blob: a6702cb941bf5595749d4671b312491a99abc807 [file] [log] [blame]
import numpy as np
import unittest
import torch
import torch.jit
import torch.nn.functional as F
from torch.nn.modules.utils import _pair
from hypothesis import assume, given
from hypothesis import strategies as st
import hypothesis_utils as hu
from hypothesis_utils import no_deadline
from common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_WINDOWS, IS_PPC
from common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams
# Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM.
# On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction
# for the 8-bit int multiplication. This instruction vertically multiplies each
# unsigned 8-bit integer from a with the corresponding signed 8-bit integer from
# b, producing intermediate signed 16-bit integers. This function modifies the
# weights to eliminate the overflow on the signed 16-bit integers.
def avoid_vpmaddubsw_overflow_linear(
batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max
):
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
if x0 * w0 + x1 * w1 < -(1 << 15):
w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
elif x0 * w0 + x1 * w1 > (1 << 15) - 1:
w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
# Go through the same loop again to double check we don't have any overflow
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15)
# Reference quantized Linear operator
def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp):
X_q = np.reshape(X_q, (-1, X_q.shape[X_q.ndim - 1]))
row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1))
col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1))
assert X_q.ndim == 2
batch_size, input_channels = X_q.shape
Prod_XqWq_ref = (
np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T)
- W_zp * row_offsets_ref
- X_zp * col_offsets_ref
+ input_channels * X_zp * W_zp
)
if b_q is not None:
Prod_XqWq_ref += b_q
Y_q_ref = _quantize(Prod_XqWq_ref, Y_scale / (X_scale * W_scale), Y_zp)
return Y_q_ref
"""Computes the output shape given pooling parameters."""
def pool_output_shape(input_size, kernel_size, padding, stride,
dilation, ceiling_mode=False):
if stride is None:
stride = kernel_size
output_size = (
(input_size + 2 * padding - dilation * (kernel_size - 1) - 1
+ (stride - 1 if ceiling_mode else 0)) // stride + 1)
if (padding > 0 and
((output_size - 1) * stride >= input_size + padding)):
output_size += 1
return output_size
class TestQuantizedOps(TestCase):
"""Tests the correctness of the quantized::relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()))
def test_qrelu(self, X):
X, (scale, zero_point, torch_type) = X
Y = X.copy()
Y[Y < 0] = 0
qY = torch.quantize_linear(torch.from_numpy(Y), scale=scale,
zero_point=zero_point, dtype=torch_type)
X = torch.from_numpy(X)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
'native': torch.relu,
'nn.functional': torch.nn.functional.relu,
}
for name, op in ops_under_test.items():
qY_hat = op(qX)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
ops_under_test_inplace = {
'inplace native': torch.relu_,
'inplace nn.functional': torch.nn.functional.relu_,
}
for name, op_ in ops_under_test_inplace.items():
qY_hat = qX.clone()
op_(qY_hat)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
"""Tests the correctness of the quantized::relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()))
def test_qrelu6(self, X):
X, (scale, zero_point, torch_type) = X
Y = X.copy()
Y[Y < 0] = 0
Y[Y > 6.0] = 6.0
qY = torch.quantize_linear(torch.from_numpy(Y), scale=scale,
zero_point=zero_point, dtype=torch_type)
X = torch.from_numpy(X)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
'ops.quantized': torch.ops.quantized.relu6,
'module': torch.nn.quantized.ReLU6(),
}
for name, op in ops_under_test.items():
qY_hat = op(qX)
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
"""Tests the correctness of the scalar addition."""
@no_deadline
@given(A=hu.tensor(shapes=hu.array_shapes(1, 4, 1, 5),
elements=st.floats(-1e6, 1e6, allow_nan=False),
qparams=hu.qparams()),
b=st.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False))
def test_qadd_scalar_relu(self, A, b):
import copy
add_scalar = torch.ops.quantized.add_scalar
add_scalar_relu = torch.ops.quantized.add_scalar_relu
A, (scale, zero_point, dtype) = A
A = A.astype(np.float32)
qA = torch.quantize_linear(torch.from_numpy(A), scale, zero_point, dtype)
C = qA.dequantize() + b
C_relu = copy.deepcopy(C)
C_relu[C_relu < 0] = 0
C_ref = torch.quantize_linear(C, scale, zero_point, dtype)
C_relu_ref = torch.quantize_linear(C_relu, scale, zero_point, dtype)
C_hat = add_scalar(qA, b, scale=scale, zero_point=zero_point)
C_relu_hat = add_scalar_relu(qA, b, scale=scale, zero_point=zero_point)
self.assertEqual(C_ref, C_hat,
message="Scalar add results don't match:\
{} vs {}".format(C_ref, C_hat))
self.assertEqual(C_relu_ref, C_relu_hat,
message="Scalar add relu results don't match:\
{} vs {}".format(C_relu_ref, C_relu_hat))
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_same_qparams(self):
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
add_out = torch.ops.quantized.add_out
add_relu_out = torch.ops.quantized.add_relu_out
# NB: This is a strange size so that we exercise both the vectorized
# implementation (64-element chunks at at time) as well as the scalar
# implementation
A = torch.arange(-128, 130, dtype=torch.float)
B = torch.arange(-128, 130, dtype=torch.float)
scale = 2.0
zero_point = 127
qA = torch.quantize_linear(A, scale=scale, zero_point=zero_point,
dtype=dtype)
qB = torch.quantize_linear(B, scale=scale, zero_point=zero_point,
dtype=dtype)
# Add ReLU ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
np_dtype = {
torch.quint8 : np.uint8,
torch.qint8 : np.int8,
torch.qint32 : np.int32
}
qC = _quantize(C, scale, zero_point, dtype=np_dtype[dtype])
qC_hat = add(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale,
zero_point=zero_point,
dtype=dtype)
add_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale, zero_point, dtype=np_dtype[dtype])
qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale,
zero_point=zero_point,
dtype=dtype)
add_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="AddReLU.out failed")
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_different_qparams(self):
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
add_out = torch.ops.quantized.add_out
add_relu_out = torch.ops.quantized.add_relu_out
# NB: This is a strange size so that we exercise both the vectorized
# implementation (64-element chunks at at time) as well as the scalar
# implementation
A = torch.arange(-128, 130, dtype=torch.float)
B = torch.arange(-128, 130, dtype=torch.float)
scale_A = 3.0
zero_point_A = 7
scale_B = 5.0
zero_point_B = 127
scale_C = 0.5
zero_point_C = 5
qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A,
dtype=dtype)
qB = torch.quantize_linear(B, scale=scale_B, zero_point=zero_point_B,
dtype=dtype)
# Add ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
np_dtype = {
torch.quint8 : np.uint8,
torch.qint8 : np.int8,
torch.qint32 : np.int32
}
qC = _quantize(C, scale_C, zero_point_C, dtype=np_dtype[dtype])
qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=dtype)
add_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale_C, zero_point_C, dtype=np_dtype[dtype])
qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=dtype)
add_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="AddReLU.out failed")
"""Tests the correctness of the mul and mul_relu op."""
