| #include <gtest/gtest.h> |
| |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| namespace F = torch::nn::functional; |
| |
| using namespace torch::nn; |
| |
| struct FunctionalTest : torch::test::SeedingFixture {}; |
| |
| TEST_F(FunctionalTest, MaxPool1d) { |
| auto x = torch::ones({1, 1, 5}); |
| auto y = F::max_pool1d(x, MaxPool1dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); |
| } |
| |
| TEST_F(FunctionalTest, MaxPool2d) { |
| auto x = torch::ones({2, 5, 5}); |
| auto y = F::max_pool2d(x, MaxPool2dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2})); |
| } |
| |
| TEST_F(FunctionalTest, MaxPool3d) { |
| auto x = torch::ones({2, 5, 5, 5}); |
| auto y = F::max_pool3d(x, MaxPool3dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2, 2})); |
| } |
| |
| TEST_F(FunctionalTest, AvgPool1d) { |
| auto x = torch::ones({1, 1, 5}); |
| auto y = F::avg_pool1d(x, AvgPool1dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2})); |
| } |
| |
| TEST_F(FunctionalTest, AvgPool2d) { |
| auto x = torch::ones({2, 5, 5}); |
| auto y = F::avg_pool2d(x, AvgPool2dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2})); |
| } |
| |
| TEST_F(FunctionalTest, AvgPool3d) { |
| auto x = torch::ones({2, 5, 5, 5}); |
| auto y = F::avg_pool3d(x, AvgPool3dOptions(3).stride(2)); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 2, 2, 2})); |
| } |
| |
| TEST_F(FunctionalTest, CosineSimilarity) { |
| auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat); |
| auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat); |
| auto output = |
| F::cosine_similarity(input1, input2, CosineSimilarityOptions().dim(1)); |
| auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| } |
| |
| TEST_F(FunctionalTest, PairwiseDistance) { |
| auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat); |
| auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat); |
| auto output = |
| F::pairwise_distance(input1, input2, PairwiseDistanceOptions(1)); |
| auto expected = torch::tensor({6, 6}, torch::kFloat); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| |
| TEST_F(FunctionalTest, PDist) { |
| { |
| auto input = torch::tensor({{-1.0, -5.0, -1.0}, {2.0, 4.0, 6.0}}); |
| auto output = F::pdist(input); |
| auto expected = torch::tensor({11.7898}); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| { |
| auto input = torch::tensor({{1.0, -1.0}, {1.0, 3.0}, {3.0, 3.0}}); |
| auto output = F::pdist(input, 1.5); |
| auto expected = torch::tensor({4.0, 4.8945, 2.0}); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveMaxPool1d) { |
| auto x = torch::ones({1, 1, 5}); |
| auto y = F::adaptive_max_pool1d(x, AdaptiveMaxPool1dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3})); |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveMaxPool2d) { |
| auto x = torch::ones({2, 5, 5}); |
| auto y = F::adaptive_max_pool2d(x, AdaptiveMaxPool2dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3})); |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveMaxPool3d) { |
| auto x = torch::ones({2, 5, 5, 5}); |
| auto y = F::adaptive_max_pool3d(x, AdaptiveMaxPool3dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3, 3})); |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveAvgPool1d) { |
| auto x = torch::ones({1, 1, 5}); |
| auto y = F::adaptive_avg_pool1d(x, AdaptiveAvgPool1dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 3})); |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveAvgPool2d) { |
| auto x = torch::ones({2, 5, 5}); |
| auto y = F::adaptive_avg_pool2d(x, AdaptiveAvgPool2dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3})); |
| } |
| |
| TEST_F(FunctionalTest, AdaptiveAvgPool3d) { |
| auto x = torch::ones({2, 5, 5, 5}); |
