| """ |
| The weak_script annotation needs to be here instead of inside torch/jit/ so it |
| can be used in other places in torch/ (namely torch.nn) without running into |
| circular dependency problems |
| """ |
| |
| import inspect |
| import weakref |
| import torch._C |
| from torch._six import builtins |
| |
| # Wrapper functions that can call either of 2 functions depending on a boolean |
| # argument |
| boolean_dispatched = weakref.WeakKeyDictionary() # noqa: T484 |
| |
| |
| def createResolutionCallback(frames_up=0): |
| """ |
| Creates a function which, given a string variable name, |
| returns the value of the variable in the scope of the caller of |
| the function which called createResolutionCallback (by default). |
| |
| This is used to enable access in-scope Python variables inside |
| TorchScript fragments. |
| |
| frames_up is number of additional frames to go up on the stack. |
| The default value is 0, which correspond to the frame of the caller |
| of createResolutionCallback. Also for example, if frames_up is set |
| to 1, then the frame of the caller's caller of createResolutionCallback |
| will be taken. |
| |
| For example, the following program prints 2:: |
| |
| def bar(): |
| cb = createResolutionCallback(1) |
| print(cb("foo")) |
| |
| def baz(): |
| foo = 2 |
| bar() |
| |
| baz() |
| """ |
| frame = inspect.currentframe() |
| i = 0 |
| while i < frames_up + 1: |
| frame = frame.f_back |
| i += 1 |
| |
| f_locals = frame.f_locals |
| f_globals = frame.f_globals |
| |
| def env(key): |
| if key in f_locals: |
| return f_locals[key] |
| elif key in f_globals: |
| return f_globals[key] |
| elif hasattr(builtins, key): |
| return getattr(builtins, key) |
| |
| return env |
| |
| |
| def get_closure(fn): |
| """ |
| Get a dictionary of closed over variables from a function |
| """ |
| captures = {} |
| captures.update(fn.__globals__) |
| |
| for index, captured_name in enumerate(fn.__code__.co_freevars): |
| captures[captured_name] = fn.__closure__[index].cell_contents |
| |
| return captures |
| |
| |
| def createResolutionCallbackFromClosure(fn): |
| """ |
| Create a resolutionCallback by introspecting the function instead of |
| looking up the stack for the enclosing scope |
| """ |
| closure = get_closure(fn) |
| |
| def env(key): |
| if key in closure: |
| return closure[key] |
| elif hasattr(builtins, key): |
| return getattr(builtins, key) |
| return None |
| |
| return env |
| |
| |
| def can_compile_class(cls): |
| # If any of the functions on a type don't have a code object, this type can't |
| # be compiled and is probably a builtin / bound from C |
| fns = [getattr(cls, name) for name in cls.__dict__ if inspect.isroutine(getattr(cls, name))] |
| has_code = [hasattr(fn, '__code__') for fn in fns] |
| return all(has_code) |
| |
| |
| def createResolutionCallbackForClassMethods(cls): |
| """ |
| This looks at all the methods defined in a class and pulls their closed-over |
| variables into a dictionary and uses that to resolve variables. |
| """ |
| # cls is a type here, so `ismethod` is false since the methods on the type |
| # aren't bound to anything, so Python treats them as regular functions |
| fns = [getattr(cls, name) for name in cls.__dict__ if inspect.isroutine(getattr(cls, name))] |
| captures = {} |
| |
| for fn in fns: |
| captures.update(get_closure(fn)) |
| |
| return lambda key: captures.get(key, None) |
| |
| |
| def boolean_dispatch(arg_name, arg_index, default, if_true, if_false, module_name, func_name): |
| """ |
| Dispatches to either of 2 script functions based on a boolean argument. |
| In TorchScript, the boolean argument must be constant so that the correct |
| function to use can be determined at compile time. |
| """ |
| def fn(*args, **kwargs): |
| dispatch_flag = False |
| if arg_name in kwargs: |
| dispatch_flag = kwargs[arg_name] |
| elif arg_index < len(args): |
| dispatch_flag = args[arg_index] |
| |
| if dispatch_flag: |
| return if_true(*args, **kwargs) |
| else: |
| return if_false(*args, **kwargs) |
| |
| if if_true.__doc__ is None and if_false.__doc__ is not None: |
| doc = if_false.__doc__ |
| if_true.__doc__ = doc |
| elif if_false.__doc__ is None and if_true.__doc__ is not None: |
| doc = if_true.__doc__ |
| if_false.__doc__ = doc |
| elif if_false.__doc__ is None and if_true.__doc__ is None: |
| # neither function has a docstring |
| doc = None |
| else: |
| raise RuntimeError("only one function can have a docstring") |
| fn.__doc__ = doc |
| |
| if module_name is not None: |
| fn.__module__ = module_name |
| if func_name is not None: |
| fn.__name__ = func_name |
| |
| boolean_dispatched[fn] = { |
| "if_true": if_true, |
| "if_false": if_false, |