def test_qmul_relu_same_qparams(self):
mul_relu = torch.ops.quantized.mul_relu
mul = torch.ops.quantized.mul
mul_out = torch.ops.quantized.mul_out
mul_relu_out = torch.ops.quantized.mul_relu_out
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale = 2.0
zero_point = 127
qA = torch.quantize_linear(A, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
qB = torch.quantize_linear(B, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
# mul ReLU ground truth
C = (qA.dequantize() * qB.dequantize()).numpy()
qC = _quantize(C, scale, zero_point)
qC_hat = mul(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized mulition failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale,
zero_point=zero_point,
dtype=torch.quint8)
mul_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
# mul + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale, zero_point)
qCrelu_hat = mul_relu(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized mulition with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale,
zero_point=zero_point,
dtype=torch.quint8)
mul_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="mulReLU.out failed")
# Scalar addition
mul = torch.ops.quantized.mul_scalar
for b in B:
C_ref = qA.dequantize().numpy() * b.item()
qC = _quantize(C_ref, scale, zero_point)
dqC = _dequantize(qC, scale, zero_point)
qC_hat = mul(qA, b.item(), scale, zero_point)
dqC_hat = qC_hat.dequantize()
self.assertEqual(dqC, dqC_hat)
"""Tests the correctness of the mul and mul_relu op."""
def test_qmul_relu_different_qparams(self):
mul_relu = torch.ops.quantized.mul_relu
mul = torch.ops.quantized.mul
mul_out = torch.ops.quantized.mul_out
mul_relu_out = torch.ops.quantized.mul_relu_out
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale_A = 3.0
zero_point_A = 7
scale_B = 5.0
zero_point_B = 127
scale_C = 0.5
zero_point_C = 5
qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qB = torch.quantize_linear(B, scale=scale_B, zero_point=zero_point_B,
dtype=torch.quint8)
# mul ground truth
C = (qA.dequantize() * qB.dequantize()).numpy()
qC = _quantize(C, scale_C, zero_point_C)
qC_hat = mul(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized multiplication failed.")
qC_out_hat = torch._empty_affine_quantized(qC.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=torch.quint8)
mul_out(qA, qB, out=qC_out_hat)
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
# mul + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale_C, zero_point_C)
qCrelu_hat = mul_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized multiplication with ReLU failed.")
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
scale=scale_C,
zero_point=zero_point_C,
dtype=torch.quint8)
mul_relu_out(qA, qB, out=qCrelu_out_hat)
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
message="mulReLU.out failed")
"""Tests max pool operation on quantized tensors."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
kernel=st.sampled_from((3, 5, 7)),
stride=st.sampled_from((None, 1, 2)),
dilation=st.integers(1, 2),
padding=st.integers(0, 2))
def test_max_pool2d(self, X, kernel, stride, dilation, padding):
X, (scale, zero_point, torch_type) = X
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
a = torch.from_numpy(X)
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
stride=stride,
padding=padding, dilation=dilation)
a_ref = torch.quantize_linear(a_pool, scale=scale,
zero_point=zero_point, dtype=torch_type)
a_ref = a_ref.dequantize()
qa = torch.quantize_linear(a, scale=scale, zero_point=zero_point,
dtype=torch_type)
ops_under_test = {
"torch": torch.max_pool2d,
"nn.functional": torch.nn.functional.max_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
}
for name, op in ops_under_test.items():
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
dilation=dilation)
self.assertEqual(a_ref, a_hat.dequantize(),
message="{} results are off".format(name))
