blob: 5d256bac4937e2fa3d98b7bf6692e898ad08d39e [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import os
import sys
import warnings
import torch
from typing import List, Dict, Optional
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestScriptModuleInstanceAttributeTypeAnnotation(JitTestCase):
# NB: There are no tests for `Tuple` or `NamedTuple` here. In fact,
# reassigning a non-empty Tuple to an attribute previously typed
# as containing an empty Tuple SHOULD fail. See note in `_check.py`
def test_annotated_falsy_base_type(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x: int = 0
def forward(self, x: int):
self.x = x
return 1
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), (1,))
assert(len(w) == 0)
def test_annotated_nonempty_container(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x: List[int] = [1, 2, 3]
def forward(self, x: List[int]):
self.x = x
return 1
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), ([1, 2, 3],))
assert(len(w) == 0)
def test_annotated_empty_tensor(self):
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
self.x: torch.Tensor = torch.empty(0)
def forward(self, x: torch.Tensor):
self.x = x
return self.x
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), (torch.rand(2, 3),))
assert(len(w) == 0)
def test_annotated_with_jit_attribute(self):
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
self.x = torch.jit.Attribute([], List[int])
def forward(self, x: List[int]):
self.x = x
return self.x
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), ([1, 2, 3],))
assert(len(w) == 0)
def test_annotated_class_level_annotation_only(self):
class M(torch.nn.Module):
x: List[int]
def __init__(self):
super().__init__()
self.x = []
def forward(self, y: List[int]):
self.x = y
return self.x
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), ([1, 2, 3],))
assert(len(w) == 0)
def test_annotated_class_level_annotation_and_init_annotation(self):
class M(torch.nn.Module):
x: List[int]
def __init__(self):
super().__init__()
self.x: List[int] = []
def forward(self, y: List[int]):
self.x = y
return self.x
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), ([1, 2, 3],))
assert(len(w) == 0)
def test_annotated_class_level_jit_annotation(self):
class M(torch.nn.Module):
x: List[int]
def __init__(self):
super().__init__()
self.x: List[int] = torch.jit.annotate(List[int], [])
def forward(self, y: List[int]):
self.x = y
return self.x
with warnings.catch_warnings(record=True) as w:
self.checkModule(M(), ([1, 2, 3],))
assert(len(w) == 0)
def test_annotated_empty_list(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x: List[int] = []
def forward(self, x: List[int]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Tried to set nonexistent attribute",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_empty_dict(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x: Dict[str, int] = {}
def forward(self, x: Dict[str, int]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Tried to set nonexistent attribute",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_empty_optional(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x: Optional[str] = None
def forward(self, x: Optional[str]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Wrong type for attribute assignment",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_with_jit_empty_list(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x = torch.jit.annotate(List[int], [])
def forward(self, x: List[int]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Tried to set nonexistent attribute",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_with_jit_empty_dict(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x = torch.jit.annotate(Dict[str, int], {})
def forward(self, x: Dict[str, int]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Tried to set nonexistent attribute",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_with_jit_empty_optional(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x = torch.jit.annotate(Optional[str], None)
def forward(self, x: Optional[str]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Wrong type for attribute assignment",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())
def test_annotated_with_torch_jit_import(self):
from torch import jit
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.x = jit.annotate(Optional[str], None)
def forward(self, x: Optional[str]):
self.x = x
return 1
with self.assertRaisesRegexWithHighlight(RuntimeError,
"Wrong type for attribute assignment",
"self.x = x"):
with self.assertWarnsRegex(UserWarning, "doesn't support "
"instance-level annotations on "
"empty non-base types"):
torch.jit.script(M())