blob: 24630e5f53fa3a8a68843e87a901170ad89f7012 [file] [log] [blame]
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <sstream>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/torch.h>
#include "caffe2/serialize/istream_adapter.h"
namespace torch {
namespace jit {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(SerializationTest, ExtraFilesHookPreference) {
// Tests that an extra file written explicitly has precedence over
// extra files written by a hook
// TODO: test for the warning, too
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"metadata.json", "def"}};
});
module->save(oss, extra_files);
SetExportModuleExtraFilesHook(nullptr);
std::istringstream iss(oss.str());
caffe2::serialize::IStreamAdapter adapter{&iss};
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
auto loaded_module = torch::jit::load(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(SerializationTest, ExtraFileHooksNoSecret) {
// no secrets
std::stringstream ss;
{
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, c10::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "");
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(SerializationTest, ExtraFileHooksWithSecret) {
std::stringstream ss;
{
SetExportModuleExtraFilesHook([](const Module&) -> ExtraFilesMap {
return {{"secret.json", "topsecret"}};
});
Module m("__torch__.m");
ExtraFilesMap extra;
extra["metadata.json"] = "abc";
m.save(ss, extra);
SetExportModuleExtraFilesHook(nullptr);
}
ss.seekg(0);
{
ExtraFilesMap extra;
extra["metadata.json"] = "";
extra["secret.json"] = "";
jit::load(ss, c10::nullopt, extra);
ASSERT_EQ(extra["metadata.json"], "abc");
ASSERT_EQ(extra["secret.json"], "topsecret");
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(SerializationTest, TypeTags) {
auto list = c10::List<c10::List<int64_t>>();
list.push_back(c10::List<int64_t>({1, 2, 3}));
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
list.push_back(c10::List<int64_t>({4, 5, 6}));
auto dict = c10::Dict<std::string, at::Tensor>();
dict.insert("Hello", torch::ones({2, 2}));
auto dict_list = c10::List<c10::Dict<std::string, at::Tensor>>();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
for (size_t i = 0; i < 5; i++) {
auto another_dict = c10::Dict<std::string, at::Tensor>();
another_dict.insert("Hello" + std::to_string(i), torch::ones({2, 2}));
dict_list.push_back(another_dict);
}
auto tuple = std::tuple<int, std::string>(2, "hi");
struct TestItem {
IValue value;
TypePtr expected_type;
};
std::vector<TestItem> items = {
{list, ListType::create(ListType::create(IntType::get()))},
{2, IntType::get()},
{dict, DictType::create(StringType::get(), TensorType::get())},
{dict_list,
ListType::create(
DictType::create(StringType::get(), TensorType::get()))},
{tuple, TupleType::create({IntType::get(), StringType::get()})}};
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto item : items) {
auto bytes = torch::pickle_save(item.value);
auto loaded = torch::pickle_load(bytes);
ASSERT_TRUE(loaded.type()->isSubtypeOf(item.expected_type));
ASSERT_TRUE(item.expected_type->isSubtypeOf(loaded.type()));
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(SerializationTest, TestJitStream_CUDA) {
torch::jit::Module model;
std::vector<torch::jit::IValue> inputs;
// Deserialize the ScriptModule from a file using torch::jit::load().
// Load the scripted model. This should have been generated by tests_setup.py
// Refer: TorchSaveJitStream_CUDA in test/cpp/jit/tests_setup.py
model = torch::jit::load("saved_stream_model.pt");
auto output = model.forward(inputs);
auto list_of_elements = output.toTuple()->elements();
auto is_stream_s = list_of_elements[0].toBool();
// a,b: These are the two input tensors
// c: This is output tensor generated by the operation torch.cat(a,b)
auto a = list_of_elements[1].toTensor();
auto b = list_of_elements[2].toTensor();
auto c = list_of_elements[3].toTensor();
// op: this is used to verify if the cat operation produced the same results
// as that on the GPU with torch.cat
auto op = at::cat({a, b}, 0);
// Check if the stream is set
ASSERT_TRUE(is_stream_s);
// Check if the sizes of the outputs (op and c) is same on the GPU and CPU
ASSERT_EQ(op.sizes(), c.sizes());
// Check if both the output tensors are equal
ASSERT_TRUE(op.equal(c));
}
} // namespace jit
} // namespace torch