope: Dict[str, Tuple[str, type]],
prepare_custom_config_dict: Optional[Dict[str, Any]],
is_standalone_module: bool) -> ObservedGraphModule:
""" standalone_module means it a submodule that is not inlined in
parent module, and will be quantized separately as one unit.
How the standalone module is observed is specified by `input_quantized_idxs` and
`output_quantized_idxs` in the prepare_custom_config for the standalone module
Returns:
model(GraphModule): prepared standalone module
attributes:
_standalone_module_input_quantized_idxs(List[Int]): a list of
indexes for the graph input that is expected to be quantized,
same as input_quantized_idxs configuration provided
for the standalone module
_standalone_module_output_quantized_idxs(List[Int]): a list of
indexs for the graph output that is quantized
same as input_quantized_idxs configuration provided
for the standalone module
"""
if prepare_custom_config_dict is None:
prepare_custom_config_dict = {}
self.prepare_custom_config_dict = prepare_custom_config_dict
additional_quant_patterns = \
prepare_custom_config_dict.get("additional_quant_pattern", {})
self.patterns = get_combined_dict(
get_default_quant_patterns(), additional_quant_patterns)
convert_dict_to_ordered_dict(qconfig_dict)
flattened_qconfig_dict = get_flattened_qconfig_dict(qconfig_dict)
# TODO: support regex as well
propagate_qconfig_(model, flattened_qconfig_dict)
if model.training:
additional_qat_module_mapping = prepare_custom_config_dict.get(
"additional_qat_module_mapping", {})
self._qat_swap_modules(model, additional_qat_module_mapping)
self.modules = dict(model.named_modules())
# map from node name to qconfig, used in _find_matches
self._generate_qconfig_map(model, model.graph, qconfig_dict, node_name_to_scope)
# match the patterns that will get quantized
standalone_module_name_configs = prepare_custom_config_dict.get(
"standalone_module_name", [])
standalone_module_class_configs = prepare_custom_config_dict.get(
"standalone_module_class", [])
standalone_module_names = [config[0] for config in standalone_module_name_configs]
standalone_module_classes = [config[0] for config in standalone_module_class_configs]
custom_module_classes = get_custom_module_class_keys(
prepare_custom_config_dict, "float_to_observed_custom_module_class")
assert self.patterns is not None
matches = self._find_matches(
model.graph, self.modules, self.patterns, standalone_module_names,
standalone_module_classes, custom_module_classes)
# find _inputs_ to matched nodes that are not quantized, these
# have to be quantized, which requires measuring stats,
# initialize an DefaultQuantizeHandler object for each
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]] = \
self._find_quants(model.graph, matches)
self.activation_post_process_map = defaultdict(list)
env: Dict[Any, Any] = {}
observed_graph = Graph()
observed_node_names_set: Set[str] = set()
def load_arg(a):
return map_arg(a, lambda node: env[node.name])
graph_inputs = []
for node in model.graph.nodes:
if node.op == 'placeholder':
graph_inputs.append(node.name)
get_new_observer_name = get_new_attr_name_with_prefix(
'activation_post_process_')
placeholder_node_seen_cnt = 0
output_node_seen_cnt = 0
input_quantized_idxs: List[int] = self.prepare_custom_config_dict.get(
"input_quantized_idxs", [])
output_quantized_idxs: List[int] = self.prepare_custom_config_dict.get(
"output_quantized_idxs", [])
result_node : Optional[Node] = None
for node in model.graph.nodes:
if node.op == 'output':