# Test the ops.quantized separately, because None is not treated.
a_hat = torch.ops.quantized.max_pool2d(
qa, kernel_size=_pair(kernel),
stride=_pair(kernel if stride is None else stride),
padding=_pair(padding), dilation=_pair(dilation))
self.assertEqual(a_ref, a_hat.dequantize(),
message="ops.quantized.max_pool2d results are off")
"""Tests max pool operation on NHWC quantized tensors."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
kernel=st.sampled_from((3, 5, 7)),
stride=st.sampled_from((None, 1, 2)),
dilation=st.integers(1, 2),
padding=st.integers(0, 2))
def test_max_pool2d_nhwc(self, X, kernel, stride, dilation, padding):
X, (scale, zero_point, torch_type) = X
# Ensure we hit the vectorized paths
# 176 = 128 + 32 + 16
# 128 hits the interleaved path
# 32 hits the non-interleaved path
# 16 hits the scalar path
if X.shape[1] < 176:
X = np.repeat(X, 176 / X.shape[1], 1)
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
a = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
stride=stride,
padding=padding, dilation=dilation)
a_ref = torch.quantize_linear(a_pool, scale=scale,
zero_point=zero_point, dtype=torch_type)
a_ref = a_ref.dequantize()
qa = torch.quantize_linear(torch.from_numpy(X_nchw), scale=scale, zero_point=zero_point,
dtype=torch_type).permute([0, 3, 1, 2])
self.assertTrue(qa.stride() != sorted(qa.stride()))
ops_under_test = {
"torch": torch.max_pool2d,
"nn.functional": torch.nn.functional.max_pool2d,
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
}
for name, op in ops_under_test.items():
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
dilation=dilation)
self.assertTrue(a_hat.stride() != sorted(a_hat.stride()))
self.assertEqual(a_ref, a_hat.dequantize(),
message="{} results are off".format(name))
# Test the ops.quantized separately, because None is not treated.
a_hat = torch.ops.quantized.max_pool2d(
qa, kernel_size=_pair(kernel),
stride=_pair(kernel if stride is None else stride),
padding=_pair(padding), dilation=_pair(dilation))
self.assertEqual(a_ref, a_hat.dequantize(),
message="ops.quantized.max_pool2d results are off")
@no_deadline
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
output_size_h=st.integers(1, 10),
output_size_w=st.integers(1, 10))
def test_adaptive_avg_pool2d(self, X, output_size_h, output_size_w):
X, (scale, zero_point, torch_type) = X
H, W = X.shape[-2:]
assume(output_size_h <= H)
assume(output_size_w <= W)
if output_size_h == output_size_w:
output_size = output_size_h
else:
output_size = (output_size_h, output_size_w)
X = torch.from_numpy(X)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
# Run reference on int_repr + round to avoid double rounding error.
X_ref = torch.nn.functional.adaptive_avg_pool2d(
qX.int_repr().to(torch.float), output_size).round()
ops_under_test = {
"nn.functional": torch.nn.functional.adaptive_avg_pool2d,
"nn.quantized.functional":
torch.nn.quantized.functional.adaptive_avg_pool2d
}
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
for name, op in ops_under_test.items():
qX_hat = op(qX, output_size=output_size)
self.assertEqual(X_ref, qX_hat.int_repr(), prec=1.0,
message=error_message.format(name, X_ref, qX_hat))
self.assertEqual(scale, qX_hat.q_scale(),
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
self.assertEqual(zero_point, qX_hat.q_zero_point(),
message=error_message.format(name + '.zero_point', scale,
qX_hat.q_zero_point()))
"""Tests quantize concatenation (both fused and not)."""
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10),
qparams=hu.qparams()),
num=st.integers(1, 4),
dim=st.integers(1, 4),
relu=st.booleans())
def test_cat(self, X, num, dim, relu):
tensors_q = []
tensors_ref = []
X, (scale, zero_point, torch_type) = X
assume(dim < X.ndim)
X = torch.from_numpy(X)
new_shape = np.array(X.shape)
new_shape[dim] = 0
for idx in range(num):
tensors_q.append(torch.quantize_linear(X, scale, zero_point,
torch_type))
tensors_ref.append(X)
new_shape[dim] += tensors_ref[-1].shape[dim]
cat_ref = torch.cat(tensors_ref, dim=dim)
cat_ref = torch.quantize_linear(cat_ref, scale, zero_point, torch_type)
cat_ref = cat_ref.dequantize()
if relu:
cat_ref = F.relu(cat_ref)
q_cat_op = torch.ops.quantized.cat_relu
q_cat_out_op = torch.ops.quantized.cat_relu_out
else:
q_cat_op = torch.ops.quantized.cat
q_cat_out_op = torch.ops.quantized.cat_out
cat_q = q_cat_op(tensors_q, dim=dim, scale=scale,
zero_point=zero_point)
cat_q = cat_q.dequantize()
np.testing.assert_equal(cat_ref.numpy(), cat_q.numpy())
cat_q_out = torch._empty_affine_quantized(
list(new_shape), scale=scale,
zero_point=zero_point, dtype=torch_type)
q_cat_out_op(tensors_q, dim=dim, out=cat_q_out)
cat_q_out = cat_q_out.dequantize()
np.testing.assert_equal(cat_ref.numpy(), cat_q_out.numpy())
