|  | import torch | 
|  | from .optimizer import Optimizer | 
|  |  | 
|  |  | 
|  | class Adamax(Optimizer): | 
|  | """Implements Adamax algorithm (a variant of Adam based on infinity norm). | 
|  |  | 
|  | It has been proposed in `Adam: A Method for Stochastic Optimization`__. | 
|  |  | 
|  | Arguments: | 
|  | params (iterable): iterable of parameters to optimize or dicts defining | 
|  | parameter groups | 
|  | lr (float, optional): learning rate (default: 2e-3) | 
|  | betas (Tuple[float, float], optional): coefficients used for computing | 
|  | running averages of gradient and its square | 
|  | eps (float, optional): term added to the denominator to improve | 
|  | numerical stability (default: 1e-8) | 
|  | weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | 
|  |  | 
|  | __ https://arxiv.org/abs/1412.6980 | 
|  | """ | 
|  |  | 
|  | def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, | 
|  | weight_decay=0): | 
|  | if not 0.0 <= lr: | 
|  | raise ValueError("Invalid learning rate: {}".format(lr)) | 
|  | if not 0.0 <= eps: | 
|  | raise ValueError("Invalid epsilon value: {}".format(eps)) | 
|  | if not 0.0 <= betas[0] < 1.0: | 
|  | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | 
|  | if not 0.0 <= betas[1] < 1.0: | 
|  | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | 
|  | if not 0.0 <= weight_decay: | 
|  | raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | 
|  |  | 
|  | defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | 
|  | super(Adamax, self).__init__(params, defaults) | 
|  |  | 
|  | def step(self, closure=None): | 
|  | """Performs a single optimization step. | 
|  |  | 
|  | Arguments: | 
|  | closure (callable, optional): A closure that reevaluates the model | 
|  | and returns the loss. | 
|  | """ | 
|  | loss = None | 
|  | if closure is not None: | 
|  | loss = closure() | 
|  |  | 
|  | for group in self.param_groups: | 
|  | for p in group['params']: | 
|  | if p.grad is None: | 
|  | continue | 
|  | grad = p.grad.data | 
|  | if grad.is_sparse: | 
|  | raise RuntimeError('Adamax does not support sparse gradients') | 
|  | state = self.state[p] | 
|  |  | 
|  | # State initialization | 
|  | if len(state) == 0: | 
|  | state['step'] = 0 | 
|  | state['exp_avg'] = torch.zeros_like(p.data) | 
|  | state['exp_inf'] = torch.zeros_like(p.data) | 
|  |  | 
|  | exp_avg, exp_inf = state['exp_avg'], state['exp_inf'] | 
|  | beta1, beta2 = group['betas'] | 
|  | eps = group['eps'] | 
|  |  | 
|  | state['step'] += 1 | 
|  |  | 
|  | if group['weight_decay'] != 0: | 
|  | grad = grad.add(group['weight_decay'], p.data) | 
|  |  | 
|  | # Update biased first moment estimate. | 
|  | exp_avg.mul_(beta1).add_(1 - beta1, grad) | 
|  | # Update the exponentially weighted infinity norm. | 
|  | norm_buf = torch.cat([ | 
|  | exp_inf.mul_(beta2).unsqueeze(0), | 
|  | grad.abs().add_(eps).unsqueeze_(0) | 
|  | ], 0) | 
|  | torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) | 
|  |  | 
|  | bias_correction = 1 - beta1 ** state['step'] | 
|  | clr = group['lr'] / bias_correction | 
|  |  | 
|  | p.data.addcdiv_(-clr, exp_avg, exp_inf) | 
|  |  | 
|  | return loss |