# If this output is hardcoded to be quantized, insert an
# observer on the previous node if it does not already
# exist.
cur_output_node_idx = output_node_seen_cnt
output_node_seen_cnt += 1
if cur_output_node_idx in output_quantized_idxs:
prev_node = node.args[0]
assert isinstance(prev_node, Node), \
('hardcoding list/dict outputs to be quantized is ' +
'not supported')
if prev_node.name not in observed_node_names_set:
assert self.qconfig_map is not None
local_qconfig = self.qconfig_map[prev_node.name]
assert local_qconfig is not None, \
'qconfig of a node before a quantized output must exist'
insert_observer(
prev_node, local_qconfig.activation(),
model,
self.activation_post_process_map,
self.activation_post_process_indexes,
env, observed_graph, load_arg, observed_node_names_set, quants)
observed_graph.output(load_arg(node.args[0]))
result_node = node
continue
if node.name in observed_node_names_set:
continue
root_node, matched_nodes, pattern, obj, qconfig = matches.get(
node.name, (None, None, None, None, None))
if root_node is None:
env[node.name] = observed_graph.node_copy(node, load_arg)
elif root_node is node:
env[node.name] = observed_graph.node_copy(node, load_arg)
# index for input of custom module that needs to be observed in
# parent
if qconfig is not None:
assert obj is not None
standalone_module_input_idxs = \
maybe_insert_observer_for_special_module(
obj, self.modules, prepare_custom_config_dict, qconfig,
node)
insert_observer_for_output_of_the_node(
node, obj, qconfig, self.modules, model, pattern,
self.activation_post_process_map,
self.activation_post_process_indexes,
env,
observed_graph, load_arg, observed_node_names_set,
matched_nodes, standalone_module_input_idxs, quants)
else:
env[node.name] = observed_graph.node_copy(node, load_arg)
if node.op == 'placeholder':
# skip adding observers at the graph input if the input is
# overriden to be quantized
cur_placeholder_node_idx = placeholder_node_seen_cnt
placeholder_node_seen_cnt += 1
if cur_placeholder_node_idx in input_quantized_idxs:
observed_node_names_set.add(node.name)
continue
insert_observer_for_input_arg_of_observed_node(
node, observed_node_names_set, quants,
model, self.activation_post_process_map,
self.activation_post_process_indexes,
env,
observed_graph, load_arg)
self.save_state(model)
model = ObservedGraphModule(model, observed_graph)
if is_standalone_module:
assert result_node is not None
assert isinstance(result_node.args[0], Node), \
"standalone module only supports returning simple value currently"\
"(not tuple, dict etc.)"
# indicator for whether output is observed or not.
# This used for correctly quantize standalone modules
output_is_observed = \
result_node.args[0].name in observed_node_names_set
# these inputs are observed in parent
# converting List[int] to Tensor since module attribute is
# Union[Tensor, Module]
model._standalone_module_input_quantized_idxs = \
torch.tensor(input_quantized_idxs)
model._standalone_module_output_quantized_idxs = torch.tensor(output_quantized_idxs)
return model
def save_state(self, observed: GraphModule) -> None:
observed._activation_post_process_map = \
self.activation_post_process_map # type: ignore
observed._activation_post_process_indexes = \
self.activation_post_process_indexes # type: ignore
observed._patterns = self.patterns # type: ignore
observed._qconfig_map = self.qconfig_map # type: ignore
observed._prepare_custom_config_dict = \
self.prepare_custom_config_dict # type: ignore
observed._node_name_to_scope = self.node_name_to_scope # type: ignore
def restore_state(self, observed: GraphModule) -> None:
assert is_observed_module(observed), \
'incoming model must be produced by prepare_fx'
self.activation_post_process_map = \
observed._activation_post_process_map # type: ignore
self.activation_post_process_indexes = \
observed._activation_post_process_indexes # type: ignore
self.patterns = observed._patterns # type: ignore
self.qconfig_map = observed._qconfig_map # type: ignore
self.prepare_custom_config_dict = \
observed._prepare_custom_config_dict # type: ignore
self.node_name_to_scope = observed._node_name_to_scope # type: ignore
def prepare(
self,
model: GraphModule,
qconfig_dict: Any,
node_name_to_scope: Dict[str, Tuple[str, type]],
prepare_custom_config_dict: Dict[str, Any] = None,
is_standalone_module: bool = False) -> ObservedGraphModule:
return self._prepare(
model, qconfig_dict, node_name_to_scope, prepare_custom_config_dict,
is_standalone_module)
def _run_weight_observers(self, observed: GraphModule) -> None:
r''' Extract the subgraph that produces the weight for dynamic quant
or weight only quant node and run the subgraph to observe the weight.
Note that the observers of dynamic quant or weight only quant ops are
run during the convert step.
'''
for node in observed.graph.nodes:
if node.op == 'call_function' and node.target in WEIGHT_INDEX_DICT:
for i, node_arg in enumerate(node.args):
if i in WEIGHT_INDEX_DICT[node.target]:
# node_arg is weight
weight_observer_nodes = collect_producer_nodes(node_arg)
if weight_observer_nodes is not None:
weight_observer_module = \
graph_module_from_producer_nodes(
observed, weight_observer_nodes)
# run the weight observer
weight_observer_module()
return
def _convert(self, model: GraphModule, is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None,
is_standalone_module: bool = False,
_remove_qconfig_flag: bool = True) -> QuantizedGraphModule:
""" standalone_module means it a submodule that is not inlined in
parent module, and will be quantized separately as one unit.
