blob: 61d0de279f92e63160237e12abb0cac251c83678 [file] [log] [blame]
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Size.h>
#include <torch/csrc/Types.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_hook.h>
#include <torch/csrc/autograd/python_variable_indexing.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/generated/VariableType.h>
#include <torch/csrc/autograd/utils/error_messages.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/ATen.h>
#include <pybind11/pybind11.h>
#include <structmember.h>
#include <memory>
#include <utility>
#include <vector>
using namespace at;
using namespace torch;
using namespace torch::autograd;
namespace py = pybind11;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
PyObject *THPVariableClass = nullptr;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
PyObject *ParameterClass = nullptr;
// clang-tidy gets confused by static const
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static const char* VOLATILE_WARNING =
"volatile was removed and now has no effect. Use "
"`with torch.no_grad():` instead.";
#ifdef USE_DEPLOY
// used only in libtorch_deployinterpreter.so
// there are muliple copies of the python interpreter that
// can shared Tensors, so rather than use their internal pointer
// to a PyObject use a library-local map.
static std::unordered_map<void*, PyObject*> impl_to_pyobj;
void set_pyobj(const Variable& self, PyObject* pyobj) {
TORCH_CHECK(self.defined(), "cannot call set_pyobj() on undefined tensor");
void* key = self.unsafeGetTensorImpl();
if (!pyobj) {
impl_to_pyobj.erase(key);
return;
}
impl_to_pyobj[key] = pyobj;
}
PyObject* pyobj(const Variable& self) {
TORCH_CHECK(self.defined(), "cannot call pyobj() on undefined tensor");
auto it = impl_to_pyobj.find(self.unsafeGetTensorImpl());
return it == impl_to_pyobj.end() ? nullptr : it->second;
}
#else
using torch::autograd::impl::pyobj;
using torch::autograd::impl::set_pyobj;
#endif
// Creates a new Python object for a Variable. The Variable must not already
// have a PyObject* associated with it.
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, Variable var)
{
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto v = (THPVariable*) obj;
new (&v->cdata) Variable(std::move(var));
set_pyobj(v->cdata, obj);
}
return obj;
}
PyObject * THPVariable_Wrap(Variable var)
{
if (!var.defined()) {
Py_RETURN_NONE;
}
if (auto obj = pyobj(var)) {
Py_INCREF(obj);
return obj;
}
return THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, std::move(var));
}
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
{
Py_VISIT(self->backward_hooks);
// We don't want to traverse the grad_fn, even if the Variable owns it and the
// shared pointer's use count is 1. This is because we would need to treat
// the grad_fn as part of the Python state and hold the GIL sometimes when
// grad_fn's shared_ptr is copied, otherwise a race condition with the Python
// GC could occur. Holding the GIL when the shared_ptr is copied adds
// undesirable complexity/overhead.
//
// When hooks, a Variable, and its grad_fn are involved in a Python reference
// cycle, because we're not traversing the grad_fn, the reference cycle will
// in fact leak.
//
// See https://gist.github.com/zou3519/7ac92b84dd7d206dcc6eae55fee8372c
// for more details about the race condition involving traversing the grad_fn
// and the python GC.
const auto& tensor = THPVariable_Unpack(self);
if (tensor.defined()) {
for (const auto& hook : torch::autograd::impl::hooks(tensor)) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
static int THPVariable_clear(THPVariable *self)
{
Py_CLEAR(self->backward_hooks);
const auto& tensor = THPVariable_Unpack(self);
if (tensor.defined()) {
if (auto grad_acc = torch::autograd::impl::try_get_grad_accumulator(tensor)) {
grad_acc->pre_hooks().clear();
}
// We must clear the pyobj field in the base C++ Variable, to ensure
// that if we attempt to pass the Variable to Python, we don't
// attempt to reuse the (now-dead) PyObject.
