blob: ef5cb6c8393ab7150d98eacdbda9aa4a2d955243 [file] [log] [blame]
// *** Tensor Expressions ***
//
// This tutorial covers basics of NNC's tensor expressions, shows basic APIs to
// work with them, and outlines how they are used in the overall TorchScript
// compilation pipeline. This doc is permanently a "work in progress" since NNC
// is under active development and things change fast.
//
// This Tutorial's code is compiled in the standard pytorch build, and the
// executable can be found in `build/bin/tutorial_tensorexpr`.
//
// *** What is NNC ***
//
// NNC stands for Neural Net Compiler. It is a component of TorchScript JIT
// and it performs on-the-fly code generation for kernels, which are often a
// combination of multiple aten (torch) operators.
//
// When the JIT interpreter executes a torchscript model, it automatically
// extracts subgraphs from the torchscript IR graph for which specialized code
// can be JIT generated. This usually improves performance as the 'combined'
// kernel created from the subgraph could avoid unnecessary memory traffic that
// is unavoidable when the subgraph is interpreted as-is, operator by operator.
// This optimization is often referred to as 'fusion'. Relatedly, the process of
// finding and extracting subgraphs suitable for NNC code generation is done by
// a JIT pass called 'fuser'.
//
// *** What is TE ***
//
// TE stands for Tensor Expressions. TE is a commonly used approach for
// compiling kernels performing tensor (~matrix) computation. The idea behind it
// is that operators are represented as a mathematical formula describing what
// computation they do (as TEs) and then the TE engine can perform mathematical
// simplification and other optimizations using those formulas and eventually
// generate executable code that would produce the same results as the original
// sequence of operators, but more efficiently.
//
// NNC's design and implementation of TE was heavily inspired by Halide and TVM
// projects.
#include <iostream>
#include <string>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/stmt.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
using namespace torch::jit::tensorexpr;
int main(int argc, char* argv[]) {
// Memory management for tensor expressions is currently done with memory
// arenas. That is, whenever an object is created it registers itself in an
// arena and the object is kept alive as long as the arena is alive. When the
// arena gets destructed, it deletes all objects registered in it.
//
// The easiest way to set up a memory arena is to use `KernelScope` class - it
// is a resource guard that creates a new arena on construction and restores
// the previously set arena on destruction.
//
// We will create a kernel scope here, and thus we'll set up a mem arena for
// the entire tutorial.
KernelScope kernel_scope;
std::cout << "*** Structure of tensor expressions ***" << std::endl;
{
// A tensor expression is a tree of expressions. Each expression has a type,
// and that type defines what sub-expressions it the current expression has.
// For instance, an expression of type 'Mul' would have a type 'kMul' and
// two subexpressions: LHS and RHS. Each of these two sub-expressions could
// also be a 'Mul' or some other expression.
//
// Let's construct a simple TE:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Expr* lhs = new IntImm(5);
Expr* rhs = new Var("x", kInt);
Expr* mul = new Mul(lhs, rhs);
std::cout << "Tensor expression: " << *mul << std::endl;
// Prints: Tensor expression: 5 * x
// Here we created an expression representing a 5*x computation, where x is
// an int variable.
// Another, probably a more convenient, way to construct tensor expressions
// is to use so called expression handles (as opposed to raw expressions
// like we did in the previous example). Expression handles overload common
// operations and allow us to express the same semantics in a more natural
// way:
ExprHandle l = 1;
ExprHandle r = Var::make("x", kInt);
ExprHandle m = l * r;
std::cout << "Tensor expression: " << *m.node() << std::endl;
// Prints: Tensor expression: 1 * x
// In a similar fashion we could construct arbitrarily complex expressions
// using mathematical and logical operations, casts between various data
// types, and a bunch of intrinsics.
ExprHandle a = Var::make("a", kInt);
ExprHandle b = Var::make("b", kFloat);
ExprHandle c = Var::make("c", kFloat);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
ExprHandle x = ExprHandle(5) * a + b / (sigmoid(c) - 3.0f);
std::cout << "Tensor expression: " << *x.node() << std::endl;
// Prints: Tensor expression: float(5 * a) + b / ((sigmoid(c)) - 3.f)
// An ultimate purpose of tensor expressions is to optimize tensor
// computations, and in order to represent accesses to tensors data, there
// is a special kind of expression - a load.