Returns a quantized standalone module, whether input/output is quantized is
specified by prepare_custom_config_dict, with
input_quantized_idxs, output_quantized_idxs, please
see docs for prepare_fx for details
"""
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
self.restore_state(model)
# always run weight observers in the top level forward method
# for dynamic quant ops or weight only quant ops
self._run_weight_observers(model)
# move to cpu since we only have quantized cpu kernels
model.eval().cpu()
self.modules = dict(model.named_modules())
custom_module_classes = get_custom_module_class_keys(
convert_custom_config_dict,
"observed_to_quantized_custom_module_class")
assert self.patterns is not None
matches = self._find_matches(
model.graph, self.modules, self.patterns,
custom_module_classes=custom_module_classes)
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]] = \
self._find_quants(model.graph, matches)
self.quantized_graph = Graph()
env: Dict[str, Node] = {}
# TODO: merge quant_env with env
quant_env: Dict[str, Tuple[Node, torch.dtype]] = {}
graph_inputs: List[str] = []
for node in model.graph.nodes:
if node.op == 'placeholder':
graph_inputs.append(node.name)
def load_non_quantized(n: Node) -> Node:
if n.name not in env:
assert n.name in quant_env, \
'trying to load float node but did not find ' + \
'node:' + n.name + \
' in quantized or non quantized environment, env: ' + \
str(env) + ' quant_env:' + str(quant_env)
quantized_node, _ = quant_env[n.name]
env[n.name] = Proxy(quantized_node).dequantize().node
return env[n.name]
def load_quantized(n: Node) -> Node:
assert n.name in quant_env, \
'trying to load quantized node but did not find node:' + \
n.name + ' in quant environment:' + str(quant_env)
return quant_env[n.name][0]
def load_x(n: Node) -> Node:
assert n.name in env or n.name in quant_env, \
'node ' + n.name + ' does not exist in either environment'
if n.name in quant_env:
return quant_env[n.name][0]
else:
return env[n.name]
def load_arg(quantized: Optional[Union[List[int], bool, Tuple[int, ...]]]
) -> Callable[[Node], Argument]:
"""
Input: quantized, which can be None, list, boolean or tuple
- if quantized is None, then we'll load the node as long as it
exists
- if quantized is a boolean, then all args will be
quantized/not quantized
- if quantized is an empty list or tuple, then it is the same as load_arg(quantized=False)
- if quantized is a list or tuple, then arg should be a list and
the args with corresponding indexes will be quantized
Output: fn which takes arg_or_args, and loads them from the
corresponding environment depending on the value of quantized.
"""
assert quantized is None or \
isinstance(quantized, (tuple, list, bool)), type(quantized)
if isinstance(quantized, (tuple, list)) and len(quantized) == 0:
# empty tuple or list means nothing is quantized
quantized = False
def load_arg_impl(arg_or_args):
# we'll update the format of `quantized`
# to better match arg_or_args
updated_quantized: Optional[Union[List[int], bool, Tuple[int, ...]]] = quantized
if isinstance(quantized, (tuple, list)) and \
len(quantized) == 1 and isinstance(arg_or_args, Node):
# when argument is one Node instead of tuple, we just need to check
# 0 is in the quantized list
updated_quantized = 0 in quantized
if updated_quantized is None:
return map_arg(arg_or_args, load_x)
if isinstance(updated_quantized, bool):
return map_arg(
arg_or_args,
load_quantized if updated_quantized else load_non_quantized)
elif isinstance(updated_quantized, (tuple, list)):
assert isinstance(arg_or_args, (tuple, list)), arg_or_args
loaded_args = []
# for now, we only support quantizing positional arguments
for i, a in enumerate(arg_or_args):
if i in updated_quantized:
loaded_args.append(map_arg(a, load_quantized))
else:
loaded_args.append(map_arg(a, load_non_quantized))
return type(arg_or_args)(loaded_args)
return load_arg_impl
def node_arg_is_quantized(node_arg: Any) -> bool:
if isinstance(node_arg, Node):
assert node_arg.name in env or node_arg.name in quant_env, \
'Expecting node_arg to be in the environment'
# there might be nodes appearing in both environemnts, but
# quant_env will take precedence
if node_arg.name in quant_env:
return True
elif node_arg.name in env:
return False
else:
return False
elif isinstance(node_arg, list):
quantized = map(node_arg_is_quantized, node_arg)
if all(quantized):
return True
elif not any(quantized):
return False
else:
raise Exception(
"partially quantized inputs in list not handled yet")
else:
return False
def is_output_quantized(node: Node, obj: QuantizeHandler) -> bool:
""" Check if output node is quantized or not """
assert self.modules is not None
# by default the output for a quantizable node is expected to be quantized
quantized = True
# Need to get correct quantized/non-quantized state forn the output
# of CopyNodeQuantizeHandler
if type(obj) in [
CopyNodeQuantizeHandler,
FixedQParamsOpQuantizeHandler
]:
assert node.op in [
'call_module',
'call_function',
'call_method'], \
'CopyNodeQuantizeHandler of type ' + node.op + ' is not handled'
# TODO: need to extend this to consider all relevant args instead of just arg[0]
quantized = node_arg_is_quantized(node.args[0])
# the output is unquantized if the node is not a CopyNode
# and activation is fp16 (since we will output fp32 currently for fp16
# converter
if (not isinstance(obj, CopyNodeQuantizeHandler) and not activation_is_int8_quantized(qconfig)) or \
not input_output_observed(obj):
quantized = False
if node_return_type_is_int(node):
quantized = False
return quantized
def insert_quantize_node(node: Node) -> None:
""" Given a activation_post_process module call node, insert a
quantize node"""
assert self.modules is not None
assert isinstance(node.target, str)
observer_module = self.modules[node.target]
prev_node = node.args[0]
if observer_module.dtype == torch.float32:
# copy the observer for fp32 dtype
env[node.name] = self.quantized_graph.node_copy(
node, load_non_quantized)
elif isinstance(prev_node, Node) and prev_node.name in quant_env:
# if previous node is already quantized, we'll just remove the
# activation_post_process
_, prev_dtype = quant_env[prev_node.name]
current_dtype = observer_module.dtype
if prev_dtype == current_dtype:
quant_env[node.name] = quant_env[prev_node.name]
else:
root_module = self.modules[""]
assert isinstance(prev_node, Node)
observer_dtype: torch.dtype = observer_module.dtype # type: ignore
quant_env[node.name] = (
quantize_node(self, load_non_quantized(prev_node), # type: ignore
observer_module, node, is_input=True), # type: ignore
observer_dtype) # type: ignore
else:
# replace activation post process with quantization ops
root_module = self.modules[""]
assert isinstance(node.args[0], Node)
dtype: torch.dtype = observer_module.dtype # type: ignore
quant_env[node.name] = (
quantize_node(self, load_non_quantized(node.args[0]), # type: ignore
observer_module, node, is_input=True), # type: ignore
dtype) # type: ignore
# additional state to override inputs to be quantized, if specified
# by the user
placeholder_node_seen_cnt = 0
output_node_seen_cnt = 0
input_quantized_idxs: List[int] = self.prepare_custom_config_dict.get(
"input_quantized_idxs", [])
output_quantized_idxs: List[int] = self.prepare_custom_config_dict.get(
"output_quantized_idxs", [])
for node in model.graph.nodes:
if node.op == "output":
cur_output_node_idx = output_node_seen_cnt
output_node_seen_cnt += 1
if cur_output_node_idx in output_quantized_idxs:
# Result are kept quantized if the user specified the
# output_quantized_idxs override.
graph_output = map_arg(node.args[0], load_x)
else:
graph_output = map_arg(node.args[0], load_non_quantized)
self.quantized_graph.output(graph_output)
continue
root_node, matched, matched_pattern, obj, qconfig = \
matches.get(node.name, (None, None, None, None, None))
if root_node is node:
is_observed_standalone_module_node = (
node.op == 'call_module' and
is_observed_standalone_module(
self.modules[node.target]) # type: ignore
)
if qconfig is None and not is_observed_standalone_module_node:
result = self.quantized_graph.node_copy(
node, load_non_quantized)
quantized = False
else:
assert obj is not None
# We will get whether the output is quantized or not before
# convert for standalone module and after convert
# for non-standalone module, since _standalone_module_output_quantized_idxs
# is only available in observed standalone module
if is_observed_standalone_module_node:
out_quant_idxs = self.modules[node.target]._standalone_module_output_quantized_idxs.tolist() # type: ignore
assert len(out_quant_idxs) <= 1, "Currently standalone only support one output"
quantized = 0 in out_quant_idxs
result = obj.convert(
self, node, load_arg, is_reference=is_reference,
convert_custom_config_dict=convert_custom_config_dict)
if not is_observed_standalone_module_node:
quantized = is_output_quantized(node, obj)
if quantized:
quant_env[node.name] = result, activation_dtype(qconfig)
else:
env[node.name] = result
continue
elif root_node is not None:
if qconfig is None:
# This branch is hit if all of these conditions are met:
# 1. we are in a fusion pattern of multiple nodes (i.e. add-relu)
# 2. the current node is not the "root_node" of the pattern
# 3. quantization for this pattern is disabled
#
# In this case, we need to make sure to populate the env with
# intermediate nodes manually, because the QuantizeHandler.convert
# function will not be called.
result = self.quantized_graph.node_copy(
node, load_non_quantized)
env[node.name] = result
continue
# handle activation post process calls
if node.op == 'call_module' and \
is_activation_post_process(self.modules[node.target]):
insert_quantize_node(node)
elif node.op == 'placeholder':
cur_placeholder_node_idx = placeholder_node_seen_cnt
placeholder_node_seen_cnt += 1
if cur_placeholder_node_idx in input_quantized_idxs:
quant_env[node.name] = \
self.quantized_graph.node_copy(node, load_non_quantized), activation_dtype(qconfig) if qconfig else None
else:
env[node.name] = \
self.quantized_graph.node_copy(node, load_non_quantized)
else:
# copy quantized or non-quantized node
env[node.name] = \
self.quantized_graph.node_copy(node, load_non_quantized)
# remove activation post process
act_post_process_removed_graph = Graph()
env = {}
def load_arg_simple(a: Argument) -> Argument:
return map_arg(a, lambda node: env[node.name])
for node in self.quantized_graph.nodes:
if node.op == 'output':
act_post_process_removed_graph.output(
map_arg(node.args[0], load_arg_simple))
continue
if node.op == 'call_module' and \
is_activation_post_process(self.modules[node.target]):
# remove activation post process node
env[node.name] = env[node.args[0].name]
else:
env[node.name] = act_post_process_removed_graph.node_copy(
node, load_arg_simple)
# removes qconfig and activation_post_process modules
if _remove_qconfig_flag:
_remove_qconfig(model)
model = QuantizedGraphModule(model, act_post_process_removed_graph)
return model
# Trace back from the weight node util we hit getattr, reconstruct the
# graph module with the traced nodes and run the graph module to pack the
# weight. then replace the original chain of ops with the packed weight.
def _fold_weight(self, quantized: QuantizedGraphModule) -> QuantizedGraphModule:
packed_weights = dict()
# map from folded node name to the prepacked weight name
folded_nodes = dict()
# get packed weights
for node in quantized.graph.nodes:
if node.op == 'call_function' and node.target in WEIGHT_PREPACK_OPS:
nodes_to_fold = collect_producer_nodes(node)
if nodes_to_fold is not None:
for node_to_fold in nodes_to_fold:
folded_nodes[node_to_fold.name] = node
prepacking_module = graph_module_from_producer_nodes(
quantized, nodes_to_fold)
packed_weight = prepacking_module()
packed_weights[node.name] = packed_weight
# remove folded nodes and replace the prepacking node with getattr
folded_graph = Graph()
env: Dict[Any, Any] = {}
def load_arg(a):
return map_arg(a, lambda node: env[node.name])
quantized_root = quantized
quantized_graph = quantized.graph
for node in quantized_graph.nodes:
prepack_node = folded_nodes.get(node.name, None)
if prepack_node is node:
packed_weight = packed_weights[node.name]
# add a prepacked attribute to root
op_node = list(prepack_node.users)[0]
module_path, _ = self.node_name_to_scope[op_node.name]
get_new_packed_weight_name = \
get_new_attr_name_with_prefix(module_path + '_packed_weight_')
packed_weight_name = get_new_packed_weight_name(quantized_root)
setattr(quantized_root, packed_weight_name, packed_weight)
# replace prepack node with a getattr node
env[node.name] = folded_graph.create_node(
'get_attr', packed_weight_name, (), {})
elif prepack_node is not None:
# remove the foled node
continue
else:
# copy other nodes
env[node.name] = folded_graph.node_copy(node, load_arg)
quantized = QuantizedGraphModule(quantized_root, folded_graph)
return quantized
def _fold_quant_dequant(self, quantized: QuantizedGraphModule) -> QuantizedGraphModule:
""" If quantize op is followed by a dequantize, we fold the ops together and remove the dequant.