| auto y = F::adaptive_avg_pool3d(x, AdaptiveAvgPool3dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3}))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 3, 3, 3})); |
| } |
| |
| TEST_F(FunctionalTest, HingeEmbeddingLoss) { |
| auto input = torch::tensor({{2, 22, 4}, {20, 10, 0}}, torch::kFloat); |
| auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat); |
| auto output = F::hinge_embedding_loss( |
| input, target, HingeEmbeddingLossOptions().margin(2)); |
| auto expected = torch::tensor({10}, torch::kFloat); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| |
| TEST_F(FunctionalTest, AffineGrid) { |
| { |
| // 2D affine. |
| auto theta = torch::arange(1, 13, torch::kDouble) |
| .view(torch::IntArrayRef({2, 2, 3})); |
| auto size = torch::IntArrayRef({2, 3, 2, 2}).vec(); |
| auto align_corners = true; |
| auto output = F::affine_grid(theta, size, !align_corners); |
| auto expected = torch::tensor( |
| {{{{1.50, 1.50}, {2.50, 5.50}}, {{3.50, 6.50}, {4.50, 10.50}}}, |
| {{{1.50, 1.50}, {8.50, 11.50}}, {{9.50, 12.50}, {16.50, 22.50}}}}); |
| auto output_aligned = F::affine_grid(theta, size, align_corners); |
| auto expected_aligned = torch::tensor( |
| {{{{0.0, -3.0}, {2.0, 5.0}}, {{4.0, 7.0}, {6.0, 15.0}}}, |
| {{{-6.0, -9.0}, {8.0, 11.0}}, {{10.0, 13.0}, {24.0, 33.0}}}}); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| ASSERT_TRUE(output_aligned.allclose(expected_aligned)); |
| } |
| { |
| // 3D affine. |
| auto theta = torch::arange(1, 13, torch::kDouble) |
| .view(torch::IntArrayRef({1, 3, 4})); |
| auto size = torch::IntArrayRef({1, 1, 3, 2, 2}).vec(); |
| auto align_corners = true; |
| auto output = F::affine_grid(theta, size, !align_corners); |
| auto expected = torch::tensor( |
| {{{{{0.5000, -2.1667, -4.8333}, {1.5000, 2.8333, 4.1667}}, |
| {{2.5000, 3.8333, 5.1667}, {3.5000, 8.8333, 14.1667}}}, |
| {{{2.5000, 2.5000, 2.5000}, {3.5000, 7.5000, 11.5000}}, |
| {{4.5000, 8.5000, 12.5000}, {5.5000, 13.5000, 21.5000}}}, |
| {{{4.5000, 7.1667, 9.8333}, {5.5000, 12.1667, 18.8333}}, |
| {{6.5000, 13.1667, 19.8333}, {7.5000, 18.1667, 28.8333}}}}}); |
| auto output_aligned = F::affine_grid(theta, size, align_corners); |
| auto expected_aligned = |
| torch::tensor({{{{{-2.0, -10.0, -18.0}, {0.0, 0.0, 0.0}}, |
| {{2.0, 2.0, 2.0}, {4.0, 12.0, 20.0}}}, |
| {{{1.0, -3.0, -7.0}, {3.0, 7.0, 11.0}}, |
| {{5.0, 9.0, 13.0}, {7.0, 19.0, 31.0}}}, |
| {{{4.0, 4.0, 4.0}, {6.0, 14.0, 22.0}}, |
| {{8.0, 16.0, 24.0}, {10.0, 26.0, 42.0}}}}}); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-2)); |
| ASSERT_TRUE(output_aligned.allclose(expected_aligned)); |
| } |
| { |
| auto theta = torch::empty({1, 2, 3}, torch::kDouble); |
| auto size = torch::IntArrayRef({1, 1, 2, 2}).vec(); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(torch::empty({2, 2, 3}), {-1, 1, 2, 2}), |
| "Expected non-zero, positive output size. Got [-1, 1, 2, 2]"); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(torch::empty({2, 2, 3}, torch::kInt), size), |
| "Expected theta to have floating point type, but got int"); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta[0], size), |
| "Expected a batch of 2D affine matrices of shape Nx2x3 for size " |
| "[1, 1, 2, 2]. Got [2, 3]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.unsqueeze(0), size), |
| "Expected a batch of 2D affine matrices of shape Nx2x3 for size " |
| "[1, 1, 2, 2]. Got [1, 1, 2, 3]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.repeat({1, 2, 1}), size), |
| "Expected a batch of 2D affine matrices of shape Nx2x3 for size " |
| "[1, 1, 2, 2]. Got [1, 4, 3]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.repeat({1, 1, 2}), size), |
| "Expected a batch of 2D affine matrices of shape Nx2x3 for size " |
| "[1, 1, 2, 2]. Got [1, 2, 6]."); |
| } |
| { |
