blob: fab4acec1b5c24d72d88f5d305aaa01648a775db [file] [log] [blame]
import pathlib
import argparse
import os
import re
import yaml
from collections import namedtuple, Counter
from typing import List, Dict, Union, Sequence, Optional, Callable, Iterable, Iterator, Tuple, Type
from tools.codegen.dest.lazy_ir import LazyIR, TSLazyIR
from tools.codegen.gen import get_grouped_native_functions, parse_native_yaml, NamespaceHelper
from tools.codegen.model import (FunctionSchema,
NativeFunction, NativeFunctionsGroup, OperatorName)
from tools.codegen.selective_build.selector import SelectiveBuilder
from tools.codegen.utils import concatMap, YamlLoader, FileManager
import tools.codegen.dest as dest
from .gen_backend_stubs import (parse_backend_yaml, error_on_missing_kernels,
gen_dispatchkey_nativefunc_headers,
gen_dispatcher_registrations)
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
ParsedExternalYaml = namedtuple('ParsedExternalYaml', [
'backend_key', 'autograd_key', 'cpp_namespace', 'backend_indices', 'full_codegen'])
def parse_full_codegen_ops(
backend_yaml_path: str,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
) -> List[OperatorName]:
native_functions_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(
lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions
)
}
with open(backend_yaml_path, 'r') as f:
yaml_values = yaml.load(f, Loader=YamlLoader)
assert isinstance(yaml_values, dict)
full_codegen = yaml_values.pop('full_codegen', [])
assert isinstance(full_codegen, list), f'expected "full_codegen" to be a list, but got: {full_codegen}'
full_codegen = [OperatorName.parse(name) for name in full_codegen]
return full_codegen
def validate_shape_inference_header(shape_inference_hdr: str, expected_shape_infr_decls: List[str]) -> None:
try:
with open(shape_inference_hdr, 'r') as f:
shape_infr_decls = f.read()
shape_infr_decl_lines = set(shape_infr_decls.split("\n"))
except IOError:
raise AssertionError(f'Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}')
shape_infr_regex = r'compute_shape_(\w+)'
actual_shape_infr_name_counts = Counter(re.findall(shape_infr_regex, shape_infr_decls))
# TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired.
for decl in expected_shape_infr_decls:
assert decl in shape_infr_decl_lines, f"""Missing shape inference function.\n
Please add declare this function in {shape_inference_hdr}:\n
and implement it in the the corresponding shape_inference.cpp file.\n
{decl}"""
class default_args:
node_base: str = "Node"
node_base_hdr: Optional[str] = None
shape_inference_hdr: str = "torch/csrc/lazy/core/shape_inference.h"
tensor_class: str = "torch::lazy::LazyTensor"
tensor_class_hdr: str = "torch/csrc/lazy/core/tensor.h"
lazy_ir_cls: Type[LazyIR] = TSLazyIR
def main() -> None:
parser = argparse.ArgumentParser(description='Generate Lazy Tensor backend files')
parser.add_argument(
'-s',
'--source_yaml',
help='path to source yaml file containing operator external definitions')
parser.add_argument(
'-o', '--output_dir', help='output directory')
parser.add_argument(
'--dry_run', type=bool, default=False, help='output directory')
parser.add_argument(
'--impl_path', type=str, default=None, help='path to the source C++ file containing kernel definitions')
parser.add_argument(
'--gen_ts_lowerings', action="store_true",
help='Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions')
parser.add_argument(
'--node_base', type=str, default=default_args.node_base,
help='Name of backend specific custom Lazy IR Node base class')
parser.add_argument(
'--node_base_hdr', type=str, default=default_args.node_base_hdr,
help='Path to header file defining custom Lazy IR Node base class')
parser.add_argument(
'--shape_inference_hdr', type=str, default=default_args.shape_inference_hdr,
help='Path to header file defining custom Lazy shape inference functions')
parser.add_argument(
'--tensor_class', type=str, default=default_args.tensor_class,
help='Name of backend specific custom Lazy Tensor class')
parser.add_argument(
'--tensor_class_hdr', type=str, default=default_args.tensor_class_hdr,
help='Path to header file defining custom Lazy Tensor class')
options = parser.parse_args()
# Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py
torch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
aten_path = str(torch_root / "aten" / "src" / "ATen")
run_gen_lazy_tensor(aten_path, options.source_yaml, options.output_dir, options.dry_run, options.impl_path,
options.gen_ts_lowerings, options.node_base, options.node_base_hdr,
options.tensor_class, options.tensor_class_hdr, options.shape_inference_hdr,
default_args.lazy_ir_cls)
def run_gen_lazy_tensor(aten_path: str, source_yaml: str, output_dir: str,
dry_run: bool, impl_path: Optional[str],
gen_ts_lowerings: bool,
node_base: str = default_args.node_base,
node_base_hdr: Optional[str] = default_args.node_base_hdr,
tensor_class: str = default_args.tensor_class,
tensor_class_hdr: str = default_args.tensor_class_hdr,
shape_inference_hdr: str = default_args.shape_inference_hdr,
lazy_ir_cls: Type[LazyIR] = default_args.lazy_ir_cls,
# build_in_tree is true for TS backend and affects include paths
build_in_tree: bool = False,
# per_operator_headers changes whether ATen/Functions.h or individual operator headers are used
# it must match how ATen was built
per_operator_headers: bool = False) -> None:
template_dir = os.path.join(aten_path, "templates")
def make_file_manager(install_dir: str) -> FileManager:
return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run)
fm = make_file_manager(output_dir)
native_yaml_path = os.path.join(aten_path, 'native/native_functions.yaml')
tags_yaml_path = os.path.join(aten_path, 'native/tags.yaml')
parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path)
native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
grouped_native_functions = get_grouped_native_functions(native_functions)
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
"""
We sort the native function because of the note in concat_map_codegen.