In the case where the only consumer of quantize_per_tensor is a dequant op, we erase both
nodes from the graph, along with the qparams associated with quantize op.
"""
for node in quantized.graph.nodes:
if node.op == 'call_function' and node.target == torch.quantize_per_tensor:
quant_uses = list(node.users)
quant_args = node.args
float_tensor = quant_args[0]
for user in quant_uses:
is_dequant = user.op == 'call_method' and user.target == "dequantize"
if is_dequant:
user.replace_all_uses_with(float_tensor)
quantized.graph.erase_node(user)
# If dequant is the only user of quant node, we erase quant node
# and all it's inputs.
if len(quant_uses) == 1:
quantized.graph.erase_node(node)
for arg in quant_args[1 :]:
quantized.graph.erase_node(arg)
return quantized
def convert(self, model: GraphModule, is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None,
is_standalone_module: bool = False,
_remove_qconfig: bool = True) -> QuantizedGraphModule:
quantized = self._convert(
model, is_reference, convert_custom_config_dict, is_standalone_module, _remove_qconfig_flag=_remove_qconfig)
if not is_reference:
quantized = self._fold_weight(quantized)
quantized = self._fold_quant_dequant(quantized)
return quantized
def _find_matches(
self, graph: Graph, modules: Dict[str, torch.nn.Module],
patterns: Dict[Pattern, QuantizeHandler],
standalone_module_names: List[str] = None,
standalone_module_classes: List[Callable] = None,
custom_module_classes: List[Any] = None) -> Dict[str, MatchResult]:
"""
Matches the nodes in the input graph to quantization patterns, and
outputs the information needed to quantize them in future steps.
Inputs:
- graph: an fx.Graph object
- modules: a mapping of fully qualified module name to instance,
for example, {'foo': ModuleFoo, ...}
- patterns: a mapping from a tuple of nodes in reverse order to
uninitialized QuantizeHandler subclass.
Outputs a map of
node_name ->
(node, matched_values, matched_pattern, QuantizeHandler instance,
qconfig)
For example, {
'relu_1': (relu_1, [relu_1], torch.nn.functional.relu,
<CopyNodeQuantizeHandler instance>, QConfig(...)),
...
}
"""
if custom_module_classes is None:
custom_module_classes = []
if standalone_module_classes is None:
standalone_module_classes = []
if standalone_module_names is None:
standalone_module_names = []
match_map: Dict[str, MatchResult] = {}
all_matched : Set[str] = set()
def record_match(pattern, node, matched):
if isinstance(pattern, tuple):
s, *args = pattern
record_match(s, node, matched)
if pattern[0] is not getattr:
for subpattern, arg in zip(args, node.args):
record_match(subpattern, arg, matched)
else:
matched.append(node)
assert self.qconfig_map is not None
for node in reversed(graph.nodes):
if node.name not in match_map and node.name not in all_matched:
for pattern, value in patterns.items():
if is_match(modules, node, pattern):
skip_this_match = False
if value is BinaryOpQuantizeHandler:
use_copy_node = all_node_args_have_no_tensors(node)
if use_copy_node:
# TODO(future PR): update the pattern to quantize
# handler logic to take this into account.
value = CopyNodeQuantizeHandler # type: ignore
this_node_qconfig = self.qconfig_map[node.name]
if this_node_qconfig:
dtypes = get_qconfig_dtypes(this_node_qconfig)
