blob: f68fc3783eb27684ac35dfebaaa1f9f94e339319 [file] [log] [blame]
# Owner(s): ["module: dynamo"]
import dataclasses
import unittest
import torch
import torch._dynamo as torchdynamo
from torch._export import export, dynamic_dim, DEFAULT_EXPORT_DYNAMO_CONFIG
from torch._export.utils import register_dataclass_as_pytree_node
from torch._export.constraints import constrain_as_size, constrain_as_value
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.utils._pytree import tree_flatten, tree_unflatten, LeafSpec, TreeSpec
from functorch.experimental.control_flow import map
from contextlib import contextmanager
from dataclasses import dataclass
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
class TestDynamismExpression(TestCase):
def test_export_inline_constraints(self):
def f(x):
b = x.item()
constrain_as_size(b, min=2, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
ref = f(*inp)
gm = export(f, inp)
res = gm(*inp)
self.assertTrue(torchdynamo.utils.same(ref, res))
gm = make_fx(f, tracing_mode="symbolic")(*inp)
res = gm(*inp)
self.assertTrue(torchdynamo.utils.same(ref, res))
def test_export_constraints_error(self):
def invalid_size(x):
b = x.item()
constrain_as_size(b, min=0, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Unable to set min size"):
export(invalid_size, inp)
def invalid_input_conflict_with_inline_constraints(x):
b = x.item()
constrain_as_size(b, min=2, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([6]),)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Invalid value 6 for range"):
export(invalid_input_conflict_with_inline_constraints, inp)
def invalid_input_conflict_with_input_constraints(x):
return x + 1
inp = torch.zeros([3])
inp_constraints = [
dynamic_dim(inp, 0) > 5,
]
with self.assertRaisesRegex(torchdynamo.exc.UserError, "not in range"):
export(
invalid_input_conflict_with_input_constraints,
(inp,),
constraints=inp_constraints,
)
def conflicting_constraints(x):
b = x.item()
constrain_as_size(b, min=2, max=3)
constrain_as_size(b, min=4, max=5)
return torch.full((b, 1), 1)
inp = (torch.tensor([3]),)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Invalid ranges"):
export(conflicting_constraints, inp)
def test_export_assume_static_by_default(self):
def branch_on_shape(x: torch.Tensor):
if x.shape[0] == 4:
return x + 1
else:
return x
inp = (torch.rand(4, 5),)
# Being able to export means shape is preserved as static
export(branch_on_shape, inp)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
class TestExport(TestCase):
def _test_export_same_as_eager(self, f, args, kwargs=None):
kwargs = kwargs or {}
exported_program = export(f, args, kwargs)
reversed_kwargs = {key: kwargs[key] for key in reversed(kwargs)}
self.assertEqual(exported_program(*args, **kwargs), f(*args, **kwargs))
self.assertEqual(exported_program(*args, **reversed_kwargs), f(*args, **reversed_kwargs))
def test_basic(self):
def f(x, y):
return x[0] + y
inp = ([torch.ones(1, 3)], torch.ones(1, 3))
self._test_export_same_as_eager(f, inp)
def test_export_preserve_signature(self):
class NestedChild(torch.nn.Module):
def forward(self, zx, y):
return {"x": y["key"] + zx[1], "w": y["key"] * zx[1]}
class Child1(torch.nn.Module):
def __init__(self):
super().__init__()
self.nested = NestedChild()
def forward(self, x, y):
z = torch.ones_like(x)
xw = self.nested((z, x), y={"key": y})
return xw["w"] + z - xw["x"]
class Child2(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x - 1
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.foo = Child1()
self.bar = Child2()
def forward(self, x, y):
x = self.foo(x, y)
x = self.bar(x)
return x
orig_eager = MyModule()
inps = torch.rand(2, 3), torch.rand(2, 3)
ep = export(
orig_eager,
inps,
{},
preserve_module_call_signature=("foo.nested", "foo"),
)
ep.validate()
self.assertEqual(len(ep.module_call_graph), 2)
# TODO(zhxchen17) unflattener
# unflattened = unflatten(export_module)
# self.compare_outputs(export_module, unflattened, inps)
# unflattened.foo.nested = NestedChild()
# self.compare_outputs(export_module, unflattened, inps)
def test_raise_user_error_when_guard_on_data_dependent_operation(self):
def fn_ddo(x):
y = x.nonzero()
z = y.shape[0]
if z > 2:
return x.cos()
else:
return x.sin()
with self.assertRaisesRegex(
torchdynamo.exc.UserError,
"trying to get a value out of symbolic int"
):
_ = export(fn_ddo, (torch.tensor([2, 3, 5]),), constraints=None)
def test_if_functional(self):
def foo(x):
z = x + 4
z.add_(4)
y = z.view(x.shape)
return x.cos() + y.cos()
gm = export(foo, (torch.tensor([2, 3, 5]),), constraints=None)
view_count = 0
for node in gm.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add_.Tensor:
# No more inplace mutation
self.assertNotEqual(
node.target,
torch.ops.aten.add_.Tensor,
"There shouldn't be any inplace mutation node in the graph."