| auto theta = torch::empty({1, 3, 4}, torch::kDouble); |
| auto size = torch::IntArrayRef({1, 1, 2, 2, 3}).vec(); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta[0], size), |
| "Expected a batch of 3D affine matrices of shape Nx3x4 for size " |
| "[1, 1, 2, 2, 3]. Got [3, 4]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.unsqueeze(0), size), |
| "Expected a batch of 3D affine matrices of shape Nx3x4 for size " |
| "[1, 1, 2, 2, 3]. Got [1, 1, 3, 4]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.repeat({1, 2, 1}), size), |
| "Expected a batch of 3D affine matrices of shape Nx3x4 for size " |
| "[1, 1, 2, 2, 3]. Got [1, 6, 4]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta.repeat({1, 1, 2}), size), |
| "Expected a batch of 3D affine matrices of shape Nx3x4 for size " |
| "[1, 1, 2, 2, 3]. Got [1, 3, 8]."); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta, {1, 1, 1, 2, 2, 3}), |
| "affine_grid only supports 4D and 5D sizes, for 2D and 3D affine " |
| "transforms, respectively. Got size [1, 1, 1, 2, 2, 3]"); |
| ASSERT_THROWS_WITH( |
| F::affine_grid(theta, {1, 1}), |
| "affine_grid only supports 4D and 5D sizes, for 2D and 3D affine " |
| "transforms, respectively. Got size [1, 1]"); |
| } |
| } |
| |
| TEST_F(FunctionalTest, MultiMarginLoss) { |
| auto weight = torch::tensor({0.3, 0.3, 0.4}, torch::kFloat); |
| auto input = torch::tensor({{0.2, 0.2, 0.6}, {0.1, 0.8, 0.1}, {0.9, 0.09, 0.01}}, torch::requires_grad()); |
| auto target = torch::tensor({2, 1, 0}, torch::kLong); |
| auto output = F::multi_margin_loss( |
| input, target, MultiMarginLossOptions().margin(2).weight(weight)); |
| auto expected = torch::tensor({0.305556}, torch::kFloat); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| } |
| |
| TEST_F(FunctionalTest, CosineEmbeddingLoss) { |
| auto input1 = torch::tensor({{2, 3, 4}, {6, 2, 4}}); |
| auto input2 = torch::tensor({{2, 3, 5}, {9, 12, 0}}); |
| auto target = torch::tensor({1, -1}); |
| auto output = F::cosine_embedding_loss( |
| input1, input2, target, CosineEmbeddingLossOptions().margin(0.5)); |
| auto expected = torch::tensor({0.1004}, torch::kFloat); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-4)); |
| } |
| |
| TEST_F(FunctionalTest, TripletMarginLoss) { |
| auto anchor = torch::tensor({{3., 3.}}, torch::kFloat); |
| auto positive = torch::tensor({{2., 2.}}, torch::kFloat); |
| auto negative = torch::tensor({{0., 0.}}, torch::kFloat); |
| auto output = F::triplet_margin_loss( |
| anchor, positive, negative, TripletMarginLossOptions().margin(1.0)); |
| auto expected = torch::tensor({0.}, torch::kFloat); |
| |
| ASSERT_TRUE(output.allclose(expected, 1e-04)); |
| } |
| |
| TEST_F(FunctionalTest, MaxUnpool1d) { |
| auto x = torch::tensor({{{2, 4, 5}}}, torch::requires_grad()); |
| auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); |
| auto y = F::max_unpool1d(x, indices, MaxUnpool1dOptions(3)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose( |
| y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 9})); |
| |
| x = torch::tensor({{{2, 4, 5}}}, torch::requires_grad()); |
| indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); |
| y = F::max_unpool1d( |
| x, indices, MaxUnpool1dOptions(3), c10::IntArrayRef({1, 1, 9})); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose( |
| y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 9})); |
| |
| x = torch::tensor({{{2, 4, 5}}}, torch::requires_grad()); |
| indices = torch::tensor({{{1, 3, 4}}}, torch::kLong); |
| y = F::max_unpool1d(x, indices, MaxUnpool1dOptions(3).stride(2).padding(1)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE( |
| torch::allclose(y, torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 5})); |
| } |
| |
| TEST_F(FunctionalTest, MaxUnpool2d) { |