# TODO(future PR): update the pattern to quantize
# handler logic to take this into account.
skip_this_match = (
(node.target in binary_op_supported_dtypes) and
(dtypes not in binary_op_supported_dtypes[node.target])
)
if not skip_this_match:
matched: List[Any] = []
record_match(pattern, node, matched)
for n in matched:
match_map[n.name] = (
node, matched, pattern, value(self, node), # type: ignore
self.qconfig_map[n.name])
all_matched.add(n.name)
# break after finding the first match
break
# add custom module instances to the match result
assert self.modules is not None
for node in graph.nodes:
if node.op == 'call_module' and \
type(self.modules[node.target]) in custom_module_classes:
custom_module_qconfig = self.qconfig_map[node.name]
match_map[node.name] = (
node, [node], None, CustomModuleQuantizeHandler(self, node),
custom_module_qconfig)
def is_standalone_module(node_target):
assert self.modules is not None
return (
node_target in standalone_module_names or # type: ignore
type(self.modules[node_target]) in standalone_module_classes # type: ignore
)
# add standalone modules to the match
for node in graph.nodes:
if node.op == 'call_module' and \
(is_standalone_module(node.target) or
is_observed_standalone_module(self.modules[node.target])):
# add node to matched nodes
custom_module_qconfig = self.qconfig_map[node.name]
match_map[node.name] = (
node, [node], None,
StandaloneModuleQuantizeHandler(self, node),
custom_module_qconfig)
return match_map
def _find_quants(self, graph: Graph, matches: Dict[str, MatchResult],
) -> Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]]:
"""
Takes the nodes in the input graph and pending matches, and finds and
returns the input and output nodes which need to be quantized.
Inputs:
- graph: an fx.Graph object
- matches: output of self._find_matches function
Outputs a map of
node_name -> list of (QuantizeHandler instance (always DefaultQuantizeHandler),
activation_post_process (observer/fake_quantize module) constructor)
the reason why the value is a list is because each node can be configured with multiple
qconfigs, for example in a subgraph of functional linear
op followed by a sigmoid op, linear is configured with int8 static quantization
and sigmoid is configured with float16 static quantization,
then the output of linear (and input of sigmoid) needs first to be quantized to
int8 and then float16
"""
quants: Dict[str, List[Tuple[DefaultQuantizeHandler, Callable]]] = defaultdict(list)
def visit(node, matched_pattern, qconfig):
def visit_arg(arg):
is_weight = node_arg_is_weight(node, arg)
is_bias = node_arg_is_bias(node, arg)
is_activation = not (is_weight or is_bias)
no_tensors = all_node_args_have_no_tensors(arg)
# bias needs to be quantized if activation is fp16 and weight is fp16
# this is the case for glow
should_add_handler = qconfig is not None and (
(is_activation and
activation_is_statically_quantized(qconfig)) or
(is_weight and weight_is_quantized(qconfig)) or
(is_bias and activation_dtype(qconfig) == torch.float16)
and weight_dtype(qconfig) == torch.float16) and \
(not no_tensors)
if should_add_handler:
act_post_process_ctr = qconfig.weight if is_weight else \
qconfig.activation
# overwrite the constructor from qconfig if it is int8 quantized
if activation_is_int8_quantized(qconfig):
act_post_process_ctr = \
get_default_output_activation_post_process_map().get(
matched_pattern,
act_post_process_ctr)
if len(quants[arg.name]) > 0:
_, last_act_post_process_ctr = quants[arg.name][-1]
if act_post_process_ctr == last_act_post_process_ctr:
# we won't add act_post_process_ctr if it is the same as the
# one
return visit_arg
quants[arg.name].append((
DefaultQuantizeHandler(self, arg), act_post_process_ctr))
return visit_arg
for node in graph.nodes:
if node.name in matches:
root_node, matched_nodes, matched_pattern, quantize_handler, \
qconfig = matches[node.name]
if root_node is node and \
input_output_observed(quantize_handler):
# matched_nodes[-1] is the first op in the sequence and
# matched_nodes[0] is the last op in the sequence
# inputs
# matched_pattern is set to None for inputs because
# we only want to select QuantizeHandler object based
# on pattern for output, inputs will always use
# DefaultQuantizeHandler
map_arg(matched_nodes[-1].args, visit(matched_nodes[-1],
None, qconfig))
map_arg(matched_nodes[-1].kwargs, visit(matched_nodes[-1],
None, qconfig))
# output
# we don't insert observer for output of standalone module
if not isinstance(
quantize_handler, StandaloneModuleQuantizeHandler):
# passing in matched_pattern here so that we can
# customize activation_post_process constructor for
# output based on the pattern, e.g.
# for sigmoid op we'll use
# default_affine_fixed_qparam_fake_quant
map_arg(matched_nodes[0],
visit(None, matched_pattern, qconfig))
return quants