//
// One non-obvious consequence of this: if you have a tensor x, you
// take its id(), and then you let it become dead in Python, if you
// get another reference to the tensor in Python later (because you
// passed it from C++ to Python), you'll get a *different* id() the
// second time around. So you better make sure that if you're using
// id() to keep track of Tensors, you better make sure their Python
// objects stay live, buster! See
// https://github.com/pytorch/pytorch/issues/22884 for an example of
// this actually showing up.
set_pyobj(self->cdata, nullptr);
}
self->cdata.reset();
return 0;
}
static void THPVariable_dealloc(THPVariable* self)
{
PyObject_GC_UnTrack(self);
THPVariable_clear(self);
self->cdata.~Variable();
Py_TYPE(self)->tp_free((PyObject*)self);
}
static PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
HANDLE_TH_ERRORS
jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
auto tensor = torch::utils::legacy_tensor_ctor(torch::tensors::get_default_dispatch_key(), torch::tensors::get_default_scalar_type(), args, kwargs);
return THPVariable_NewWithVar(type, std::move(tensor));
END_HANDLE_TH_ERRORS
}
// Instantiates a subclass of self with the same data.
static PyObject* THPVariable_as_subclass(PyObject* _self, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
const auto& self = THPVariable_Unpack(_self);
static PythonArgParser parser({
"as_subclass(PyObject* cls)",
});
ParsedArgs<1> parsed_args{};
auto r = parser.parse(_self, args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
if (!PyType_Check(cls)) {
throw torch::TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
}
return THPVariable_NewWithVar((PyTypeObject*)cls, self.alias());
END_HANDLE_TH_ERRORS
}
static PyObject* THPVariable_make_subclass(PyObject* _ignored, PyObject* args, PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({
"_make_subclass(PyObject* cls, Tensor data, bool require_grad=False)",
});
ParsedArgs<3> parsed_args{};
auto r = parser.parse(args, kwargs, parsed_args);
PyObject* cls = r.pyobject(0);
if (!PyType_Check(cls)) {
throw torch::TypeError("cls must be a type (got %s)", Py_TYPE(cls)->tp_name);
}
auto data = r.tensor(1).detach();
// We set `data`'s `allow_tensor_metadata_change` to true here, because we want to
// allow the following use case for backward compatibility:
//
// ```python
// rnn = torch.nn.RNN(100, 100, 2)
// # The following calls `torch._cudnn_rnn_flatten_weight(rnn._flat_weights, ...)`,
// # which changes storage of `rnn`'s weights in-place
// rnn.flatten_parameters()
// ```
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
auto var = data.set_requires_grad(r.toBool(2));
return THPVariable_NewWithVar((PyTypeObject*)cls, std::move(var));
END_HANDLE_TH_ERRORS
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
PyObject *THPVariable_get_T(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "T");
}
const auto& var = THPVariable_Unpack(self);
return THPVariable_Wrap(var.numpy_T());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_cdata(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_cdata");
}
const auto& var = THPVariable_Unpack(self);
return PyLong_FromVoidPtr(var.unsafeGetTensorImpl());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_version(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_version");
}
const auto& var = THPVariable_Unpack(self);
return PyInt_FromLong(var._version());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_grad_fn(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "grad_fn");
}
const auto& var = THPVariable_Unpack(self);
if (!var.grad_fn()) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn());
END_HANDLE_TH_ERRORS
}
static int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "_grad_fn", obj);
}
THPUtils_assertRet(-1, obj, "Deletion of _grad_fn not allowed. Detach tensor instead!");
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
THPVariable_Unpack(self).detach_();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
static PyObject *THPVariable_is_leaf(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_leaf");
}
return PyBool_FromLong(!THPVariable_Unpack(self).grad_fn());
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_get_data(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "data");
}
const auto& var = THPVariable_Unpack(self).variable_data();
return THPVariable_Wrap(var);
END_HANDLE_TH_ERRORS
}
int THPVariable_set_data(THPVariable *self, PyObject *data, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "data", data);
}
THPUtils_assertRet(-1, data, "Deleting tensor data is not allowed. Delete tensor instead!");