# Test the cat on per-channel quantized tensor.
ch_axis = 1
scales = torch.from_numpy(np.array([1.0] * X.shape[ch_axis]))
scales = scales.to(torch.float64)
zero_points = torch.from_numpy(np.array([0] * X.shape[ch_axis]))
zero_points = zero_points.to(torch.long)
tensors_q[0] = torch.quantize_linear_per_channel(
X, scales, zero_points, axis=[ch_axis], dtype=torch_type)
with self.assertRaisesRegex(RuntimeError, "supported.*cat"):
cat_q = q_cat_op(tensors_q, dim=ch_axis, scale=scale,
zero_point=zero_point)
"""Tests the correctness of the quantized equal op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()),
X2=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams()),
X_per_channel=st.booleans(),
X2_per_channel=st.booleans())
def test_equal(self, X, X2, X_per_channel, X2_per_channel):
X, X_params = X
(scale, zero_point, torch_type) = X_params
X2, X2_params = X2
(scale2, zero_point2, torch_type2) = X2_params
X = torch.from_numpy(X)
if X_per_channel:
X_scheme = 'per_channel'
channels = X.shape[-1]
qX = torch.quantize_linear_per_channel(
X,
scales=torch.tensor([scale] * channels),
zero_points=torch.tensor([zero_point] * channels),
dtype=torch_type,
axis=[X.ndim - 1])
else:
X_scheme = 'per_tensor'
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
X2 = torch.from_numpy(X2)
if X2_per_channel:
X2_scheme = 'per_channel'
channels = X2.shape[-1]
qX2 = torch.quantize_linear_per_channel(
X2,
scales=torch.tensor([scale2] * channels),
zero_points=torch.tensor([zero_point2] * channels),
dtype=torch_type2,
axis=[X2.ndim - 1])
else:
X2_scheme = 'per_tensor'
qX2 = torch.quantize_linear(X2, scale=scale2, zero_point=zero_point2,
dtype=torch_type2)
def equal_ref(qX, qX2):
if qX.qscheme() != qX2.qscheme():
return False
if qX.shape != qX2.shape:
return False
if qX.qscheme() == torch.per_tensor_affine:
if qX.q_scale() != qX2.q_scale():
return False
if qX.q_zero_point() != qX2.q_zero_point():
return False
elif qX.qscheme() == torch.per_channel_affine:
if (qX.q_per_channel_scales() !=
qX2.q_per_channel_scales()).any():
return False
if (qX.q_per_channel_zero_points() !=
qX2.q_per_channel_zero_points()).any():
return False
else:
raise NotImplementedError("Don't know what to do with",
qX.qscheme())
if (qX.int_repr().to(float) != qX2.int_repr().to(float)).any():
return False
return True
self.assertEqual(qX.equal(qX), equal_ref(qX, qX))
self.assertEqual(qX.equal(qX2), equal_ref(qX, qX2))
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestDynamicQuantizedLinear(TestCase):
"""Tests the correctness of the dynamic quantized linear and linear_relu op."""
@given(
batch_size=st.integers(1, 4),
input_channels=st.integers(16, 32),
output_channels=st.integers(4, 8),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_multi_dim_input=st.booleans(),
use_channelwise=st.booleans())
def test_qlinear(self, batch_size, input_channels, output_channels,
use_bias, use_relu, use_multi_dim_input, use_channelwise):
qlinear_prepack = torch.ops.quantized.linear_prepack
if use_relu:
qlinear_dynamic = torch.ops.quantized.linear_relu_dynamic
else:
qlinear_dynamic = torch.ops.quantized.linear_dynamic
if use_multi_dim_input:
batch_size *= 3 # Test the multi-dim input tensor
X_scale = 1.0
X_zp = 0
X_value_min = 0
X_value_max = 255
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min) + X_value_min).astype(np.uint8)
X_q0[0, 0] = X_value_min
X_q0[0, 1] = X_value_max
# W_scale = 1.0
# W_zp = 0
W_scales = np.ones(output_channels)
W_zps = np.zeros(output_channels)
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
W_q0[0, 0] = W_value_min
W_q0[1, 0] = W_value_max
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) *
(b_value_max - b_value_min) + b_value_min
).astype(np.int32) if use_bias else None
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
if use_multi_dim_input:
X_fp32 = X_fp32.view(3, int(batch_size / 3), input_channels)
# W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8)
# We currently only check the case where W_scale = 1.0, W_zp = 0.
if use_channelwise:
W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
W_q = torch.quantize_linear_per_channel(W_fp32, scales=torch.from_numpy(W_scales).to(
torch.double), zero_points=torch.from_numpy(W_zps).to(torch.int64), axis=[0], dtype=torch.qint8)
b_fp32 = torch.from_numpy(
_dequantize(b_q0, X_scale * W_scales, 0)
).to(dtype=torch.float) if use_bias else None
else:
W_fp32 = torch.from_numpy(_dequantize(
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
W_q = torch.quantize_linear(W_fp32, scale=W_scales[0], zero_point=(
W_zps[0].astype(int).item()), dtype=torch.qint8)
b_fp32 = torch.from_numpy(
_dequantize(b_q0, X_scale * int(W_scales[0].item()), 0)
).to(dtype=torch.float) if use_bias else None
# Observe X_fp32 and determine X_scale and X_zero_point, this should match
# internals of dynamic linear.
X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8)
X_q = torch.quantize_linear(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
# Weight prepacking operator for dynamic quantized Linear
W_prepack = qlinear_prepack(W_q, b_fp32)
# Dynamic quantized Linear operator with prepacked weight
Y_fp32 = qlinear_dynamic(X_q.dequantize(), W_prepack)
# Y_fp32 = qlinear_dynamic(X_fp32, W_prepack, b_fp32)
Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32)
# Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
# if use_multi_dim_input:
# Y_fp32_ref = Y_fp32_ref.view(3, int(batch_size / 3), output_channels)
if use_relu:
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
self.assertEqual(Y_fp32, Y_fp32_ref,
message="torch.ops.quantized.linear_dynamic (fbgemm) results are off")
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestQuantizedLinear(unittest.TestCase):
"""Tests the correctness of the quantized linear and linear_relu op."""