)
if node.op == "call_function" and node.target == torch.ops.aten.view.default:
view_count += 1
# There should be nonzero view nodes in the graph
self.assertTrue(view_count > 0)
def test_export_mod_constraints(self):
class BasicDynamiShapeModel(torch.nn.Module):
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.view(x.shape[0] - 1, -1)
m = BasicDynamiShapeModel()
a = torch.randn(3, 4)
constraints = [3 <= dynamic_dim(a, 0), dynamic_dim(a, 1)]
with self.assertRaisesRegex(
torch._dynamo.exc.UserError,
(
"Some dynamic dimensions need to be specialized because "
"the constraints inferred for them are too complex to specify"
".*\n.*\\[0\\], which was marked dynamic, must be specialized to 3"
".*\n.*\\[1\\], which was marked dynamic, must be specialized to 4"
),
):
torch._export.export(m, (a,), constraints=constraints)
em = torch._export.export(m, (a,))
x = torch.randn(3, 5)
with self.assertRaisesRegex(RuntimeError, "\\[1\\] is specialized at 4"):
em(x)
def test_export_constrain_static(self):
def f(x, y):
b = x.item()
constrain_as_size(b, min=2, max=5)
c = y.dim()
constrain_as_value(c, min=1, max=3)
z = y[0:c]
return torch.empty((b, y.shape[0])), z
x = torch.tensor([3])
y = torch.randn([8, 8, 6])
example_inputs = (x, y)
constraints = [dynamic_dim(y, 0) >= 6, dynamic_dim(y, 0) <= 10]
with self.assertRaisesRegex(
torchdynamo.exc.UserError, "It appears that you're trying to set a constraint " +
"on a value which we evaluated to have a static value of 3. "
):
export(f, example_inputs, {}, constraints)
def test_not_correct_dim(self):
def f(x):
return x.cos()
def g(x):
return x + 4
inp_for_f = torch.tensor(5)
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Cannot mark 0-dimension tensors to be dynamic"):
constraints = [dynamic_dim(inp_for_f, 0)]
inp_for_f_mul_dim = torch.ones(5, 5)
with self.assertRaisesRegex(
torchdynamo.exc.UserError,
"Expected the dimension passed to dynamic_dim to be in the range \\[0:1\\]"
):
constraints = [dynamic_dim(inp_for_f_mul_dim, 2)]
inp_for_g = 4
with self.assertRaisesRegex(torchdynamo.exc.UserError, "Expected tensor as input to dynamic_dim"):
constraints = [dynamic_dim(inp_for_g, 0)]
def test_map(self):
def list_tensor_map(xs, y, z):
def body(x, y, z):
return x + y + z
return map(body, xs, y, z)
inps = (torch.ones(6, 4), torch.tensor(5), torch.tensor(4))
self._test_export_same_as_eager(list_tensor_map, inps)
def test_export_func_with_kwargs(self):
def kw_func(arg1, arg2, kw1, kw2):
return arg1 + arg2, kw1 + kw2
args = (torch.ones(6, 4), torch.ones(1, 1))
kwargs = {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}
self._test_export_same_as_eager(kw_func, args, kwargs)
def test_export_func_with_pytree_kwargs(self):
def kw_func(arg1, arg2, a, b):
return arg1 + a["kw1"] + b[0], arg2 + a["kw2"] + b[1]
args = (torch.ones(2, 3), torch.ones(3, 4))
kwargs = {"a": {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)}, "b": [torch.ones(2, 3), torch.ones(3, 4)]}
self._test_export_same_as_eager(kw_func, args, kwargs)
def test_export_func_with_default_kwargs(self):
def kw_func(arg1, arg2, a, b=1):
return arg1 + arg2, a["kw1"] + a["kw2"] + b
def kw_func2(arg1, arg2, a=1, b=2):
return arg1 + a, arg2 + b
args = (torch.ones(6, 4), torch.ones(1, 1))
kwargs1 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}}
kwargs2 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}, "b": 2}
self._test_export_same_as_eager(kw_func, args, kwargs1)
self._test_export_same_as_eager(kw_func, args, kwargs2)
kwargs3 = {"b": 1}