| "index": arg_index, |
| "default": default, |
| "arg_name": arg_name |
| } |
| return fn |
| |
| |
| |
| class FunctionModifiers(object): |
| """ |
| Used to denote the behavior of a function in TorchScript. See export() and |
| ignore() for details. |
| """ |
| IGNORE_AND_DROP = "ignore (leave as a call to Python, replace with a 'raise' on torch.jit.save)" |
| IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)" |
| EXPORT = "export (compile this function even if nothing calls it)" |
| DEFAULT = "default (compile if called from a exported function / forward)" |
| |
| |
| def export(fn): |
| """ |
| This decorator indicates that a method is used as an entry point into a |
| ScriptModule. `forward` implicitly is used as an entry point, so it does |
| not need this decorator. |
| |
| Methods are added to a ScriptModule as they are called in Python. If a |
| method is never called, it will not be included in the ScriptModule when |
| saving. This decorator explicitly marks that a method should be included |
| even if it is not called from Python. |
| """ |
| fn._torchscript_modifier = FunctionModifiers.EXPORT |
| return fn |
| |
| |
| def ignore(drop_on_export=False): |
| """ |
| This decorator indicates to the compiler that a function or method should |
| be ignored and left as a Python function. |
| |
| With `drop_on_export=False` (the default), calls to this function will |
| prevent saving a TorchScript model. |
| |
| With `drop_on_export=True`, any calls to this function from other |
| TorchScript code will be replaced with a `raise`. This allows you to leave |
| code in your TorchScript model that is only ever run when the Python |
| interpreter is present. |
| """ |
| if callable(drop_on_export): |
| # used without any args, so drop_on_export is actually a function |
| # @torch.jit.ignore |
| # def fn(...): |
| fn = drop_on_export |
| fn._torchscript_modifier = FunctionModifiers.IGNORE |
| return fn |
| |
| if isinstance(drop_on_export, bool): |
| def decorator(fn): |
| if drop_on_export: |
| fn._torchscript_modifier = FunctionModifiers.IGNORE_AND_DROP |
| else: |
| fn._torchscript_modifier = FunctionModifiers.IGNORE |
| return fn |
| return decorator |
| raise RuntimeError("Argument to @torch.jit.ignore must be a bool or " |
| "a function but got {}".format(drop_on_export)) |
| |
| |
| def should_drop_on_export(fn): |
| attr = get_torchscript_modifier(fn) |
| if attr is None: |
| return False |
| return attr is FunctionModifiers.IGNORE_AND_DROP |
| |
| |
| def is_ignored_fn(fn): |
| mod = get_torchscript_modifier(fn) |
| return mod is FunctionModifiers.IGNORE_AND_DROP or mod is FunctionModifiers.IGNORE |
| |
| |
| def get_torchscript_modifier(fn): |
| if not callable(fn): |
| return None |
| if hasattr(fn, '__func__'): |
| fn = fn.__func__ |
| return getattr(fn, '_torchscript_modifier', FunctionModifiers.DEFAULT) |
| |
| |
| def _parameter_list(parameter_names_fn): |
| """ |
| Decorator to denote that a function returns a list of all the parameters |
| in a module |
| """ |
| def decorator(fn): |
| fn._parameter_names_fn = parameter_names_fn |
| return fn |
| |
| return decorator |
| |
| |
| # overloading registration |
| # overloads get registered in this file, and compiled in torch/jit/__init__.py |
| # so that they can be imported in nn/functional.py without an import cycle |
| |
| # qualified_name => list[overload_functions] |
| _overloaded_fns = {} # noqa: T484 |
| |
| def _overload(func): |
| qual_name = _qualified_name(func) |
| global _overloaded_fns |
| fn_overload_list = _overloaded_fns.get(qual_name) |
| if fn_overload_list is None: |
| fn_overload_list = [] |
| _overloaded_fns[qual_name] = fn_overload_list |
| fn_overload_list.append(func) |
| return func |
| |
| def _get_fn_overloads(qual_name): |
| return _overloaded_fns.get(qual_name) |
| |
| def _clear_fn_overloads(qual_name): |
| del _overloaded_fns[qual_name] |
| |
| try: |
| import typing |
| from typing import Tuple, List, Dict, Optional |
| |
| def is_tuple(ann): |
| # For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule |
| return ann.__module__ == 'typing' and \ |
| (getattr(ann, '__origin__', None) is typing.Tuple or |
| getattr(ann, '__origin__', None) is tuple) |
| |
| def is_list(ann): |
| return ann.__module__ == 'typing' and \ |
| (getattr(ann, '__origin__', None) is typing.List or |
| getattr(ann, '__origin__', None) is list) |
| |
| def is_dict(ann): |
| return ann.__module__ == 'typing' and \ |
| (getattr(ann, '__origin__', None) is typing.Dict or |
| getattr(ann, '__origin__', None) is dict) |
| |
| def is_optional(ann): |
| # Optional[T] is just shorthand for Union[T, None], so check for both |
| union_optional = False |
