| #pragma once |
| |
| /// Defines the Half type (half-precision floating-point) including conversions |
| /// to standard C types and basic arithmetic operations. Note that arithmetic |
| /// operations are implemented by converting to floating point and |
| /// performing the operation in float32, instead of using CUDA half intrinisics. |
| /// Most uses of this type within ATen are memory bound, including the |
| /// element-wise kernels, and the half intrinisics aren't efficient on all GPUs. |
| /// If you are writing a compute bound kernel, you can use the CUDA half |
| /// intrinsics directly on the Half type from device code. |
| |
| #include <c10/macros/Macros.h> |
| #include <c10/util/C++17.h> |
| |
| #if defined(__cplusplus) && (__cplusplus >= 201103L) |
| #include <cmath> |
| #include <cstdint> |
| #elif !defined(__OPENCL_VERSION__) |
| #include <math.h> |
| #include <stdint.h> |
| #endif |
| |
| #ifdef _MSC_VER |
| #include <intrin.h> |
| #endif |
| |
| #include <complex> |
| #include <cstring> |
| #include <cstdint> |
| #include <iosfwd> |
| #include <limits> |
| #include <sstream> |
| #include <stdexcept> |
| #include <string> |
| #include <utility> |
| |
| #ifdef __CUDACC__ |
| #include <cuda_fp16.h> |
| #endif |
| |
| #ifdef __HIPCC__ |
| #include <hip/hip_fp16.h> |
| #endif |
| |
| namespace c10 { |
| |
| namespace detail { |
| |
| inline float fp32_from_bits(uint32_t w) { |
| #if defined(__OPENCL_VERSION__) |
| return as_float(w); |
| #elif defined(__CUDA_ARCH__) |
| return __uint_as_float((unsigned int)w); |
| #elif defined(__INTEL_COMPILER) |
| return _castu32_f32(w); |
| #else |
| union { |
| uint32_t as_bits; |
| float as_value; |
| } fp32 = {w}; |
| return fp32.as_value; |
| #endif |
| } |
| |
| inline uint32_t fp32_to_bits(float f) { |
| #if defined(__OPENCL_VERSION__) |
| return as_uint(f); |
| #elif defined(__CUDA_ARCH__) |
| return (uint32_t)__float_as_uint(f); |
| #elif defined(__INTEL_COMPILER) |
| return _castf32_u32(f); |
| #else |
| union { |
| float as_value; |
| uint32_t as_bits; |
| } fp32 = {f}; |
| return fp32.as_bits; |
| #endif |
| } |
| |
| /* |
| * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to |
| * a 32-bit floating-point number in IEEE single-precision format, in bit representation. |
| * |
| * @note The implementation doesn't use any floating-point operations. |
| */ |
| inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) { |
| /* |
| * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word: |
| * +---+-----+------------+-------------------+ |
| * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| |
| * +---+-----+------------+-------------------+ |
| * Bits 31 26-30 16-25 0-15 |
| * |
| * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits. |
| */ |
| const uint32_t w = (uint32_t) h << 16; |
| /* |
| * Extract the sign of the input number into the high bit of the 32-bit word: |
| * |
| * +---+----------------------------------+ |
| * | S |0000000 00000000 00000000 00000000| |
| * +---+----------------------------------+ |
| * Bits 31 0-31 |
| */ |
| const uint32_t sign = w & UINT32_C(0x80000000); |
| /* |
| * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word: |
| * |
| * +---+-----+------------+-------------------+ |
| * | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| |
| * +---+-----+------------+-------------------+ |
| * Bits 30 27-31 17-26 0-16 |
| */ |
| const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF); |
| /* |
| * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized. |
| * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one. |
| * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift |
| * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the |
| * biased exponent into 1, and making mantissa normalized (i.e. without leading 1). |
| */ |
| #ifdef _MSC_VER |
| unsigned long nonsign_bsr; |
| _BitScanReverse(&nonsign_bsr, (unsigned long)nonsign); |
| uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31; |
| #else |
| uint32_t renorm_shift = __builtin_clz(nonsign); |
| #endif |
| renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0; |
| /* |
| * Iff half-precision number has exponent of 15, the addition overflows |
| * it into bit 31, and the subsequent shift turns the high 9 bits |
| * into 1. Thus inf_nan_mask == 0x7F800000 if the half-precision number |
| * had exponent of 15 (i.e. was NaN or infinity) 0x00000000 otherwise |
| */ |
| const int32_t inf_nan_mask = |