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
"""
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
return str(func.name.name)
grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function)
parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices)
backend_key = parsed_backend_yaml.backend_key
autograd_key = parsed_backend_yaml.autograd_key
cpp_namespace = parsed_backend_yaml.cpp_namespace
backend_indices = parsed_backend_yaml.backend_indices
full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions)
def concat_map_codegen(func: Callable[[NativeFunction], Sequence[str]],
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
*, codegenInplaceVariant: bool = False) -> Iterator[str]:
"""
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
only code-gen additional entries for the inplace variant for the native functions.
Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
relu_ which will cause problems for relu.
TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
"""
generated = set()
def gen_key(func: FunctionSchema) -> Tuple[str, str]:
# we want to generate unique entries for overloads of functional variants,
# but not for inplace variants unless explicitly told `codegenInplaceVariant`
return (func.name.name.base, func.name.overload_name)
for x in xs:
f = x.functional if isinstance(x, NativeFunctionsGroup) else x
# For the 'or'd terms:
# 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
# 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
# 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
# as if they were the functional variants for one time.
if f.func.name in full_codegen and \
(codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
generated.add(gen_key(f.func))
for r in func(f):
yield r
selector = SelectiveBuilder.get_nop_selector()
assert backend_key is not None
class_name = backend_indices[backend_key].native_function_class_name()
if impl_path is not None:
error_on_missing_kernels(native_functions, backend_indices, backend_key,
autograd_key, class_name, impl_path, full_codegen)
""" Validate Shape Inference Definitions
Generated lazy native functions all perform shape inference, by first using a meta:: kernel
if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator
knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature,
so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev
to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
the expected signature which can be copy-pasted into shape_inference.h.
compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported
to structured kernels.
See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information.
"""
if shape_inference_hdr is not None:
expected_shape_infr_decls = list(
concat_map_codegen(
dest.GenLazyShapeInferenceDefinition(backend_indices[backend_key], tensor_class),
grouped_native_functions,
codegenInplaceVariant=True
)
)
validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls)
assert class_name is not None
# Generate nativefunction declarations
gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices,
grouped_native_functions, backend_key, autograd_key)
# Generate Dispatcher registrations which hook up the nativefunctions
for dispatch_key in [backend_key] if autograd_key is None else [backend_key, autograd_key]:
gen_dispatcher_registrations(fm, output_dir, class_name, cpp_namespace, backend_indices, grouped_native_functions,
backend_key, dispatch_key, selector,
build_in_tree=build_in_tree,
per_operator_headers=per_operator_headers)
# Generate native function impls that build IR nodes
ns_helper = NamespaceHelper(cpp_namespace)
fm.write_with_template(f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: {
'includes': [f'#include <{path}>' for path in [
tensor_class_hdr,
shape_inference_hdr,
"ATen/Functions.h",
"ATen/MetaFunctions.h",
"ATen/Operators.h",
"ATen/native/CPUFallback.h",
"torch/csrc/lazy/core/lazy_graph_executor.h",
"torch/csrc/lazy/core/metrics.h",
"torch/csrc/lazy/core/shape.h",
f"{output_dir}/{backend_key}NativeFunctions.h",
f"{output_dir}/LazyIr.h",
"torch/csrc/lazy/ts_backend/ts_eager_fallback.h",
]],
'native_functions_include': '',
'namespace_prologue': ns_helper.prologue,
'namespace_epilogue': ns_helper.epilogue,
'native_function_definitions':
list(concat_map_codegen(
dest.GenLazyNativeFuncDefinition(f'{backend_key}NativeFunctions',
backend_indices[backend_key],
tensor_class),
grouped_native_functions,
codegenInplaceVariant=True
)),
})
# Generate IR node classes
fm.write_with_template('LazyIr.h', 'LazyIr.h', lambda: {
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
"ATen/core/Formatting.h",
"c10/core/ScalarType.h",
"c10/util/Optional.h",
"torch/csrc/lazy/core/hash.h",
"torch/csrc/lazy/core/ir.h",
"torch/csrc/lazy/core/shape.h",
"vector",
]],
'lazy_ir_inc': [f'#include "{path}"' for path in [
node_base_hdr if node_base_hdr is not None else None
] if path is not None],
'ir_declarations': list(concat_map_codegen(
lazy_ir_cls(backend_indices[backend_key], node_base),
grouped_native_functions
)),
})
if __name__ == '__main__':
main()