blob: cb9cdc774d291c90cd874d0e1283f161b06b3730 [file] [log] [blame]
#include <torch/csrc/jit/script/module.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/error_report.h>
#include <torch/csrc/jit/script/schema_matching.h>
namespace torch {
namespace jit {
namespace script {
struct RecursiveMethodCallError : public std::exception {};
void placeholderCreator(Method&) {
throw RecursiveMethodCallError();
}
Value* try_emit_call_to(
Graph& graph,
const SourceRange& loc,
Method& callee,
c10::optional<NamedValue> self,
ArrayRef<NamedValue> args,
ArrayRef<NamedValue> kwargs,
std::stringstream& failure_messages,
Method* caller,
bool conv_tensors_to_nums) {
try {
callee.ensure_defined();
} catch (RecursiveMethodCallError&) {
throw ErrorReport(loc)
<< " method '" << callee.name()
<< "' is called recursively involving this call site. "
<< "Recursive calls are not supported";
}
auto fn = callee.graph();
auto matched_schema = tryMatchSchema(
callee.getSchema(),
loc,
graph,
std::move(self),
args,
kwargs,
failure_messages,
conv_tensors_to_nums);
if (!matched_schema)
return nullptr;
// parameters to callee method (which become parameters to _this_ method
// if they were not already)
for (auto member : callee.initial_ivalues()) {
if (!caller) {
throw ErrorReport(loc)
<< " attempting to call a method with parameters/attributes"
" from a raw graph. File a bug report";
}
// TODO: preserve the type information so we don't have to infer it here
auto type = incompleteInferTypeFrom(*member);
matched_schema->inputs.push_back(
caller->get_or_add_attribute(type, member));
}
callee.check_single_output();
return inlineCallTo(graph, *callee.graph(), matched_schema->inputs).at(0);
}
Value* Method::emit_call_to(
const SourceRange& loc,
Method& callee,
ArrayRef<NamedValue> args,
ArrayRef<NamedValue> kwargs) {
AT_ASSERT(!executor);
std::stringstream failure_messages;
if (auto result = try_emit_call_to(
*graph(),
loc,
callee,
c10::nullopt,
args,
kwargs,
failure_messages,
this,
/*conv_tensors_to_nums=*/true)) {
return result;
}
throw ErrorReport(loc) << failure_messages.str();
}
void Method::ensure_defined() {
if (method_creator) {
auto creator = method_creator;
method_creator = placeholderCreator;
creator(*this);
method_creator = nullptr;
}
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) {
ExportModule(*this, out, extra_files);
}
void Module::save(
const std::string& filename,
const ExtraFilesMap& extra_files) {
ExportModule(*this, filename, extra_files);
}
void Module::to_impl(
const c10::optional<at::Device>& device,
const c10::optional<at::ScalarType>& dtype,
bool non_blocking) {
// First call `to()` on every child module.
for (auto& child : get_modules()) {
child->to_impl(device, dtype, non_blocking);
}
// Then convert every of our parameters.
for (auto& parameter : get_parameters()) {
// Need to access the `at::Tensor` as a `Variable` here.
autograd::Variable variable = parameter.slot()->toTensor();
at::Tensor data = variable.data();
// Use the data's original device or dtype if not supplied here.
auto new_data = data.to(
device.value_or(data.device()),
dtype.value_or(data.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
}
} // namespace script
} // namespace jit
} // namespace torch