| ((int32_t)(nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000); |
| /* |
| * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 |
| * into 1. Otherwise, bit 31 remains 0. The signed shift right by 31 |
| * broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask == |
| * 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h) |
| * 0x00000000 otherwise |
| */ |
| const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31; |
| /* |
| * 1. Shift nonsign left by renorm_shift to normalize it (if the input |
| * was denormal) |
| * 2. Shift nonsign right by 3 so the exponent (5 bits originally) |
| * becomes an 8-bit field and 10-bit mantissa shifts into the 10 high |
| * bits of the 23-bit mantissa of IEEE single-precision number. |
| * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the |
| * different in exponent bias (0x7F for single-precision number less 0xF |
| * for half-precision number). |
| * 4. Subtract renorm_shift from the exponent (starting at bit 23) to |
| * account for renormalization. As renorm_shift is less than 0x70, this |
| * can be combined with step 3. |
| * 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the |
| * input was NaN or infinity. |
| * 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent |
| * into zero if the input was zero. |
| * 7. Combine with the sign of the input number. |
| */ |
| return sign | |
| ((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) | |
| inf_nan_mask) & |
| ~zero_mask); |
| } |
| |
| /* |
| * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to |
| * a 32-bit floating-point number in IEEE single-precision format. |
| * |
| * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals) |
| * floating-point operations and bitcasts between integer and floating-point variables. |
| */ |
| inline float fp16_ieee_to_fp32_value(uint16_t h) { |
| /* |
| * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word: |
| * +---+-----+------------+-------------------+ |
| * | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000| |
| * +---+-----+------------+-------------------+ |
| * Bits 31 26-30 16-25 0-15 |
| * |
| * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits. |
| */ |
| const uint32_t w = (uint32_t) h << 16; |
| /* |
| * Extract the sign of the input number into the high bit of the 32-bit word: |
| * |
| * +---+----------------------------------+ |
| * | S |0000000 00000000 00000000 00000000| |
| * +---+----------------------------------+ |
| * Bits 31 0-31 |
| */ |
| const uint32_t sign = w & UINT32_C(0x80000000); |
| /* |
| * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word: |
| * |
| * +-----+------------+---------------------+ |
| * |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000| |
| * +-----+------------+---------------------+ |
| * Bits 27-31 17-26 0-16 |
| */ |
| const uint32_t two_w = w + w; |
| |
| /* |
| * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent |
| * of a single-precision floating-point number: |
| * |
| * S|Exponent | Mantissa |
| * +-+---+-----+------------+----------------+ |
| * |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000| |
| * +-+---+-----+------------+----------------+ |
| * Bits | 23-31 | 0-22 |
| * |
| * Next, there are some adjustments to the exponent: |
| * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision |
| * formats (0x7F - 0xF = 0x70) |
| * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number. |
| * Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent |
| * of the single-precision output must be 0xFF (max possible value). We do this correction in two steps: |
| * - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested |
| * by the difference in the exponent bias (see above). |
| * - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of |
| * exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias. |
| * The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least |
| * partially IEEE754-compliant implementations. |
| * |
| * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not |
| * operate on denormal inputs, and do not produce denormal results. |
| */ |
| const uint32_t exp_offset = UINT32_C(0xE0) << 23; |
| // const float exp_scale = 0x1.0p-112f; |
| uint32_t scale_bits = (uint32_t) 15 << 23; |
| float exp_scale_val; |
| std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val)); |
| const float exp_scale = exp_scale_val; |
| const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; |
| |
| /* |