| auto indices = torch::tensor({ |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}, |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}}, torch::kLong); |
| auto x = torch::tensor({ |
| {{{ 6, 8, 9}, |
| {16, 18, 19}, |
| {21, 23, 24}}}, |
| {{{31, 33, 34}, |
| {41, 43, 44}, |
| {46, 48, 49}}}}, torch::requires_grad()); |
| auto y = F::max_unpool2d(x, indices, MaxUnpool2dOptions(3).stride(2).padding(1)); |
| |
| ASSERT_EQ(y.dim(), 4); |
| ASSERT_TRUE(torch::allclose(y, torch::tensor( |
| {{{{ 0, 0, 0, 0, 0}, |
| { 0, 6, 0, 8, 9}, |
| { 0, 0, 0, 0, 0}, |
| { 0, 16, 0, 18, 19}, |
| { 0, 21, 0, 23, 24}}}, |
| {{{ 0, 0, 0, 0, 0}, |
| { 0, 31, 0, 33, 34}, |
| { 0, 0, 0, 0, 0}, |
| { 0, 41, 0, 43, 44}, |
| { 0, 46, 0, 48, 49}}}} , torch::kFloat))); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({2, 1, 5, 5})); |
| } |
| |
| TEST_F(FunctionalTest, ELU) { |
| const auto size = 3; |
| for (const auto inplace : {false, true}) { |
| for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = torch::max(torch::zeros_like(x), x) + |
| torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0)); |
| auto y = F::elu(x, ELUOptions().alpha(alpha).inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, SELU) { |
| { |
| const double scale = 1.0507009873554804934193349852946; |
| const double alpha = 1.6732632423543772848170429916717; |
| for (const auto inplace : {false, true}) { |
| auto input = torch::randn({5, 5}); |
| auto expected = scale * |
| (torch::max(torch::zeros_like(input), input) + |
| torch::min( |
| torch::zeros_like(input), alpha * (torch::exp(input) - 1))); |
| auto output = F::selu(input, inplace); |
| |
| ASSERT_TRUE(output.allclose(expected)); |
| if (inplace) { |
| ASSERT_TRUE(input.allclose(expected)); |
| } |
| } |
| } |
| { |
| auto input = torch::arange(0, 9, torch::kDouble).view({3, 3}); |
| auto output = F::selu(input); |
| auto expected = F::selu(input, false); |
| ASSERT_TRUE(output.allclose(expected)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, Hardshrink) { |
| const auto size = 3; |
| for (const auto lambda : {-4.2, -1.0, -0.42, 0.0, 0.42, 1.0, 4.2, 42.42}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = F::hardshrink(x, HardshrinkOptions().lambda(lambda)); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| auto y_exp = (x.abs() > lambda) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, OneHot) { |
| { // Test #1 |
| auto x = torch::arange(0, 5, torch::kLong); |
| auto y = F::one_hot(x % 3); |
| auto expected = torch::tensor( |
| {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}}, torch::kLong); |
| |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_TRUE(torch::allclose(y, expected)); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({5, 3})); |
| } |
| |
| { // Test #2 |
| auto x = torch::arange(0, 5, torch::kLong); |
| auto y = F::one_hot(x % 3, 5); |
| auto expected = torch::tensor( |
| {{1, 0, 0, 0, 0}, |
| {0, 1, 0, 0, 0}, |
| {0, 0, 1, 0, 0}, |
| {1, 0, 0, 0, 0}, |
| {0, 1, 0, 0, 0}}, |
| torch::kLong); |
| |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_TRUE(torch::allclose(y, expected)); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({5, 5})); |
| } |
| |
| { // Test #3 |
| auto x = torch::arange(0, 6, torch::kLong); |
| auto y = F::one_hot(x.view(torch::IntArrayRef({3, 2})) % 3); |
| auto expected = torch::tensor( |
| {{{1, 0, 0}, {0, 1, 0}}, |
| {{0, 0, 1}, {1, 0, 0}}, |
| {{0, 1, 0}, {0, 0, 1}}}, |
| torch::kLong); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_TRUE(torch::allclose(y, expected)); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 2, 3})); |
| } |
| } |
| |
| TEST_F(FunctionalTest, Hardtanh) { |
| const auto size = 3; |
| for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) { |