| if ann.__module__ == 'typing' and \ |
| (getattr(ann, '__origin__', None) is typing.Union): |
| args = getattr(ann, '__args__', ()) |
| if len(args) == 2: |
| union_optional = (issubclass(args[1], type(None)) and not issubclass(args[0], type(None))) \ |
| or (issubclass(args[0], type(None)) and not issubclass(args[1], type(None))) |
| |
| optional = ann.__module__ == 'typing' and \ |
| (getattr(ann, '__origin__', None) is typing.Optional) |
| |
| return optional or union_optional |
| |
| except ImportError: |
| # A minimal polyfill for versions of Python that don't have typing. |
| # Note that this means that they also don't support the fancy annotation syntax, so |
| # those instances will only be used in our tiny `type: ` comment interpreter. |
| |
| # The __getitem__ in typing is implemented using metaclasses, but I'm too lazy for that. |
| class TupleCls(object): |
| def __getitem__(self, types): |
| return TupleInstance(types) |
| |
| class TupleInstance(object): |
| __slots__ = ['__args__'] |
| |
| def __init__(self, types): |
| self.__args__ = types |
| |
| class ListInstance(object): |
| __slots__ = ['__args__'] |
| |
| def __init__(self, types): |
| self.__args__ = types |
| |
| class ListCls(object): |
| def __getitem__(self, types): |
| return TupleInstance(types) |
| |
| class DictInstance(object): |
| __slots__ = ['__args__'] |
| |
| def __init__(self, types): |
| self.__args__ = types |
| |
| class DictCls(object): |
| def __getitem__(self, types): |
| return DictInstance(types) |
| |
| class OptionalInstance(object): |
| __slots__ = ['__args__'] |
| |
| def __init__(self, types): |
| self.__args__ = types |
| |
| class OptionalCls(object): |
| def __getitem__(self, types): |
| return OptionalInstance(types) |
| |
| Tuple = TupleCls() # noqa: T484 |
| List = ListCls() # noqa: T484 |
| Dict = DictCls() # noqa: T484 |
| Optional = DictCls() # noqa: T484 |
| |
| def is_tuple(ann): |
| return isinstance(ann, TupleInstance) |
| |
| def is_list(ann): |
| return isinstance(ann, ListInstance) |
| |
| def is_dict(ann): |
| return isinstance(ann, DictInstance) |
| |
| def is_optional(ann): |
| return isinstance(ann, OptionalInstance) |
| |
| |
| try: |
| import typing_extensions |
| from typing_extensions import Final |
| |
| def is_final(ann): |
| return ann.__module__ == 'typing_extensions' and \ |
| (getattr(ann, '__origin__', None) is typing_extensions.Final) |
| except ImportError: |
| # Same as above, this polyfill is only for `typing_extensions` |
| class FinalInstance(object): |
| __slots__ = ['__args__'] |
| |
| def __init__(self, types): |
| self.__args__ = types |
| |
| class FinalCls(object): |
| def __getitem__(self, types): |
| return FinalInstance(types) |
| |
| Final = FinalCls() # noqa: T484 |
| |
| def is_final(ann): |
| return isinstance(ann, FinalInstance) |
| |
| |
| # allows BroadcastingList instance to be subscriptable |
| class BroadcastingListCls(object): |
| def __getitem__(self, types): |
| return |
| |
| # mypy doesn't support parameters on types, so we have to explicitly type each |
| # list size |
| BroadcastingList1 = BroadcastingListCls() |
| for i in range(2, 7): |
| globals()["BroadcastingList{}".format(i)] = BroadcastingList1 |
| |
| # Retrieves a fully-qualified name (module hierarchy + classname) for a given obj. |
| def _qualified_name(obj): |
| # short-circuit in cases where the object already has a known qualified name |
| if isinstance(obj, torch._C.Function): |
| return obj.qualified_name |
| |
| name = obj.__name__ |
| module_name = obj.__module__ |
| |
| # If the module is actually a torchbind module, then we should short circuit |
| if module_name == "torch._classes": |
| return obj.qualified_name |
| |
| # The Python docs are very clear that `__module__` can be None, but I can't |
| # figure out when it actually would be. |
| if module_name is None: |
| raise RuntimeError("Could not get qualified name for class '{}': " |
| "__module__ can't be None.".format(name)) |
| |
| # if getattr(sys.modules[module_name], name) is not obj: |
| # raise RuntimeError("Could not get qualified name for class '{}': " |
| # "the attr {} on module {} is not the the class".format(name, name, module_name)) |
| |
| # __main__ is a builtin module, so rewrite it to "__torch__". |
| if module_name == "__main__": |
| module_name = "__torch__" |
| else: |
| # Everything else gets a "__torch__" prefix to avoid name collisions |
| # with the names of user values. |
| module_name = "__torch__." + module_name |
| |
| if "." in name: |
| raise RuntimeError("Could not get qualified name for class '{}': " |
| "'{}' is not a valid identifier".format(name, name)) |
| |
| return module_name + "." + name |