@given(batch_size=st.integers(1, 4),
input_channels=st.integers(16, 32),
output_channels=st.integers(4, 8),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_multi_dim_input=st.booleans(),
use_channelwise=st.booleans())
def test_qlinear(self, batch_size, input_channels, output_channels, use_bias,
use_relu, use_multi_dim_input, use_channelwise):
qlinear_prepack = torch.ops.quantized.linear_prepack
if use_relu:
qlinear = torch.ops.quantized.linear_relu
else:
qlinear = torch.ops.quantized.linear
if use_multi_dim_input:
batch_size *= 3 # Test the multi-dim input tensor
X_scale = 1.5
X_zp = 5
X_value_min = 0
X_value_max = 225
X_q0 = np.round(
np.random.rand(batch_size, input_channels) *
(X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
W_scales = np.random.rand(output_channels)
W_zps = np.round(np.random.rand(output_channels) * 100 - 50)
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) *
(b_value_max - b_value_min) + b_value_min
).astype(np.int32) if use_bias else None
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X = torch.from_numpy(_dequantize(
X_q0, X_scale, X_zp)).to(dtype=torch.float)
X_q = torch.quantize_linear(
X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
if use_channelwise:
W = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
W_q = torch.quantize_linear_per_channel(W, scales=torch.from_numpy(W_scales).to(
torch.double), zero_points=torch.from_numpy(W_zps).to(torch.int64), axis=[0], dtype=torch.qint8)
b = torch.from_numpy(_dequantize(
b_q0, X_scale * W_scales, 0)).to(dtype=torch.float) if use_bias else None
b_q = torch.quantize_linear_per_channel(b, scales=torch.from_numpy(X_scale * W_scales).to(
torch.double), zero_points=torch.zeros(output_channels, dtype=torch.long),
axis=[0], dtype=torch.qint32) if use_bias else None
else:
W = torch.from_numpy(_dequantize(
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
W_q = torch.quantize_linear(W, scale=W_scales[0], zero_point=(
W_zps[0].astype(int).item()), dtype=torch.qint8)
b = torch.from_numpy(_dequantize(
b_q0, X_scale * (W_scales[0].item()), 0)).to(dtype=torch.float) if use_bias else None
b_q = torch.quantize_linear(
b, scale=X_scale * (W_scales[0].item()), zero_point=0, dtype=torch.qint32) if use_bias else None
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
# Y_scale * 255 (max for uint8).
Y_scale = 125.1234
Y_zp = 5
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q, b_q)
if use_multi_dim_input:
X_q = X_q.view(3, int(batch_size / 3), input_channels)
# Quantized Linear operator with prepacked weight
Y_q = qlinear(X_q, W_prepack, Y_scale, Y_zp)
if not use_channelwise:
# Test the per-tensor quantization only
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0,
W_scales[0], W_zps[0], b_q0, Y_scale, Y_zp)
if use_relu:
Y_q_ref[Y_q_ref < Y_zp] = Y_zp
if use_multi_dim_input:
Y_q_ref = np.reshape(
Y_q_ref, (3, int(batch_size / 3), output_channels))
# Assert equal
np.testing.assert_equal(Y_q_ref, Y_q.int_repr().numpy())
# Test both per-tensor and per-channel quantization
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float) if use_bias else None
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
if use_relu:
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
Y_q_ref2 = torch.quantize_linear(
Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_equal(
Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy())
"""Tests the correctness of the quantized::linear_unpack (fbgemm) op."""
@given(W=hu.tensor(shapes=hu.array_shapes(2, 2,),
qparams=hu.qparams(dtypes=torch.qint8)),
use_channelwise=st.booleans())
def test_qlinear_unpack(self, W, use_channelwise):
W, (W_scale, W_zp, torch_type) = W
torch.backends.quantized.engine = torch.fbgemm
if use_channelwise:
output_channels = W.shape[0]
W_scales = torch.rand(output_channels).to(torch.double)
W_zps = torch.round(torch.rand(output_channels)
* 100 - 50).to(torch.int64)
qlinear_prepack = torch.ops.quantized.linear_prepack
qlinear_unpack = torch.ops.quantized.linear_unpack
W = torch.from_numpy(W)
if use_channelwise:
W_q = torch.quantize_linear_per_channel(
W, W_scales, W_zps, [0], dtype=torch_type)
else:
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp,
dtype=torch_type)
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Weight unpack operator for quantized Linear (Used for serialization)
W_q_origin = qlinear_unpack(W_prepack)[0]
# Assert equal
np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy())
if use_channelwise:
np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()),
np.float32(
W_q_origin.q_per_channel_scales().numpy()),
decimal=4)
np.testing.assert_equal(W_q.q_per_channel_zero_points(
).numpy(), W_q_origin.q_per_channel_zero_points().numpy())
else:
np.testing.assert_equal(np.float32(
W_q.q_scale()), np.float32(W_q_origin.q_scale()))
np.testing.assert_equal(
W_q.q_zero_point(), W_q_origin.q_zero_point())
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
class TestQuantizedConv(unittest.TestCase):
"""Tests the correctness of quantized convolution op."""