if (!THPVariable_Check(data)) {
throw torch::TypeError("Variable data has to be a tensor, but got %s", Py_TYPE(data)->tp_name);
}
THPVariable_Unpack(self).set_data(THPVariable_Unpack(data));
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_grad(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "grad");
}
return THPVariable_Wrap(THPVariable_Unpack(self).grad());
END_HANDLE_TH_ERRORS
}
int THPVariable_set_grad(THPVariable *self, PyObject *py_grad, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "grad", py_grad);
}
const auto& var = THPVariable_Unpack(self);
if (!py_grad || py_grad == Py_None) {
var.mutable_grad().reset();
return 0;
}
THPUtils_assertRet(-1, THPVariable_Check(py_grad),
"expected Variable or None (got %s)", THPUtils_typename(py_grad));
THPUtils_assertRet(-1, self != (THPVariable*)py_grad,
"can't assign Variable as its own grad");
const auto& grad = THPVariable_Unpack(py_grad);
bool gradIsSparse = (var.dtype() == grad.dtype() &&
var.device().type() == grad.device().type() &&
grad.layout() == kSparse);
THPUtils_assertRet(-1, grad.options().type_equal(var.options()) || gradIsSparse,
"assigned grad has data of a different type");
if (var.is_cuda()) {
THPUtils_assertRet(-1, grad.get_device() == var.get_device(),
"assigned grad has data located on a different device");
}
THPUtils_assertRet(-1, grad.sizes().equals(var.sizes()),
"assigned grad has data of a different size");
var.mutable_grad() = grad;
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_volatile(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "volatile");
}
const char* msg = "volatile was removed (Variable.volatile is always False)";
auto r = PyErr_WarnEx(PyExc_UserWarning, msg, 1);
if (r != 0) throw python_error();
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_volatile(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "volatile", obj);
}
auto r = PyErr_WarnEx(PyExc_UserWarning, VOLATILE_WARNING, 1);
if (r != 0) throw python_error();
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_output_nr(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "output_nr");
}
const auto output_nr = static_cast<long>(THPVariable_Unpack(self).output_nr());
return PyInt_FromLong(output_nr);
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_requires_grad(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "requires_grad");
}
return PyBool_FromLong(THPVariable_Unpack(self).requires_grad());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_ndim(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "ndim");
}
return PyInt_FromLong(THPVariable_Unpack(self).dim());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_names(PyObject *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_getter((THPVariable*)self, "names");
}
// The long-term plan is to return a list of (python) torch.Dimname.
// However, for now, return a list of string.
const auto& tensor = THPVariable_Unpack(self);
size_t size = tensor.dim();
THPObjectPtr tuple(PyTuple_New(size));
if (!tuple) throw python_error();
const auto dimnames = tensor.names();
for (size_t i = 0; i < size; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
PyObject* str;
if (dimnames[i].type() == at::NameType::WILDCARD) {
// PyTuple_SET_ITEM steals a reference to the object. When the tuple is
// deallocated, it'll decrement the refcount on Py_None, which is bad.
// To avoid this, we "create" a new reference to Py_None by increasing
// the refcount.
// Sources:
// - https://docs.python.org/3/c-api/tuple.html#c.PyTuple_SetItem
// - https://stackoverflow.com/questions/16400600/how-to-return-a-tuple-containing-a-none-value-from-the-c-api
Py_INCREF(Py_None);
str = Py_None;
} else {
str = THPUtils_packString(dimnames[i].symbol().toUnqualString());
if (!str) throw python_error();
}
PyTuple_SET_ITEM(tuple.get(), i, str);
}
return tuple.release();
END_HANDLE_TH_ERRORS
}
int THPVariable_set_names(PyObject *self, PyObject *names, void *unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function(self)) {
return handle_torch_function_setter((THPVariable*)self, "names", names);
}
const auto& var = THPVariable_Unpack(self);
if (names == Py_None) {
at::internal_set_names_inplace(var, at::nullopt);
} else {
THPUtils_assertRet(-1,
THPUtils_checkDimnameList(names),
"names must either be None or a tuple of dim names");
at::internal_set_names_inplace(var, torch::parseDimnameList(names));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "requires_grad", obj);
}
THPUtils_assertRet(-1, obj && PyBool_Check(obj), "requires_grad must be a bool");