// To construct a load we need two pieces: the base and the indices. The
// base of a load is a Buf expression, which could be thought of as a
// placeholder similar to Var, but with dimensions info.
//
// Let's construct a simple load:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
BufHandle A("A", {ExprHandle(64), ExprHandle(32)}, kInt);
ExprHandle i = Var::make("i", kInt), j = Var::make("j", kInt);
ExprHandle load = Load::make(A.dtype(), A, {i, j});
std::cout << "Tensor expression: " << *load.node() << std::endl;
// Prints: Tensor expression: A[i, j]
}
std::cout << "*** Tensors, Functions, and Placeholders ***" << std::endl;
{
// A tensor computation is represented by Tensor class objects and
// consists of the following pieces:
// - domain, which is specified by a Buf expression
// - a tensor statement, specified by a Stmt object, that computation to
// be performed in this domain
// Let's start with defining a domain. We do this by creating a Buf object.
// First, let's specify the sizes:
std::vector<const Expr*> dims = {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
new IntImm(64),
new IntImm(32)}; // IntImm stands for Integer Immediate
// and represents an integer constant
// Now we can create a Buf object by providing a name, dimensions, and a
// data type of the elements:
const Buf* buf = new Buf("X", dims, kInt);
// Next we need to spefify the computation. We can do that by either
// constructing a complete tensor statement for it (statements are
// examined in details in subsequent section), or by using a convenience
// method where we could specify axis and an element expression for the
// computation. In the latter case a corresponding statement would be
// constructed automatically.
// Let's define two variables, i and j - they will be axis in our
// computation.
const Var* i = new Var("i", kInt);
const Var* j = new Var("j", kInt);
std::vector<const Var*> args = {i, j};
// Now we can define the body of the tensor computation using these
// variables. What this means is that values in our tensor are:
// X[i, j] = i * j
Expr* body = new Mul(i, j);
// Finally, we pass all these pieces together to Tensor constructor:
Tensor* X = new Tensor(buf, args, body);
std::cout << "Tensor computation: " << *X << std::endl;
// Prints:
// Tensor computation: Tensor X[64, 32]:
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// X[i, j] = i * j;
// }
// }
// TODO: Add an example of constructing a Tensor with a complete Stmt.
// Similarly to how we provide a more convenient way of using handles for
// constructing Exprs, Tensors also have a more convenient API for
// construction. It is based on Compute API, which takes a name,
// dimensions, and a lambda specifying the computation body:
Tensor* Z = Compute(
"Z",
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
{{64, "i"}, {32, "j"}},
[](const VarHandle& i, const VarHandle& j) { return i / j; });
std::cout << "Tensor computation: " << *Z << std::endl;
// Prints:
// Tensor computation: Tensor Z[64, 32]:
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// Z[i, j] = i / j;
// }
// }
// Tensors might access other tensors and external placeholders in their
// expressions. It can be done like so:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Placeholder P("P", kInt, {64, 32});
Tensor* R = Compute(
"R",
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
{{64, "i"}, {32, "j"}},
[&](const VarHandle& i, const VarHandle& j) {
return Z->load(i, j) * P.load(i, j);
});
std::cout << "Tensor computation: " << *R << std::endl;
// Prints:
// Tensor computation: Tensor R[64, 32]:
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// R[i, j] = (Z(i, j)) * (P[i, j]);
// }
// }
// Placeholders could be thought of as external tensors, i.e. tensors for
// which we don't have the element expression. In other words, for `Tensor`
// we know an expression specifying how its elements can be computed (a
// mathematical formula). For external tensors, or placeholders, we don't
// have such an expression. They need to be considered as coming to us as
// inputs from outside - we can only load data from them.