@given(batch_size=st.integers(1, 3),
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
height=st.integers(10, 16),
width=st.integers(7, 14),
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 3),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 1),
X_scale=st.floats(0.2, 1.6),
X_zero_point=st.integers(0, 4),
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
Y_scale=st.floats(0.2, 1.6),
Y_zero_point=st.integers(0, 4),
use_bias=st.booleans(),
use_relu=st.booleans(),
use_channelwise=st.booleans())
def test_qconv(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation,
X_scale,
X_zero_point,
W_scale,
W_zero_point,
Y_scale,
Y_zero_point,
use_bias,
use_relu,
use_channelwise
):
qconv = torch.ops.quantized.conv2d
if use_relu:
qconv = torch.ops.quantized.conv2d_relu
qconv_prepack = torch.ops.quantized.conv_prepack
# C
input_channels = input_channels_per_group * groups
# K
output_channels = output_channels_per_group * groups
dilation_h = dilation_w = dilation
W_scale = W_scale * output_channels
W_zero_point = W_zero_point * output_channels
# Resize W_scale and W_zero_points arrays equal to output_channels
W_scale = W_scale[:output_channels]
W_zero_point = W_zero_point[:output_channels]
# For testing, we use small values for weights and for activations so that no overflow occurs
# in vpmaddubsw instruction. If the overflow occurs in qconv implementation and if there is no overflow
# in reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file (aten/src/ATen/native/quantized/cpu/qconv.cpp)
# for more details.
W_value_min = -5
W_value_max = 5
# the operator expects them in the format (output_channels, input_channels/groups, kernel_h, kernel_w)
W_init = torch.from_numpy(
np.random.randint(
W_value_min,
W_value_max,
(output_channels, int(input_channels / groups), kernel_h, kernel_w)),
)
b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,)))
stride = [stride_h, stride_w]
pad = [pad_h, pad_w]
dilation = [dilation_h, dilation_w]
X_value_min = 0
X_value_max = 4
X_init = torch.from_numpy(np.random.randint(
X_value_min, X_value_max, (batch_size, input_channels, height, width)))
X = X_scale * (X_init - X_zero_point).to(dtype=torch.float)
if use_channelwise:
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
W = W_scales_tensor.reshape(-1, 1, 1, 1) * (W_init.to(dtype=torch.float) -
W_zero_points_tensor.reshape(-1, 1, 1, 1)).to(dtype=torch.float)
b = X_scale * W_scales_tensor * (b_init - 0).to(dtype=torch.float)
else:
W = W_scale[0] * (W_init - W_zero_point[0]).to(dtype=torch.float)
b = X_scale * W_scale[0] * (b_init - 0).to(dtype=torch.float)
# Existing floating point conv operator
conv_op = torch.nn.Conv2d(input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_w),
groups)
# assign weights
conv_op.weight = torch.nn.Parameter(W, requires_grad=False)
conv_op.bias = torch.nn.Parameter(b, requires_grad=False) if use_bias else None
result_ref = conv_op(X)
if use_relu:
relu = torch.nn.ReLU()
result_ref = relu(result_ref)
# quantize reference results for comparision
result_ref_q = torch.quantize_linear(result_ref, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8)
# reformat X_init and W_init in the required format by qconv operator
# NCHW -> NHWC
X_NHWC = X.permute([0, 2, 3, 1]).contiguous()
# K(C/G)RS -> KRS(C/G)
W_KRSC = W.permute([0, 2, 3, 1]).contiguous()
X_q = torch.quantize_linear(X_NHWC, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
if use_channelwise:
W_q = torch.quantize_linear_per_channel(W_KRSC,
W_scales_tensor.to(dtype=torch.double),
W_zero_points_tensor.to(dtype=torch.long),
[0],
dtype=torch.qint8)
b_q = torch.quantize_linear_per_channel(b,
X_scale * W_scales_tensor.to(dtype=torch.double),
torch.zeros(output_channels, dtype=torch.long),
[0],
dtype=torch.qint32) if use_bias else None
else:
W_q = torch.quantize_linear(W_KRSC, scale=W_scale[0], zero_point=W_zero_point[0], dtype=torch.qint8)
b_q = torch.quantize_linear(b, scale=X_scale * W_scale[0], zero_point=0, dtype=torch.qint32) if use_bias else None
W_prepack = qconv_prepack(W_q, b_q, stride, pad, dilation, groups)
Y_q = qconv(
X_q,
W_prepack,
stride,
pad,
dilation,
groups,
Y_scale,
Y_zero_point,
)
# Back to NCHW format
Y_q = Y_q.permute([0, 3, 1, 2]).contiguous()
# Make sure the results match
# assert_array_almost_equal compares using the following formula:
# abs(desired-actual) < 1.5 * 10**(-decimal)
# (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
# We use decimal = 0 to ignore off-by-1 differences between reference and
# test. Off-by-1 differences arise due to the order of round and
# zero_point addition operation, i.e., if addition followed by round is
# used by reference and round followed by addition is used by test, the
# results may differ by 1.
# For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is 4
# assuming the rounding mode is round-to-nearest, ties-to-even.
np.testing.assert_array_almost_equal(result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0)
"""Tests the correctness of the quantized::qconv_unpack (fbgemm) op."""
