| from __future__ import absolute_import | 
 | from __future__ import division | 
 | from __future__ import print_function | 
 | from __future__ import unicode_literals | 
 |  | 
 | import unittest | 
 | import hypothesis.strategies as st | 
 | from hypothesis import given | 
 | import numpy as np | 
 | from caffe2.proto import caffe2_pb2 | 
 | from caffe2.python import core, workspace | 
 | import caffe2.python.hypothesis_test_util as hu | 
 | import caffe2.python.ideep_test_util as mu | 
 |  | 
 | @unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.") | 
 | class ReluTest(hu.HypothesisTestCase): | 
 |     @given(X=hu.tensor(), | 
 |            inplace=st.booleans(), | 
 |            **mu.gcs) | 
 |     def test_relu(self, X, inplace, gc, dc): | 
 |         op = core.CreateOperator( | 
 |             "Relu", | 
 |             ["X"], | 
 |             ["Y"] if not inplace else ["X"], | 
 |         ) | 
 |         # go away from the origin point to avoid kink problems | 
 |         X += 0.02 * np.sign(X) | 
 |         X[X == 0.0] += 0.02 | 
 |  | 
 |         self.assertDeviceChecks(dc, op, [X], [0]) | 
 |  | 
 |         self.assertGradientChecks(gc, op, [X], 0, [0]) | 
 |  | 
 |     @given(size=st.integers(7, 9), | 
 |            input_channels=st.integers(1, 3), | 
 |            batch_size=st.integers(1, 3), | 
 |            inplace=st.booleans(), | 
 |            **mu.gcs) | 
 |     def test_int8_relu(self, size, input_channels, batch_size, inplace, gc, dc): | 
 |         relu_fp32 = core.CreateOperator( | 
 |             "Relu", | 
 |             ["X"], | 
 |             ["Y"] if not inplace else ["X"], | 
 |             device_option=dc[0] | 
 |         ) | 
 |  | 
 |         X = np.random.rand( | 
 |             batch_size, input_channels, size, size).astype(np.float32) - 0.5 | 
 |         # go away from the origin point to avoid kink problems | 
 |         X += 0.02 * np.sign(X) | 
 |         X[X == 0.0] += 0.02 | 
 |  | 
 |         if X.min() >=0: | 
 |             scale = np.absolute(X).max() / 0xFF | 
 |             zero_point = 0 | 
 |         else: | 
 |             scale = np.absolute(X).max() / 0x7F | 
 |             zero_point = 128 | 
 |  | 
 |         old_ws_name = workspace.CurrentWorkspace() | 
 |         workspace.SwitchWorkspace("_device_check_", True) | 
 |  | 
 |         workspace.FeedBlob("X", X, dc[0]) | 
 |         workspace.RunOperatorOnce(relu_fp32) | 
 |         Y = workspace.FetchBlob("X" if inplace else "Y") | 
 |  | 
 |         workspace.ResetWorkspace() | 
 |  | 
 |         sw2nhwc = core.CreateOperator( | 
 |             "NCHW2NHWC", | 
 |             ["Xi"], | 
 |             ["Xi_nhwc"], | 
 |             device_option=dc[1] | 
 |         ) | 
 |  | 
 |         quantize = core.CreateOperator( | 
 |             "Int8Quantize", | 
 |             ["Xi_nhwc"], | 
 |             ["Xi_quantized"], | 
 |             engine="DNNLOWP", | 
 |             device_option=dc[1], | 
 |             Y_zero_point=zero_point, | 
 |             Y_scale=scale, | 
 |         ) | 
 |  | 
 |         relu = core.CreateOperator( | 
 |             "Int8Relu", | 
 |             ["Xi_quantized"], | 
 |             ["Y_quantized"] if not inplace else ["Xi_quantized"], | 
 |             engine="DNNLOWP", | 
 |             device_option=dc[1], | 
 |         ) | 
 |  | 
 |         dequantize = core.CreateOperator( | 
 |             "Int8Dequantize", | 
 |             ["Y_quantized"] if not inplace else ["Xi_quantized"], | 
 |             ["Y_nhwc"], | 
 |             engine="DNNLOWP", | 
 |             device_option=dc[1], | 
 |         ) | 
 |  | 
 |         sw2nchw = core.CreateOperator( | 
 |             "NHWC2NCHW", | 
 |             ["Y_nhwc"], | 
 |             ["Y_out"], | 
 |             device_option=dc[1] | 
 |         ) | 
 |  | 
 |         net = caffe2_pb2.NetDef() | 
 |         net.op.extend([sw2nhwc, quantize, relu, dequantize, sw2nchw]) | 
 |  | 
 |         workspace.FeedBlob("Xi", X, dc[1]) | 
 |         workspace.RunNetOnce(net) | 
 |         Y_out = workspace.FetchBlob("Y_out") | 
 |  | 
 |         MSE = np.square(np.subtract(Y, Y_out)).mean() | 
 |         if MSE > 0.005: | 
 |             print(Y.flatten()) | 
 |             print(Y_out.flatten()) | 
 |             print(np.max(np.abs(Y_out - Y))) | 
 |             print("MSE", MSE) | 
 |             self.assertTrue(False) | 
 |  | 
 |         workspace.SwitchWorkspace(old_ws_name) | 
 |  | 
 | if __name__ == "__main__": | 
 |     unittest.main() |