| for (const auto max_val : {0.0, 0.42, 1.0, 4.2}) { |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < min_val) * min_val + |
| ((x >= min_val) * (x <= max_val)) * x + |
| (x > max_val) * max_val; |
| auto y = F::hardtanh(x,HardtanhOptions().min_val(min_val) |
| .max_val(max_val).inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, LeakyReLU) { |
| const auto size = 3; |
| for (const auto negative_slope : {0.0, 0.42, 1.0}) { |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x; |
| auto y = F::leaky_relu(x, LeakyReLUOptions() |
| .negative_slope(negative_slope).inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, LogSigmoid) { |
| const auto size = 3; |
| LogSigmoid model; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y = F::logsigmoid(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| auto y_exp = torch::log(torch::ones_like(x)/(torch::ones_like(x) + torch::exp(torch::neg(x)))); |
| ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7)); |
| } |
| |
| TEST_F(FunctionalTest, Softmax) { |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = F::softmax(input, /*dim=*/1); |
| auto sum = torch::sum(torch::exp(input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::exp(input[i]) / sum[i]; |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, Softmin) { |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = F::softmin(input, /*dim=*/1); |
| auto sum = torch::sum(torch::exp(-input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::exp(-input[i]) / sum[i]; |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, LogSoftmax) { |
| auto input = torch::arange(10, torch::kFloat).reshape({2, 5}); |
| auto output = F::log_softmax(input, /*dim=*/1); |
| auto sum = torch::sum(torch::exp(input), 1); |
| |
| for (int i = 0; i < 2; i++) { |
| auto expected = torch::log(torch::exp(input[i]) / sum[i]); |
| ASSERT_TRUE(torch::allclose(output[i], expected)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, PReLU) { |
| const auto x = torch::rand({42, 24}) * 200 - 100; |
| const auto w = torch::rand(24) * 200 - 100; |
| const auto y = F::prelu(x, w); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({42, 24})); |
| const auto y_exp = (x < 0) * w * x + (x >= 0) * x; |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, ReLU) { |
| const auto size = 3; |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < 0) * 0 + (x >= 0) * x; |
| auto y = F::relu(x, ReLUOptions().inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| |
| y = F::relu(x, /*inplace=*/inplace); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, ReLUDefaultOptions) { |
| const auto size = 3; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < 0) * 0 + (x >= 0) * x; |
| auto y = F::relu(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, ReLU6) { |
| const auto size = 3; |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; |
| auto y = F::relu6(x, ReLU6Options().inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| |
| y = F::relu6(x, /*inplace=*/inplace); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, ReLU6DefaultOptions) { |
| const auto size = 3; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6; |
| auto y = F::relu6(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, RReLU) { |
| const auto size = 3; |
| for (const auto lower : {0.01, 0.1, 0.2}) { |
| for (const auto upper : {0.3, 0.4, 0.5}) { |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto x_copy = x.clone(); |
| auto y = F::rrelu(x, RReLUOptions().lower(lower) |
| .upper(upper).inplace(inplace)); |
| auto z = ((x_copy >= 0) * (x_copy == y) + |
| (x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) * 1.0; |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y)); |
| } |