const auto& var = THPVariable_Unpack(self);
auto requires_grad = (obj == Py_True);
if (!var.is_leaf()) {
THPUtils_setError(autograd::utils::requires_grad_leaf_error(obj == Py_True).c_str());
return -1;
}
if (requires_grad && !isDifferentiableType(at::typeMetaToScalarType((var.dtype())))) {
THPUtils_setError("only Tensors of floating point and complex dtype can require gradients");
return -1;
}
var.set_requires_grad(requires_grad);
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_name(THPVariable* self, void *unused)
{
if (check_has_torch_function((PyObject *)self)) {
HANDLE_TH_ERRORS
return handle_torch_function_getter(self, "name");
END_HANDLE_TH_ERRORS
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.name() == "")
Py_RETURN_NONE;
return THPUtils_packString(tensor.name().c_str());
}
PyObject *THPVariable_get_backwards_hooks(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_backward_hooks");
}
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_setter(self, "_backward_hooks", obj);
}
THPUtils_assertRet(-1, obj, "Deletion of _backwards_hooks not allowed!");
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
const auto& tensor = THPVariable_Unpack(self);
torch::autograd::impl::clear_hooks(tensor);
if (obj) {
torch::autograd::impl::add_hook(tensor, std::make_shared<PyFunctionPreHook>(obj, 0));
}
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
PyObject *THPVariable_get_base(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "_base");
}
const auto& tensor = THPVariable_Unpack(self);
if (tensor.is_view()) {
return THPVariable_Wrap(tensor._base());
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_shape(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "shape");
}
return THPSize_New(THPVariable_Unpack(self));
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_cuda(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_cuda");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_cuda());
END_HANDLE_TH_ERRORS
}
PyObject* THPVariable_is_xpu(THPVariable* self, void* unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject*)self)) {
return handle_torch_function_getter(self, "is_xpu");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_xpu());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_sparse(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_sparse");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_sparse());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_sparse_csr(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_sparse_csr");
}
auto& self_ = self->cdata;
return torch::autograd::utils::wrap(self_.is_sparse_csr());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_mkldnn(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_mkldnn");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mkldnn());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_mlc(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_mlc");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_mlc());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_vulkan(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_vulkan");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_vulkan());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_quantized(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_quantized");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_quantized());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_meta(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_meta");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_meta());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_is_complex(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "is_complex");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(self_.is_complex());
END_HANDLE_TH_ERRORS
}
static PyObject *THPVariable_dtype(THPVariable *self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "dtype");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(torch::getTHPDtype(self_.scalar_type()));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_layout(THPVariable* self, void *unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "layout");
}
auto& self_ = THPVariable_Unpack(self);
return torch::autograd::utils::wrap(torch::getTHPLayout(self_.layout()));
END_HANDLE_TH_ERRORS
}
static PyObject * THPVariable_device(THPVariable* self, void *unused) {
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "device");
}
return THPDevice_New(THPVariable_Unpack(self).device());
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_real(THPVariable* self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "real");