//
// TODO: Show how reductions are represented and constructed
}
std::cout << "*** Loopnests and Statements ***" << std::endl;
{
// Creating a tensor expression is the first step to generate an executable
// code for it. A next step is to represent it as a loop nest and apply
// various loop transformations in order to get an optimal implementation.
// In Halide's or TVM's terms the first step was to define the algorithm of
// computation (what to compute?) and now we are getting to the schedule of
// the computation (how to compute?).
//
// Let's create a simple tensor expression and construct a loop nest for it.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Placeholder A("A", kFloat, {64, 32});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Placeholder B("B", kFloat, {64, 32});
Tensor* X = Compute(
"X",
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
{{64, "i"}, {32, "j"}},
[&](const VarHandle& i, const VarHandle& j) {
return A.load(i, j) + B.load(i, j);
});
Tensor* Y = Compute(
"Y",
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
{{64, "i"}, {32, "j"}},
[&](const VarHandle& i, const VarHandle& j) {
return sigmoid(X->load(i, j));
});
std::cout << "Tensor computation X: " << *X
<< "Tensor computation Y: " << *Y << std::endl;
// Prints:
// Tensor computation X: Tensor X[64, 32]:
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// X[i, j] = (A[i, j]) + (B[i, j]);
// }
// }
// Tensor computation Y: Tensor Y[64, 32]:
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// Y[i, j] = sigmoid(X(i, j));
// }
// }
// Creating a loop nest is as quite simple, we just need to specify a list
// of all and a list of output tensors:
// NOLINTNEXTLINE(bugprone-argument-comment)
LoopNest loopnest(/*outputs=*/{Y}, /*all=*/{X, Y});
// An IR used in LoopNest is based on tensor statements, represented by
// `Stmt` class. Statements are used to specify the loop nest structure, and
// to take a sneak peek at them, let's print out what we got right after
// creating our LoopNest object:
std::cout << *loopnest.root_stmt() << std::endl;
// Prints:
// {
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// X[i, j] = (A[i, j]) + (B[i, j]);
// }
// }
// for (int i_1 = 0; i_1 < 64; i_1++) {
// for (int j_1 = 0; j_1 < 32; j_1++) {
// Y[i_1, j_1] = sigmoid(X(i_1, j_1));
// }
// }
// }
// To introduce statements let's first look at their three main types (in
// fact, there are more than 3 types, but the other types would be easy to
// understand once the overall structure is clear):
// 1) Block
// 2) For
// 3) Store
//
// A `Block` statement is simply a list of other statements.
// A `For` is a statement representing one axis of computation. It contains
// an index variable (Var), boundaries of the axis (start and end - both are
// `Expr`s), and a `Block` statement body.
// A `Store` represents an assignment to a tensor element. It contains a Buf
// representing the target tensor, a list of expressions for indices of the
// element, and the value to be stored, which is an arbitrary expression.
// Once we've constructed the loop nest, we can apply various tranformations
// to it. To begin with, let's inline computation of X into computation of Y
// and see what happens to our statements.
loopnest.computeInline(loopnest.getLoopBodyFor(X));
std::cout << *loopnest.root_stmt() << std::endl;
// Prints:
// {
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// Y[i, j] = sigmoid((A[i, j]) + (B[i, j]));
// }
// }
// }
//
// As you can see, the first two loops have disappeared and the expression
// for X[i,j] has been inserted into the Y[i,j] computation.
// Loop transformations can be composed, so we can do something else with
// our loop nest now. Let's split the inner loop with a factor of 9, for
// instance.
std::vector<For*> loops = loopnest.getLoopStmtsFor(Y);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* j_outer;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* j_inner;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
For* j_tail;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
int split_factor = 9;
loopnest.splitWithTail(
loops[1], // loops[0] is the outer loop, loops[1] is inner
split_factor,
&j_outer, // These are handles that we would be using for
&j_inner, // further transformations
&j_tail);
std::cout << *loopnest.root_stmt() << std::endl;
// Prints:
// {
// for (int i = 0; i < 64; i++) {
// for (int j_outer = 0; j_outer < (32 - 0) / 9; j_outer++) {
// for (int j_inner = 0; j_inner < 9; j_inner++) {
// Y[i, j_outer * 9 + j_inner] = sigmoid((A[i, j_outer * 9 + ...