self._test_export_same_as_eager(kw_func2, args, kwargs3)
def test_export_func_with_var_postional_args(self):
def kw_func(arg1, arg2, *args):
return arg1 + args[0], arg2 + args[1]
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
self._test_export_same_as_eager(kw_func, args)
def test_export_func_with_keyword_only_args(self):
def kw_func(arg1, arg2, *args, kw1, kw2):
return arg1 + args[0] + kw1, arg2 + args[1] + kw2
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)}
self._test_export_same_as_eager(kw_func, args, kwargs)
def test_export_func_with_var_keyword_args(self):
def kw_func(arg1, arg2, *args, kw1, kw2, **kwargs):
return arg1 + args[0] + kw1 + kwargs["kw3"], arg2 + args[1] + kw2 + kwargs["kw4"]
args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4))
kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4), "kw3": torch.ones(2, 3), "kw4": torch.ones(3, 4)}
self._test_export_same_as_eager(kw_func, args, kwargs)
def test_export_func_with_var_keyword_pytree_args(self):
def kw_func(arg1, arg2, *args, kw1, kw2, **kwargs):
return arg1 + arg2[0][0] + args[0] + kw1[0] + kwargs["kw3"][0], arg2[1] + args[1] + kw2 + kwargs["kw4"]
args = (torch.ones(2, 3), [(torch.ones(2, 3), ), torch.ones(3, 4)], torch.ones(2, 3), torch.ones(3, 4))
kwargs = {"kw1": (torch.ones(2, 3), ), "kw2": torch.ones(3, 4),
"kw3": (torch.ones(2, 3), torch.ones(3, 4)), "kw4": torch.ones(3, 4)}
self._test_export_same_as_eager(kw_func, args, kwargs)
def test_linear_conv(self):
class MyLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.randn(20, 98)
self.bias = torch.randn(20)
def forward(self, x):
return torch.nn.functional.linear(x, self.weight, self.bias)
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(16, 33, 3)
self.linear = MyLinear()
def forward(self, x):
x_conv = self.conv(x)
x_linear = self.linear(x_conv)
return x_linear.cos()
ep = export(Foo(), (torch.randn(20, 16, 50, 100),))
for node in ep.graph.nodes:
if (
node.op == "placeholder" and
node.name in ep.graph_signature.inputs_to_buffers or
node.name in ep.graph_signature.inputs_to_parameters
):
self.assertTrue("source_fn" in node.meta)
self.assertTrue("nn_module_stack" in node.meta)
def test_error_does_not_reference_eager_fallback(self):
def fn_ddo(x):
y = x.nonzero()
z = y.shape[0]
if z > 2:
return x.cos()
else:
return x.sin()
with self.assertRaisesRegex(
torchdynamo.exc.UserError,
r"^(?!.*fall back to eager).*"
):
_ = export(fn_ddo, (torch.tensor([2, 3, 5]),), constraints=None)
def test_pytree_regster_data_class(self):
@dataclass
class MyDataClass:
x: int
y: int
z: int = None
dt = MyDataClass(x=3, y=4)
flat, spec = tree_flatten(dt)
self.assertTrue(spec, LeafSpec())
self.assertTrue(len(flat) == 1)
register_dataclass_as_pytree_node(MyDataClass)
flat, spec = tree_flatten(dt)
self.assertEqual(
spec,
TreeSpec(
MyDataClass,
(
MyDataClass,
['x', 'y'],
['z']
),
[LeafSpec(), LeafSpec()]
)
)
self.assertEqual(flat, [3, 4])
orig_dt = tree_unflatten(flat, spec)
self.assertTrue(isinstance(orig_dt, MyDataClass))
self.assertEqual(orig_dt.x, 3)
self.assertEqual(orig_dt.y, 4)
self.assertEqual(orig_dt.z, None)
# Override the registration with keep none fields
register_dataclass_as_pytree_node(MyDataClass, return_none_fields=True)
flat, spec = tree_flatten(dt)
self.assertEqual(
spec,
TreeSpec(
MyDataClass,
(
MyDataClass,
['x', 'y', 'z'],
[],
),
[LeafSpec(), LeafSpec(), LeafSpec()]
)
)
self.assertEqual(flat, [3, 4, None])
orig_dt = tree_unflatten(flat, spec)
self.assertTrue(isinstance(orig_dt, MyDataClass))
self.assertEqual(orig_dt.x, 3)