@given(X=hu.tensor_conv2d(min_batch=1, max_batch=3,
min_in_channels=1, max_in_channels=7,
min_out_channels=1, max_out_channels=7,
H_range=(6, 12), W_range=(6, 12),
kH_range=(3, 5), kW_range=(3, 5),
max_groups=4,
qparams=[hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint8,
zero_point_min=0,
zero_point_max=0),
hu.qparams(dtypes=torch.qint32,
zero_point_min=0,
zero_point_max=0)]),
strideH=st.integers(1, 3), strideW=st.integers(1, 3),
padH=st.integers(1, 2), padW=st.integers(1, 2),
channelwise=st.booleans())
def test_qconv_unpack(self, X, strideH, strideW, padH, padW, channelwise):
(inputs, filters, bias, groups) = X
inputs, (inputs_scale, inputs_zero_point, inputs_qtype) = inputs
filters, (filters_scale, filters_zero_point, filters_qtype) = filters
bias, (bias_scale, bias_zero_point, bias_qtype) = bias
if channelwise:
output_channels = filters.shape[0]
filters_scale = torch.tensor([filters_scale] * output_channels).to(torch.double)
filters_zero_point = torch.tensor([filters_zero_point] * output_channels).to(torch.long)
qconv_prepack = torch.ops.quantized.conv_prepack
qconv_unpack = torch.ops.quantized.conv_unpack
# Orig tensor is assumed to be in K(C/G)RS format
W = torch.from_numpy(filters).to(torch.float)
# K(C/G)RS -> KRS(C/G)
W_KRSC = W.permute([0, 2, 3, 1]).contiguous()
if channelwise:
W_q = torch.quantize_linear_per_channel(W_KRSC,
scales=filters_scale,
zero_points=filters_zero_point,
axis=[0],
dtype=filters_qtype)
else:
W_q = torch.quantize_linear(W_KRSC, scale=filters_scale, zero_point=filters_zero_point, dtype=filters_qtype)
# Pack weights using weight packing operator
strides = [strideH, strideW]
paddings = [padH, padW]
dilations = [1, 1]
bias = torch.from_numpy(bias).to(torch.float)
W_packed = qconv_prepack(W_q, bias, strides, paddings, dilations, groups)
# Unpack weights weight unpacking operator (Used for serialization)
W_unpacked = qconv_unpack(W_packed)[0]
bias = qconv_unpack(W_packed)[1]
# Assert equal
np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy())
if channelwise:
np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()),
np.float32(W_unpacked.q_per_channel_scales().numpy()),
decimal=4)
np.testing.assert_equal(W_q.q_per_channel_zero_points().numpy(), W_unpacked.q_per_channel_zero_points().numpy())
else:
np.testing.assert_equal(np.float32(W_q.q_scale()), np.float32(W_unpacked.q_scale()))
np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point())
@unittest.skipIf(IS_WINDOWS, "QNNPACK has not been built for Windows")
@unittest.skipIf(IS_PPC, "QNNPACK is not currently supported on ppc64le")
@unittest.skipIf(TEST_WITH_UBSAN,
"QNNPACK does not play well with UBSAN at the moment,"
" so we skip the test if we are in a UBSAN environment.")
class TestQNNPackOps(TestCase):
"""Tests the correctness of the quantized::qnnpack_relu op."""
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0)))
def test_qnnpack_relu(self, X):
X, (scale, zero_point, torch_type) = X
relu = torch.ops.quantized.qnnpack_relu
X = torch.from_numpy(X)
Y = X.clone()
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, dtype=torch_type)
qY_hat = relu(qX)
Y[Y < 0] = 0
qY = torch.quantize_linear(Y, scale=scale, zero_point=zero_point, dtype=torch_type)
self.assertEqual(qY, qY_hat)
"""Tests the correctness of the quantized::qnnpack_linear op."""
@given(output_channels=st.sampled_from([2, 4, 5, 8, 16, 32]),
X=hu.tensor(shapes=hu.array_shapes(2, 3, 8, 15),
qparams=hu.qparams(dtypes=torch.quint8)))
def test_qnnpack_linear(self, output_channels, X):
X, (X_scale, X_zp, torch_type) = X
qmin = torch.iinfo(torch_type).min
qmax = torch.iinfo(torch_type).max
input_channels = X.shape[X.ndim - 1]
input_rows = 1
for x in range(X.ndim - 1):
input_rows *= X.shape[x]
qnnpack_linear = torch.ops.quantized.qnnpack_linear
X_q0 = np.round(X * (qmin - qmax) + qmin).astype(np.uint8)
W_scale = 0.4
W_zp = 0
W_value_min = 0
W_value_max = 255
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.uint8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) * (b_value_max - b_value_min) + b_value_min
).astype(np.int32)
X_scale = 10
X_zp = 0
X = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
W = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float)
b = torch.from_numpy(_dequantize(b_q0, X_scale * W_scale, 0)).to(dtype=torch.float)
X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch.quint8)
b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32)
Y_scale = 5.4 # This makes sure that the max output value does not exceed 255.
Y_zp = 0
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, W_scale, W_zp, b_q0, Y_scale, Y_zp)
Y_q_ref_float = _dequantize(Y_q_ref, Y_scale, Y_zp)
# Quantized linear operator
Y_q = qnnpack_linear(X_q, W_q, b_q, Y_scale, Y_zp)
# Assert equal
np.testing.assert_array_almost_equal(Y_q_ref_float, Y_q.dequantize().numpy(), decimal=4)
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float)
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
Y_fp32_ref = Y_fp32_ref.view(-1, output_channels)
Y_q_ref2 = torch.quantize_linear(Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_array_almost_equal(Y_q_ref2.dequantize().numpy(), Y_q.dequantize().numpy(), decimal=4)
"""Tests the correctness of the quantized::qnnpack_add op."""
@given(A=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
qparams=hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0)),
scale_A=st.sampled_from([0.001, 0.057, 0.889, 12.3]),
scale_B=st.sampled_from([0.008, 0.0821, 0.67, 7]),
scale_C=st.sampled_from([0.003, 0.07821, 0.457, 7.34]),)
def test_qnnpack_add(self, A, scale_A, scale_B, scale_C):
A_temp = A
A, (scale_a, zero_point_A, torch_type) = A_temp
B, (scale_b, zero_point_B, torch_type) = A_temp
A = torch.from_numpy(A)
B = torch.from_numpy(B)
assume(scale_A // scale_C >= 2**-14)
assume(scale_A // scale_C < 2**8)
assume(scale_B // scale_C >= 2**-14)
assume(scale_B // scale_C < 2**8)
zero_point_C = 127
qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qB = torch.quantize_linear(B, scale=scale_B, zero_point=zero_point_B,
dtype=torch.quint8)
# Add ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
qC = _quantize(C, scale_C, zero_point_C)
qC_qnnp = torch.ops.quantized.qnnpack_add(qA, qB, scale_C, zero_point_C)
np.testing.assert_equal(qC, qC_qnnp.int_repr(),
"Quantized addition failed.")