| } |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, RReLUDefaultOptions) { |
| const auto size = 3; |
| const auto lower = 1.0 / 8.0; |
| const auto upper = 1.0 / 3.0; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto x_copy = x.clone(); |
| auto y = F::rrelu(x); |
| auto z = ((x_copy >= 0) * (x_copy == y) + |
| (x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) * 1.0; |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(z, torch::ones_like(z))); |
| } |
| |
| TEST_F(FunctionalTest, CELU) { |
| const auto size = 3; |
| for (const auto inplace : {false, true}) { |
| for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = torch::max(torch::zeros_like(x), x) + |
| torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); |
| auto y = F::celu(x, CELUOptions().alpha(alpha).inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, CELUDefaultOptions) { |
| const auto size = 3; |
| const auto alpha = 1.0; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}); |
| auto y_exp = torch::max(torch::zeros_like(x), x) + |
| torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0)); |
| auto y = F::celu(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, Softplus) { |
| const auto size = 3; |
| for (const auto beta : {0.5, 1.0, 2.0}) { |
| for (const auto threshold : {1.0, 3.0, 5.0}) { |
| auto x = torch::linspace(-3.0, 3.0, 61); |
| x.resize_({size, size, size}); |
| auto y_exp = |
| (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + |
| (x > threshold) * x; |
| auto y = F::softplus(x, |
| SoftplusOptions().beta(beta).threshold(threshold)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| } |
| |
| TEST_F(FunctionalTest, SoftplusDefaultOptions) { |
| const auto size = 3; |
| const auto beta = 1.0; |
| const auto threshold = 20.0; |
| auto x = torch::linspace(-3.0, 3.0, 61); |
| x.resize_({size, size, size}); |
| auto y_exp = |
| (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta + |
| (x > threshold) * x; |
| auto y = F::softplus(x); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, Softshrink) { |
| const auto size = 3; |
| for (const auto lambda : {0.0, 0.42, 1.0, 4.2, 42.42}) { |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = F::softshrink(x, /*lambda=*/lambda); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| } |
| |
| TEST_F(FunctionalTest, SoftshrinkDefaultOptions) { |
| const auto size = 3; |
| const auto lambda = 0.5; |
| auto x = torch::linspace(-10.0, 10.0, size * size * size); |
| x.resize_({size, size, size}).set_requires_grad(true); |
| auto y = F::softshrink(x); |
| torch::Tensor s = y.sum(); |
| |
| s.backward(); |
| ASSERT_EQ(s.ndimension(), 0); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda); |
| } |
| |
| TEST_F(FunctionalTest, Softsign) { |
| auto x = torch::randn(100) * 10; |
| auto y_exp = x / (1 + x.abs()); |
| auto y = F::softsign(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, Tanhshrink) { |
| auto x = torch::randn(100) * 10; |
| auto y_exp = x - x.tanh(); |
| auto y = F::tanhshrink(x); |
| |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| } |
| |
| TEST_F(FunctionalTest, Threshold) { |
| const auto size = 3; |
| for (const auto threshold : {0.5, 1.0, 2.0}) { |
| for (const auto value : {0.5, 1.0, 2.0}) { |
| for (const auto inplace : {false, true}) { |
| auto x = torch::linspace(-3.0, 3.0, 61); |
| x.resize_({size, size, size}); |
| auto y_exp = (x <= threshold) * value + (x > threshold) * x; |
| auto y = F::threshold(x, |
| ThresholdOptions(threshold, value).inplace(inplace)); |
| |
| ASSERT_EQ(y.ndimension(), 3); |
| ASSERT_EQ(y.sizes(), torch::IntArrayRef({size, size, size})); |
| ASSERT_TRUE(torch::allclose(y, y_exp)); |
| if (inplace) { |
| ASSERT_TRUE(torch::allclose(x, y_exp)); |
| } |
| } |
| } |
| } |
| } |
| |