blob: 302761cd137d46e95646ae10394cec162b32614b [file] [log] [blame]
## @package recurrent
# Module caffe2.python.recurrent
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
from caffe2.python.scope import CurrentNameScope
from future.utils import viewitems, viewkeys
def recurrent_net(
net, cell_net, inputs, initial_cell_inputs,
links, timestep=None, scope=None, outputs_with_grads=(0,),
recompute_blobs_on_backward=None, forward_only=False,
):
'''
net: the main net operator should be added to
cell_net: cell_net which is executed in a recurrent fasion
inputs: sequences to be fed into the recurrent net. Currently only one input
is supported. It has to be in a format T x N x (D1...Dk) where T is lengths
of the sequence. N is a batch size and (D1...Dk) are the rest of dimentions
initial_cell_inputs: inputs of the cell_net for the 0 timestamp.
Format for each input is:
(cell_net_input_name, external_blob_with_data)
links: a dictionary from cell_net input names in moment t+1 and
output names of moment t. Currently we assume that each output becomes
an input for the next timestep.
timestep: name of the timestep blob to be used. If not provided "timestep"
is used.
scope: Internal blobs are going to be scoped in a format
<scope_name>/<blob_name>
If not provided we generate a scope name automatically
outputs_with_grads : position indices of output blobs which will receive
error gradient (from outside recurrent network) during backpropagation
recompute_blobs_on_backward: specify a list of blobs that will be
recomputed for backward pass, and thus need not to be
stored for each forward timestep.
forward_only: if True, only forward steps are executed
'''
assert len(inputs) == 1, "Only one input blob is supported so far"
# Validate scoping
for einp in cell_net.Proto().external_input:
assert einp.startswith(CurrentNameScope()), \
'''
Cell net external inputs are not properly scoped, use
AddScopedExternalInputs() when creating them
'''
input_blobs = [str(i[0]) for i in inputs]
initial_input_blobs = [str(x[1]) for x in initial_cell_inputs]
op_name = net.NextName('recurrent')
def s(name):
# We have to manually scope due to our internal/external blob
# relationships.
scope_name = op_name if scope is None else scope
return "{}/{}".format(str(scope_name), str(name))
# determine inputs that are considered to be references
# it is those that are not referred to in inputs or initial_cell_inputs
known_inputs = [str(b) for b in input_blobs + initial_input_blobs]
known_inputs += [str(x[0]) for x in initial_cell_inputs]
if timestep is not None:
known_inputs.append(str(timestep))
references = [
core.BlobReference(b) for b in cell_net.Proto().external_input
if b not in known_inputs]
inner_outputs = list(cell_net.Proto().external_output)
# These gradients are expected to be available during the backward pass
inner_outputs_map = {o: o + '_grad' for o in inner_outputs}
# compute the backward pass of the cell net
if not forward_only:
backward_ops, backward_mapping = core.GradientRegistry.GetBackwardPass(
cell_net.Proto().op, inner_outputs_map)
backward_mapping = {str(k): v for k, v in viewitems(backward_mapping)}
backward_cell_net = core.Net("RecurrentBackwardStep")
del backward_cell_net.Proto().op[:]
if recompute_blobs_on_backward is not None:
# Insert operators to re-compute the specified blobs.
# They are added in the same order as for the forward pass, thus
# the order is correct.
recompute_blobs_on_backward = {str(b) for b in
recompute_blobs_on_backward}
for op in cell_net.Proto().op:
if not recompute_blobs_on_backward.isdisjoint(set(op.output)):
backward_cell_net.Proto().op.extend([op])
# This fires if other outputs than the declared
# are computed by the ops that are recomputed
assert set(op.output).issubset(recompute_blobs_on_backward)
backward_cell_net.Proto().op.extend(backward_ops)
# compute blobs used but not defined in the backward pass
backward_ssa, backward_blob_versions = core.get_ssa(
backward_cell_net.Proto())
undefined = core.get_undefined_blobs(backward_ssa)
# also add to the output list the intermediate outputs of fwd_step that
# are used by backward.
ssa, blob_versions = core.get_ssa(cell_net.Proto())
scratches = [
blob
for blob, ver in viewitems(blob_versions)
if (ver > 0 and
blob in undefined and
blob not in cell_net.Proto().external_output)
]
backward_cell_net.Proto().external_input.extend(scratches)
backward_cell_net.Proto().type = 'simple'
else:
backward_cell_net = None
all_inputs = [i[1] for i in inputs] + [
x[1] for x in initial_cell_inputs] + references
all_outputs = []
cell_net.Proto().type = 'rnn'