A = torch.ones((0, 2), dtype=torch.float32)
qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qC = torch.ops.quantized.qnnpack_add(qA, qA, scale_C, zero_point_C)
np.testing.assert_equal(qC.size(), qA.size(),
"Quantized addition with batch size 0 failed.")
"""Tests the correctness of quantized::qnnpack_maxpool2d op."""
@given(A=hu.tensor(shapes=hu.array_shapes(4, 4, 3, 5),
qparams=hu.qparams(dtypes=torch.quint8,
zero_point_min=0,
zero_point_max=0)),
kernel=st.sampled_from([2, 4]),
stride=st.sampled_from([1, 2]),
padding=st.sampled_from([1, 2]))
def test_qnnpack_maxpool2d(self, A, kernel, stride, padding):
import torch.nn.functional as F
A, (scale, zero_point, torch_type) = A
X = torch.from_numpy(A)
np_type = np.uint8
dilation = 1
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
k = (kernel, kernel)
s = (stride, stride)
d = (dilation, dilation)
p = (padding, padding)
q_max_pool = torch.ops.quantized.qnnpack_maxpool2d
a = scale * (X - zero_point).to(dtype=torch.float)
qa = torch.quantize_linear(a, scale=scale, zero_point=zero_point,
dtype=torch_type)
qa_nhwc = qa.permute([0, 2, 3, 1]).contiguous()
a_ref = qa.dequantize()
a_pool = F.max_pool2d(a_ref, kernel_size=k, stride=s, padding=p,
dilation=d)
a_pool_nhwc = a_pool.permute([0, 2, 3, 1])
qa_pool = q_max_pool(qa_nhwc, k, s, p, d)
qa_pool_int = qa_pool.dequantize()
np.testing.assert_equal(a_pool_nhwc.numpy(), qa_pool_int.numpy())
A = torch.ones((0, 4, 4, 2), dtype=torch.float32)
qa = torch.quantize_linear(A, scale=scale, zero_point=zero_point,
dtype=torch_type)
qc = q_max_pool(qa, k, s, p, d)
oH = pool_output_shape(4, kernel, padding, stride, dilation)
oW = pool_output_shape(4, kernel, padding, stride, dilation)
np.testing.assert_equal(qc.size(), (0, oH, oW, 2),
"Quantized maxpool2d with batch size 0 failed.")
"""Tests the correctness of the tensor comparators."""
class TestComparatorOps(TestCase):
"""Tests the element-wise equality ops."""
@given(A=hu.tensor(shapes=((3, 4, 5),),
qparams=hu.qparams()),
B=hu.tensor(shapes=((5,), (1, 5), (1, 1, 5), (4, 5), (3, 4, 5)),
qparams=hu.qparams()))
def test_compare_tensor_tensor(self, A, B):
A, (scale_a, zero_point_a, dtype_a) = A
B, (scale_b, zero_point_b, dtype_b) = B
tA = torch.from_numpy(A)
tB = torch.from_numpy(B)
qA = torch.quantize_linear(tA, scale=scale_a, zero_point=zero_point_a,
dtype=dtype_a)
qB = torch.quantize_linear(tB, scale=scale_b, zero_point=zero_point_b,
dtype=dtype_b)
dqA = qA.dequantize()
dqB = qB.dequantize()
ops_under_test = ('__eq__', '__ne__', '__ge__', '__le__', '__gt__',
'__lt__', 'eq', 'ne', 'ge', 'le', 'gt', 'lt')
for op in ops_under_test:
result_ref = getattr(dqA, op)(dqB)
result = getattr(qA, op)(qB)
self.assertEqual(result_ref, result,
"'tensor.{}(tensor)'' failed".format(op))
# Reversed broadcasting.
result_ref = getattr(dqB, op)(dqA)
result = getattr(qB, op)(qA)
self.assertEqual(result_ref, result,
"'tensor.{}(tensor)'' failed".format(op))
@unittest.skip("FIXME: Failing due to overflow error without width option")
@given(A=hu.tensor(shapes=((3, 4, 5),),
qparams=hu.qparams()),
b=st.floats(allow_infinity=False, allow_nan=False))
def test_compare_tensor_scalar(self, A, b):
A, (scale_a, zero_point_a, dtype_a) = A
tA = torch.from_numpy(A)
qA = torch.quantize_linear(tA, scale=scale_a, zero_point=zero_point_a,
dtype=dtype_a)
dqA = qA.dequantize()
ops_under_test_reversible = ('__eq__', '__ne__', '__ge__', '__le__',
'__gt__', '__lt__')
ops_under_test_nonreversible = ('eq', 'ne', 'ge', 'le', 'gt', 'lt')
for op in ops_under_test_reversible:
result_ref = getattr(dqA, op)(b)
result = getattr(qA, op)(b)
self.assertEqual(result_ref, result,
"'tensor.{}(scalar)'' failed".format(op))
# Reversed broadcasting.
result_ref = getattr(b, op)(dqA)
result = getattr(b, op)(qA)
self.assertEqual(result_ref, result,
"'scalar.{}(tensor)'' failed".format(op))
for op in ops_under_test_nonreversible:
result_ref = getattr(dqA, op)(b)
result = getattr(qA, op)(b)
self.assertEqual(result_ref, result,
"'tensor.{}(scalar)'' failed".format(op))
if __name__ == "__main__":
run_tests()