blob: 8511318237c00a8384f61c5d1b5f7f04d5ad5c8e [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/operators/boolean_unmask_ops.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
template <>
bool BooleanUnmaskOp<CPUContext>::RunOnDevice() {
int maskSize = Input(0).size();
int numMasks = InputSize() / 2;
auto& valueMeta = Input(1).meta();
auto* valuesOut = Output(0);
valuesOut->Resize(maskSize);
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueMeta);
std::vector<int> nextValueIndices(numMasks, 0);
for (int maskOffset = 0; maskOffset < maskSize; ++maskOffset) {
bool maskFound = false;
for (int maskIndex = 0; maskIndex < numMasks; ++maskIndex) {
auto& mask = Input(maskIndex * 2);
CAFFE_ENFORCE_EQ(mask.ndim(), 1);
CAFFE_ENFORCE_EQ(mask.size(), maskSize);
const auto* maskPtr = mask.template data<bool>();
auto& values = Input(maskIndex * 2 + 1);
CAFFE_ENFORCE_EQ(values.ndim(), 1);
const auto* valuesPtr = (char*)values.raw_data();
if (maskPtr[maskOffset]) {
auto& valueIndex = nextValueIndices[maskIndex];
CAFFE_ENFORCE_LT(valueIndex, values.size());
auto* src = valuesPtr + (valueIndex++) * valueMeta.itemsize();
auto* dst = valuesOutPtr + maskOffset * valueMeta.itemsize();
std::copy(src, src + valueMeta.itemsize(), dst);
maskFound = true;
break;
}
}
CAFFE_ENFORCE(
maskFound, "All masks have False at position ", maskOffset, ".");
}
// check all indices match value length
for (int i = 0; i < numMasks; ++i) {
auto& values = Input(i * 2 + 1);
CAFFE_ENFORCE_EQ(
values.size(),
nextValueIndices[i],
"The number of true at mask ",
i,
" does not match the corresponding value size.");
}
return true;
}
REGISTER_CPU_OPERATOR(BooleanUnmask, BooleanUnmaskOp<CPUContext>);
OPERATOR_SCHEMA(BooleanUnmask)
.NumInputs([](int n) { return n > 0 && n % 2 == 0; })
.NumOutputs(1)
.SetDoc(R"DOC(
Given a series of mask and values, reconstruct values together according
to masks.
A comprehensive example:
mask1 = True, False, True, False, False
values1 = 1.0, 3.0
mask2 = False, True, False, False, False
values2 = 2.0
mask3 = False, False, False, True, True
values3 = 4.0, 5.0
Reconstruct by:
output = net.BooleanUnmask([mask1, values1, mask2, values2, mask3, values3], ["output"])
We get:
output = 1.0, 2.0, 3.0, 4.0, 5.0
Note that for all mask positions, there must be at least one True. If for a
field there are multiple True's, we will accept the first value. For example:
Example 1:
mask1 = True, False
values1 = 1.0
mask2 = False, False
values2 =
This is not allowed:
output = net.BooleanUnmask([mask1, values1, mask2, values2], ["output"])
Example 2:
mask1 = True, False
values1 = 1.0
mask2 = True, True
values2 = 2.0, 2.0
output = net.BooleanUnmask([mask1, values1, mask2, values2], ["output"])
We get:
output = 1.0, 2.0
)DOC")
.Output(0, "unmasked_data", "The final reconstructed unmasked data");
NO_GRADIENT(BooleanUnmask)
}