}
auto& self_ = THPVariable_Unpack(self);
auto real = at::real(self_);
return THPVariable_Wrap(real);
END_HANDLE_TH_ERRORS
}
PyObject *THPVariable_get_imag(THPVariable* self, void *unused)
{
HANDLE_TH_ERRORS
if (check_has_torch_function((PyObject *)self)) {
return handle_torch_function_getter(self, "imag");
}
auto& self_ = THPVariable_Unpack(self);
auto imag = at::imag(self_);
return THPVariable_Wrap(imag);
END_HANDLE_TH_ERRORS
}
int THPVariable_set_real(THPVariable *self, THPVariable *real, void *unused)
{
HANDLE_TH_ERRORS
auto& self_ = THPVariable_Unpack(self);
auto self_real = at::real(self_);
self_real.copy_(THPVariable_Unpack(real));
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
int THPVariable_set_imag(THPVariable* self, THPVariable *imag, void *unused)
{
HANDLE_TH_ERRORS
auto& self_ = THPVariable_Unpack(self);
auto self_imag = at::imag(self_);
self_imag.copy_(THPVariable_Unpack(imag));
return 0;
END_HANDLE_TH_ERRORS_RET(-1)
}
// properties are registered here because we are currently only able to bind them
// manually. TODO: make declarable in native_functions
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static struct PyGetSetDef THPVariable_properties[] = {
{"T", (getter)THPVariable_get_T, nullptr, nullptr, nullptr},
{"_cdata", (getter)THPVariable_get_cdata, nullptr, nullptr, nullptr},
{"_version", (getter)THPVariable_get_version, nullptr, nullptr, nullptr},
{"grad_fn", (getter)THPVariable_get_grad_fn, nullptr, nullptr, nullptr},
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, nullptr, nullptr},
{"is_leaf", (getter)THPVariable_is_leaf, nullptr, nullptr, nullptr},
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, nullptr, nullptr},
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr}, // Allows the python class to override .grad
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, nullptr, nullptr},
{"_base", (getter)THPVariable_get_base, nullptr, nullptr, nullptr},
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, nullptr, nullptr},
{"output_nr", (getter)THPVariable_get_output_nr, nullptr, nullptr, nullptr},
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, nullptr, nullptr},
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
{"name", (getter)THPVariable_get_name, nullptr, nullptr, nullptr},
{"shape", (getter)THPVariable_get_shape, nullptr, nullptr, nullptr},
{"is_cuda", (getter)THPVariable_is_cuda, nullptr, nullptr, nullptr},
{"is_xpu", (getter)THPVariable_is_xpu, nullptr, nullptr, nullptr},
{"is_sparse", (getter)THPVariable_is_sparse, nullptr, nullptr, nullptr},
{"is_sparse_csr", (getter)THPVariable_is_sparse_csr, nullptr, nullptr, nullptr},
{"is_mkldnn", (getter)THPVariable_is_mkldnn, nullptr, nullptr, nullptr},
{"is_mlc", (getter)THPVariable_is_mlc, nullptr, nullptr, nullptr},
{"is_vulkan", (getter)THPVariable_is_vulkan, nullptr, nullptr, nullptr},
{"is_complex", (getter)THPVariable_is_complex, nullptr, nullptr, nullptr},
{"is_quantized", (getter)THPVariable_is_quantized, nullptr, nullptr, nullptr},
{"is_meta", (getter)THPVariable_is_meta, nullptr, nullptr, nullptr},
{"dtype", (getter)THPVariable_dtype, nullptr, nullptr, nullptr},
{"layout", (getter)THPVariable_layout, nullptr, nullptr, nullptr},
{"device", (getter)THPVariable_device, nullptr, nullptr, nullptr},
{"ndim", (getter)THPVariable_get_ndim, nullptr, nullptr, nullptr},
{"names", (getter)THPVariable_get_names, (setter)THPVariable_set_names, nullptr, nullptr},
{"real", (getter)THPVariable_get_real, (setter)THPVariable_set_real, nullptr, nullptr},
{"imag", (getter)THPVariable_get_imag, (setter)THPVariable_set_imag, nullptr, nullptr},
{nullptr}
};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static PyMappingMethods THPVariable_as_mapping = {
THPVariable_length,
THPVariable_getitem,
THPVariable_setitem,
};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
static PyMethodDef extra_methods[] = {
{"as_subclass", castPyCFunctionWithKeywords(THPVariable_as_subclass),
METH_VARARGS | METH_KEYWORDS, nullptr},
{"_make_subclass", castPyCFunctionWithKeywords(THPVariable_make_subclass),
METH_STATIC | METH_VARARGS | METH_KEYWORDS, nullptr},
{nullptr}
};
/* From https://github.com/python/cpython/blob/v3.7.0/Modules/xxsubtype.c
If compiled as a shared library instead, some compilers don't allow addresses
of Python objects defined in other libraries to be used in static
initializers here. The DEFERRED_ADDRESS macro is used to tag the slots where
such addresses appear; the module init function must fill in the tagged slots
at runtime. The argument is for documentation -- the macro ignores it.