// }
// }
// for (int j_tail = 0; j_tail < (32 - 0) % 9; j_tail++) {
// Y[i, j_tail + ((32 - 0) / 9) * 9] = sigmoid((A[i, j_tail + ...
// }
// }
// }
// TODO: List all available transformations
// TODO: Show how statements can be constructed manually
}
std::cout << "*** Codegen ***" << std::endl;
{
// An ultimate goal of tensor expressions is to be provide a mechanism to
// execute a given computation in the fastest possible way. So far we've
// looked at how we could describe what computation we're interested in, but
// we haven't looked at how to actually execute it. So far all we've been
// dealing with was just symbols with no actual data associated, in this
// section we would look at how we can bridge that gap.
// Let's start by constructing a simple computation for us to work with:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Placeholder A("A", kInt, {64, 32});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
Placeholder B("B", kInt, {64, 32});
Tensor* X = Compute(
"X",
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
{{64, "i"}, {32, "j"}},
[&](const VarHandle& i, const VarHandle& j) {
return A.load(i, j) + B.load(i, j);
});
// And let's lower it to a loop nest, as we did in the previous section:
LoopNest loopnest({X});
std::cout << *loopnest.root_stmt() << std::endl;
// Prints:
// {
// for (int i = 0; i < 64; i++) {
// for (int j = 0; j < 32; j++) {
// X[i, j] = (A[i, j]) + (B[i, j]);
// }
// }
// Now imagine that we have two actual tensors 64x32 that we want sum
// together, how do we pass those tensors to the computation and how do we
// carry it out?
//
// Codegen object is aimed at providing exactly that functionality. Codegen
// is an abstract class and concrete codegens are derived from it.
// Currently, we have three codegens:
// 1) Simple Evaluator,
// 2) LLVM Codegen for CPU,
// 3) CUDA Codegen.
// In this example we will be using Simple Evaluator, since it's available
// everywhere.
// To create a codegen, we need to provide the statement - it specifies the
// computation we want to perform - and a list of placeholders and tensors
// used in the computation. The latter part is crucial since that's the only
// way the codegen could use to correlate symbols in the statement to actual
// data arrays that we will be passing when we will actually be performing
// the computation.
//
// Let's create a Simple IR Evaluator codegen for our computation:
SimpleIREvaluator ir_eval(loopnest.root_stmt(), {A, B, X});
// We are using the simplest codegen and in it almost no work is done at the
// construction step. Real codegens such as CUDA and LLVM perform
// compilation during that stage so that when we're about to run the
// computation everything is ready.
// Let's now create some inputs and run our computation with them:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
std::vector<int> data_A(64 * 32, 3); // This will be the input A
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
std::vector<int> data_B(64 * 32, 5); // This will be the input B
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
std::vector<int> data_X(64 * 32, 0); // This will be used for the result
// Now let's invoke our codegen to perform the computation on our data. We
// need to provide as many arguments as how many placeholders and tensors we
// passed at the codegen construction time. A position in these lists would
// define how real data arrays from the latter call (these arguments are
// referred to as 'CallArg's in our codebase) correspond to symbols
// (placeholders and tensors) used in the tensor expressions we constructed
// (these are referred to as 'BufferArg').
// Thus, we will provide three arguments: data_A, data_B, and data_X. data_A
// contains data for the placeholder A, data_B - for the placeholder B, and
// data_X would be used for contents of tensor X.
ir_eval(data_A, data_B, data_X);
// Let's print one of the elements from each array to verify that the
// computation did happen:
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
std::cout << "A[10] = " << data_A[10]
<< std::endl
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
<< "B[10] = " << data_B[10]
<< std::endl
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
<< "X[10] = A[10] + B[10] = " << data_X[10] << std::endl;
// Prints:
// A[10] = 3
// B[10] = 5
// X[10] = A[10] + B[10] = 8
}
// TODO: Show how TorchScript IR is translated to TE
return 0;
}