| * Convert denormalized half-precision inputs into single-precision results (always normalized). |
| * Zero inputs are also handled here. |
| * |
| * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits. |
| * First, we shift mantissa into bits 0-9 of the 32-bit word. |
| * |
| * zeros | mantissa |
| * +---------------------------+------------+ |
| * |0000 0000 0000 0000 0000 00|MM MMMM MMMM| |
| * +---------------------------+------------+ |
| * Bits 10-31 0-9 |
| * |
| * Now, remember that denormalized half-precision numbers are represented as: |
| * FP16 = mantissa * 2**(-24). |
| * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input |
| * and with an exponent which would scale the corresponding mantissa bits to 2**(-24). |
| * A normalized single-precision floating-point number is represented as: |
| * FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127) |
| * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision |
| * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount. |
| * |
| * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number |
| * is zero, the constructed single-precision number has the value of |
| * FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5 |
| * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of |
| * the input half-precision number. |
| */ |
| const uint32_t magic_mask = UINT32_C(126) << 23; |
| const float magic_bias = 0.5f; |
| const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; |
| |
| /* |
| * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the |
| * input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the |
| * input is either a denormal number, or zero. |
| * - Combine the result of conversion of exponent and mantissa with the sign of the input number. |
| */ |
| const uint32_t denormalized_cutoff = UINT32_C(1) << 27; |
| const uint32_t result = sign | |
| (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); |
| return fp32_from_bits(result); |
| } |
| |
| /* |
| * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in |
| * IEEE half-precision format, in bit representation. |
| * |
| * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals) |
| * floating-point operations and bitcasts between integer and floating-point variables. |
| */ |
| inline uint16_t fp16_ieee_from_fp32_value(float f) { |
| // const float scale_to_inf = 0x1.0p+112f; |
| // const float scale_to_zero = 0x1.0p-110f; |
| uint32_t scale_to_inf_bits = (uint32_t) 239 << 23; |
| uint32_t scale_to_zero_bits = (uint32_t) 17 << 23; |
| float scale_to_inf_val, scale_to_zero_val; |
| std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val)); |
| std::memcpy(&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val)); |
| const float scale_to_inf = scale_to_inf_val; |
| const float scale_to_zero = scale_to_zero_val; |
| |
| float base = (fabsf(f) * scale_to_inf) * scale_to_zero; |
| |
| const uint32_t w = fp32_to_bits(f); |
| const uint32_t shl1_w = w + w; |
| const uint32_t sign = w & UINT32_C(0x80000000); |
| uint32_t bias = shl1_w & UINT32_C(0xFF000000); |
| if (bias < UINT32_C(0x71000000)) { |
| bias = UINT32_C(0x71000000); |
| } |
| |
| base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; |
| const uint32_t bits = fp32_to_bits(base); |
| const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); |
| const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); |
| const uint32_t nonsign = exp_bits + mantissa_bits; |
| return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); |
| } |
| |
| } // namespace detail |
| |
| struct alignas(2) Half { |
| unsigned short x; |
| |
| struct from_bits_t {}; |
| static constexpr from_bits_t from_bits = from_bits_t(); |
| |
| // HIP wants __host__ __device__ tag, CUDA does not |
| #ifdef __HIP_PLATFORM_HCC__ |
| C10_HOST_DEVICE Half() = default; |
| #else |
| Half() = default; |
| #endif |
| |
| constexpr C10_HOST_DEVICE Half(unsigned short bits, from_bits_t) : x(bits){}; |
| inline C10_HOST_DEVICE Half(float value); |
| inline C10_HOST_DEVICE operator float() const; |
| |
| #if defined(__CUDACC__) || defined(__HIPCC__) |
| inline C10_HOST_DEVICE Half(const __half& value); |
| inline C10_HOST_DEVICE operator __half() const; |
| #endif |
| }; |
| |
| // This is just a placeholder for whatever complex representation we |
| // end up deciding to use for half-precision complex numbers. |
| struct alignas(4) ComplexHalf { |
| Half real_; |
| Half imag_; |
| ComplexHalf() = default; |
| Half real() const { |
| return real_; |
| } |