*/
#define DEFERRED_ADDRESS(ADDR) nullptr
struct THPVariableMeta {
PyHeapTypeObject base;
};
int THPVariableMetaType_init(PyObject *cls, PyObject *args, PyObject *kwargs);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
PyTypeObject THPVariableMetaType = {
PyVarObject_HEAD_INIT(DEFERRED_ADDRESS(&PyType_Type), 0)
"torch._C._TensorMeta", /* tp_name */
sizeof(THPVariableMeta), /* tp_basicsize */
0, /* tp_itemsize */
nullptr, /* tp_dealloc */
// NOLINTNEXTLINE(modernize-use-nullptr)
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
nullptr, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
nullptr, /* tp_traverse */
nullptr, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
nullptr, /* tp_getset */
DEFERRED_ADDRESS(&PyType_Type), /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
THPVariableMetaType_init, /* tp_init */
nullptr, /* tp_alloc */
nullptr /* tp_new */
};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(&THPVariableMetaType, 0)
"torch._C._TensorBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
// NOLINTNEXTLINE(modernize-use-nullptr)
0, /* tp_vectorcall_offset */
nullptr, /* tp_getattr */
nullptr, /* tp_setattr */
nullptr, /* tp_reserved */
nullptr, /* tp_repr */
nullptr, /* tp_as_number */
nullptr, /* tp_as_sequence */
&THPVariable_as_mapping, /* tp_as_mapping */
nullptr, /* tp_hash */
nullptr, /* tp_call */
nullptr, /* tp_str */
nullptr, /* tp_getattro */
nullptr, /* tp_setattro */
nullptr, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
nullptr, /* tp_doc */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
nullptr, /* tp_richcompare */
0, /* tp_weaklistoffset */
nullptr, /* tp_iter */
nullptr, /* tp_iternext */
nullptr, /* tp_methods */
nullptr, /* tp_members */
THPVariable_properties, /* tp_getset */
nullptr, /* tp_base */
nullptr, /* tp_dict */
nullptr, /* tp_descr_get */
nullptr, /* tp_descr_set */
0, /* tp_dictoffset */
nullptr, /* tp_init */
nullptr, /* tp_alloc */
// NB: It is illegal to directly create a _TensorBase. Instead,
// subclass it first (the metaclass will initialize tp_new) and
// then construct it
nullptr, /* tp_new */
};
int THPVariableMetaType_init(PyObject *cls, PyObject *args, PyObject *kwargs) {
if (PyType_Type.tp_init(cls, args, kwargs) < 0) {
return -1;
}
if (((PyTypeObject*)cls)->tp_base == &THPVariableType) {
((PyTypeObject*)cls)->tp_new = THPVariable_pynew;
}
return 0;
}
namespace torch { namespace autograd {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables)
extern PyMethodDef variable_methods[];
extern void initTorchFunctions(PyObject *module);
void initTensorImplConversion(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
m.def("_wrap_tensor_impl", [](void* ptr) {
auto p = c10::intrusive_ptr<c10::TensorImpl, at::UndefinedTensorImpl>::
unsafe_reclaim_from_nonowning(static_cast<c10::TensorImpl*>(ptr));
TORCH_CHECK(p.defined(), "Can't wrap undefined tensor");
auto tensor = at::Tensor::wrap_tensor_impl(std::move(p));
// NOLINTNEXTLINE(performance-move-const-arg)
return py::cast(std::move(tensor));
});
// set on the module level to avoid mixing pybind and plain CPython extensions
m.def("_tensor_impl_raw_handle", [](torch::autograd::Variable* t) -> void* {
// We return a raw non-owning pointer here, we rely on surrounding
// code to keep the original tensor alive
return t->getIntrusivePtr().get();
});
}
}}
bool THPVariable_initModule(PyObject *module)
{
THPVariableMetaType.tp_base = &PyType_Type;
if (PyType_Ready(&THPVariableMetaType) < 0)
return false;
Py_INCREF(&THPVariableMetaType);
PyModule_AddObject(module, "_TensorMeta", (PyObject *)&THPVariableMetaType);
static std::vector<PyMethodDef> methods;
THPUtils_addPyMethodDefs(methods, torch::autograd::variable_methods);
THPUtils_addPyMethodDefs(methods, extra_methods);
THPVariableType.tp_methods = methods.data();
if (PyType_Ready(&THPVariableType) < 0)
return false;
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "_TensorBase", (PyObject *)&THPVariableType);
torch::autograd::initTorchFunctions(module);
torch::autograd::initTensorImplConversion(module);
return true;
}