self.assertEqual(orig_dt.y, 4)
self.assertEqual(orig_dt.z, None)
def test_pytree_regster_nested_data_class(self):
@dataclass
class Inner:
x: int
y: int
@dataclass
class Outer:
xy: Inner
ab: Inner
xy = Inner(1, 2)
ab = Inner(3, 4)
dt = Outer(xy, ab)
inp = {"dt1": (dt, ({},)), "dt2": ((torch.ones(1),), dt)}
register_dataclass_as_pytree_node(Inner)
register_dataclass_as_pytree_node(Outer)
flat, spec = tree_flatten(inp)
self.assertEqual(flat, [1, 2, 3, 4, torch.ones(1), 1, 2, 3, 4])
unflat = tree_unflatten(flat, spec)
self.assertEqual(unflat, inp)
def test_export_dynamo_config(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.lstm = torch.nn.LSTM(input_size=4, hidden_size=5, num_layers=1)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
return self.lstm(inputs)
config = DEFAULT_EXPORT_DYNAMO_CONFIG
mod = MyModule()
@contextmanager
def _patch_config(kwargs):
orig_config_dict = dataclasses.asdict(config)
try:
for k, v in kwargs.items():
setattr(config, k, v)
yield
finally:
for k, v in orig_config_dict.items():
setattr(config, k, v)
inp = (torch.rand(5, 4), )
exported_program = export(mod, inp)
with _patch_config({"allow_rnn": False}):
with self.assertRaisesRegex(
torch._dynamo.exc.Unsupported,
"TorchDynamo purposely graph breaks on RNN, GRU, LSTMs"
):
_ = export(mod, inp)
def test_module(self):
class MyLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.randn(20, 98)
self.bias = torch.randn(20)
def forward(self, x):
return torch.nn.functional.linear(x, self.weight, self.bias)
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(16, 33, 3)
self.linear = MyLinear()
def forward(self, x):
a, b = x
a_conv = self.conv(a)
a_linear = self.linear(a_conv)
b_conv = self.conv(b)
b_linear = self.linear(b_conv)
return (a_linear.cos() + b_linear.sin(), a_linear.sin() + b_linear.cos())
inp_container = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),)
ep = export(Foo(), inp_container)
ep_rexported = export(ep.module(), inp_container)
inp_test = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),)
self.assertTrue(torch.allclose(ep(*inp_test)[0], ep_rexported(*inp_test)[0]))
self.assertTrue(torch.allclose(ep(*inp_test)[1], ep_rexported(*inp_test)[1]))
def test_module_with_dict_container_inp_out(self):
class MyLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.randn(20, 98)
self.bias = torch.randn(20)
def forward(self, x):
return torch.nn.functional.linear(x, self.weight, self.bias)
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(16, 33, 3)
self.linear = MyLinear()
def forward(self, x):
a1, a2 = x["a"]
b = x["b"]
a1_conv = self.conv(a1)
a1_linear = self.linear(a1_conv)
a2_conv = self.conv(a2)
a2_linear = self.linear(a2_conv)
b_conv = self.conv(b)
b_linear = self.linear(b_conv)
return {"a": a1_linear.cos() + b_linear.sin(), "b": a2_linear.sin() + b_linear.cos()}
inp_container = ({"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100)},)
ep = export(Foo(), inp_container)
ep_rexported = export(ep.module(), inp_container)
inp_test = ({"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100)},)
self.assertTrue(torch.allclose(ep(*inp_test)["a"], ep_rexported(*inp_test)["a"]))
self.assertTrue(torch.allclose(ep(*inp_test)["b"], ep_rexported(*inp_test)["b"]))
def test_args_type_checked(self):
def fn(x):
return x + 1
inp = torch.rand(2, 2)
with self.assertRaisesRegex(torch._dynamo.exc.UserError, "to be a tuple"):
# Intentionally not wrapping `inp` in a tuple to trigger the error
_ = export(fn, inp)
if __name__ == '__main__':
run_tests()