| Half imag() const { |
| return imag_; |
| } |
| inline ComplexHalf(std::complex<float> value) |
| : real_(value.real()), imag_(value.imag()) {} |
| inline operator std::complex<float>() const { |
| return {real_, imag_}; |
| } |
| }; |
| |
| template <typename T> |
| struct is_complex_t : public std::false_type {}; |
| |
| template <typename T> |
| struct is_complex_t<std::complex<T>> : public std::true_type {}; |
| |
| template <> |
| struct is_complex_t<ComplexHalf> : public std::true_type {}; |
| |
| // Extract double from std::complex<double>; is identity otherwise |
| // TODO: Write in more idiomatic C++17 |
| template <typename T> |
| struct scalar_value_type { |
| using type = T; |
| }; |
| template <typename T> |
| struct scalar_value_type<std::complex<T>> { |
| using type = T; |
| }; |
| template <> |
| struct scalar_value_type<ComplexHalf> { |
| using type = Half; |
| }; |
| |
| // The old implementation of Converter as a function made nvcc's head explode |
| // when we added std::complex on top of the specializations for CUDA-only types |
| // like __half, so I rewrote it as a templated class (so, no more overloads, |
| // just (partial) specialization). |
| |
| template <typename To, typename From, typename Enable = void> |
| struct Converter { |
| To operator()(From f) { |
| return static_cast<To>(f); |
| } |
| }; |
| |
| template <typename To, typename From> |
| To convert(From from) { |
| return Converter<To, From>()(from); |
| } |
| |
| template <typename To, typename FromV> |
| struct Converter< |
| To, |
| std::complex<FromV>, |
| typename std::enable_if< |
| c10::guts::negation<is_complex_t<To>>::value>::type> { |
| To operator()(std::complex<FromV> f) { |
| return static_cast<To>(f.real()); |
| } |
| }; |
| |
| // In some versions of MSVC, there will be a compiler error when building. |
| // C4146: unary minus operator applied to unsigned type, result still unsigned |
| // It can be addressed by disabling the following warning. |
| #ifdef _MSC_VER |
| #pragma warning( push ) |
| #pragma warning( disable : 4146 ) |
| #endif |
| |
| // skip isnan and isinf check for integral types |
| template <typename To, typename From> |
| typename std::enable_if<std::is_integral<From>::value, bool>::type overflows( |
| From f) { |
| using limit = std::numeric_limits<typename scalar_value_type<To>::type>; |
| if (!limit::is_signed && std::numeric_limits<From>::is_signed) { |
| // allow for negative numbers to wrap using two's complement arithmetic. |
| // For example, with uint8, this allows for `a - b` to be treated as |
| // `a + 255 * b`. |
| return f > limit::max() || |
| (f < 0 && -static_cast<uint64_t>(f) > limit::max()); |
| } else { |
| return f < limit::lowest() || f > limit::max(); |
| } |
| } |
| |
| #ifdef _MSC_VER |
| #pragma warning( pop ) |
| #endif |
| |
| template <typename To, typename From> |
| typename std::enable_if<std::is_floating_point<From>::value, bool>::type |
| overflows(From f) { |
| using limit = std::numeric_limits<typename scalar_value_type<To>::type>; |
| if (limit::has_infinity && std::isinf(static_cast<double>(f))) { |
| return false; |
| } |
| if (!limit::has_quiet_NaN && (f != f)) { |
| return true; |
| } |
| return f < limit::lowest() || f > limit::max(); |
| } |
| |
| template <typename To, typename From> |
| typename std::enable_if<is_complex_t<From>::value, bool>::type overflows( |
| From f) { |
| // casts from complex to real are considered to overflow if the |
| // imaginary component is non-zero |
| if (!is_complex_t<To>::value && f.imag() != 0) { |
| return true; |
| } |
| // Check for overflow componentwise |
| // (Technically, the imag overflow check is guaranteed to be false |
| // when !is_complex_t<To>, but any optimizer worth its salt will be |
| // able to figure it out.) |
| return overflows< |
| typename scalar_value_type<To>::type, |
| typename From::value_type>(f.real()) || |
| overflows< |
| typename scalar_value_type<To>::type, |
| typename From::value_type>(f.imag()); |
| } |
| |
| template <typename To, typename From> |
| To checked_convert(From f, const char* name) { |
| if (overflows<To, From>(f)) { |
| std::ostringstream oss; |
| oss << "value cannot be converted to type " << name |
| << " without overflow: " << f; |
| throw std::domain_error(oss.str()); |
| } |
| return convert<To, From>(f); |
| } |
| |
| C10_API std::ostream& operator<<(std::ostream& out, const Half& value); |
| |
| } // namespace c10 |
| |
| #include <c10/util/Half-inl.h> |