# Internal arguments used by RecurrentNetwork operator
# Links are in the format blob_name, recurrent_states, offset.
# In the moment t we know that corresponding data block is at
# t + offset position in the recurrent_states tensor
forward_links = []
backward_links = []
# Aliases are used to expose outputs to external world
# Format (internal_blob, external_blob, offset)
# Negative offset stands for going from the end,
# positive - from the beginning
aliases = []
# States held inputs to the cell net
recurrent_states = []
for cell_input, _ in initial_cell_inputs:
cell_input = str(cell_input)
# Recurrent_states is going to be (T + 1) x ...
# It stores all inputs and outputs of the cell net over time.
# Or their gradients in the case of the backward pass.
state = s(cell_input + "_states")
states_grad = state + "_grad"
cell_output = links[str(cell_input)]
forward_links.append((cell_input, state, 0))
forward_links.append((cell_output, state, 1))
aliases.append((state, cell_output + "_all", 1))
aliases.append((state, cell_output + "_last", -1))
all_outputs.extend([cell_output + "_all", cell_output + "_last"])
recurrent_states.append(state)
if backward_cell_net is not None:
backward_links.append((cell_output + "_grad", states_grad, 1))
backward_cell_net.Proto().external_input.append(
str(cell_output) + "_grad")
recurrent_input_grad = cell_input + "_grad"
if not backward_blob_versions.get(recurrent_input_grad, 0):
# If nobody writes to this recurrent input gradient, we need
# to make sure it gets to the states grad blob after all.
# We do this by using backward_links which triggers an alias
# This logic is being used for example in a SumOp case
backward_links.append(
(backward_mapping[cell_input], states_grad, 0))
else:
backward_links.append((cell_input + "_grad", states_grad, 0))
for input_t, input_blob in inputs:
forward_links.append((str(input_t), str(input_blob), 0))
if backward_cell_net is not None:
for input_t, input_blob in inputs:
backward_links.append((
backward_mapping[str(input_t)], str(input_blob) + "_grad", 0
))
backward_cell_net.Proto().external_input.extend(
cell_net.Proto().external_input)
backward_cell_net.Proto().external_input.extend(
cell_net.Proto().external_output)
def unpack_triple(x):
if x:
a, b, c = zip(*x)
return a, b, c
return [], [], []
# Splitting to separate lists so we can pass them to c++
# where we ensemle them back
link_internal, link_external, link_offset = unpack_triple(forward_links)
alias_src, alias_dst, alias_offset = unpack_triple(aliases)
recurrent_inputs = [str(x[1]) for x in initial_cell_inputs]
# Make sure that recurrent gradients accumulate with internal gradients
# (if a blob in the backward_cell_net receives gradient from both an
# external connection as well as from within the backward_cell_net,
# those gradients need to be added together, rather than one overwriting
# the other)
if backward_cell_net is not None:
proto = backward_cell_net.Proto()
operators = []
while len(proto.op) > 0:
op = proto.op[-1]
proto.op.remove(op)
operators.append(op)
for op in operators[::-1]:
proto.op.extend([op])
for j, output_blob in enumerate(op.output):
if output_blob in proto.external_input:
# In place operation won't cause issues because it takes
# existing value of a blob into account
if output_blob in op.input:
continue
output_blob = core.BlobReference(output_blob)
accum_blob = output_blob + "_accum"
proto.op[-1].output[j] = str(accum_blob)
backward_cell_net.Sum(
[output_blob, accum_blob],
[output_blob],
)
backward_args = {}
backward_mapping_keys = set(viewkeys(backward_mapping))
if backward_cell_net is not None:
backward_link_internal, backward_link_external, backward_link_offset = \
unpack_triple(backward_links)
params = [x for x in references if x in backward_mapping_keys]
param_grads = [
str(backward_mapping[x])
for x in references
if x in backward_mapping_keys
]
if recompute_blobs_on_backward is None:
recompute_blobs_on_backward = set()
backward_args = {
'param': [all_inputs.index(p) for p in params],
'backward_link_internal': [str(l) for l in backward_link_internal],
'backward_link_external': [str(l) for l in backward_link_external],
'backward_link_offset': backward_link_offset,
'backward_step_net': str(backward_cell_net.Proto()),
'outputs_with_grads': outputs_with_grads,
'recompute_blobs_on_backward': [
str(b) for b in recompute_blobs_on_backward
],
'param_grads': param_grads,
}
results = net.RecurrentNetwork(
all_inputs,
all_outputs + [s("step_workspaces")],
alias_src=alias_src,
alias_dst=[str(a) for a in alias_dst],
alias_offset=alias_offset,
recurrent_states=recurrent_states,
initial_recurrent_state_ids=[
all_inputs.index(i) for i in recurrent_inputs
],
link_internal=[str(l) for l in link_internal],
link_external=[str(l) for l in link_external],
link_offset=link_offset,
step_net=str(cell_net.Proto()),
timestep="timestep" if timestep is None else str(timestep),
**backward_args
)
# Restore net type since 'rnn' is not recognized outside RNNs
cell_net.Proto().type = 'simple'
# The last output is a list of step workspaces,
# which is only needed internally for gradient propogation
return results[:-1]