|  | import torch | 
|  | from torch import Tensor | 
|  |  | 
|  | from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _stack_if_compiling, | 
|  | _default_to_fused_or_foreach, _differentiable_doc, _maximize_doc, _foreach_doc) | 
|  | from typing import List, Optional | 
|  | from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype | 
|  |  | 
|  | __all__ = ["Adamax", "adamax"] | 
|  |  | 
|  |  | 
|  | class Adamax(Optimizer): | 
|  | def __init__( | 
|  | self, | 
|  | params, | 
|  | lr=2e-3, | 
|  | betas=(0.9, 0.999), | 
|  | eps=1e-8, | 
|  | weight_decay=0, | 
|  | foreach: Optional[bool] = None, | 
|  | *, | 
|  | maximize: bool = False, | 
|  | differentiable: bool = False, | 
|  | ): | 
|  | if not 0.0 <= lr: | 
|  | raise ValueError("Invalid learning rate: {}".format(lr)) | 
|  | if not 0.0 <= eps: | 
|  | raise ValueError("Invalid epsilon value: {}".format(eps)) | 
|  | if not 0.0 <= betas[0] < 1.0: | 
|  | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | 
|  | if not 0.0 <= betas[1] < 1.0: | 
|  | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | 
|  | if not 0.0 <= weight_decay: | 
|  | raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | 
|  |  | 
|  | defaults = dict( | 
|  | lr=lr, | 
|  | betas=betas, | 
|  | eps=eps, | 
|  | weight_decay=weight_decay, | 
|  | foreach=foreach, | 
|  | maximize=maximize, | 
|  | differentiable=differentiable, | 
|  | ) | 
|  | super().__init__(params, defaults) | 
|  |  | 
|  | def __setstate__(self, state): | 
|  | super().__setstate__(state) | 
|  | for group in self.param_groups: | 
|  | group.setdefault("foreach", None) | 
|  | group.setdefault("maximize", False) | 
|  | group.setdefault("differentiable", False) | 
|  | state_values = list(self.state.values()) | 
|  | step_is_tensor = (len(state_values) != 0) and torch.is_tensor( | 
|  | state_values[0]["step"] | 
|  | ) | 
|  | if not step_is_tensor: | 
|  | for s in state_values: | 
|  | s["step"] = torch.tensor(float(s["step"])) | 
|  |  | 
|  | def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps): | 
|  | for p in group["params"]: | 
|  | if p.grad is None: | 
|  | continue | 
|  | params_with_grad.append(p) | 
|  | if p.grad.is_sparse: | 
|  | raise RuntimeError("Adamax does not support sparse gradients") | 
|  | grads.append(p.grad) | 
|  |  | 
|  | state = self.state[p] | 
|  |  | 
|  | # State initialization | 
|  | if len(state) == 0: | 
|  | state["step"] = torch.tensor(0.0) | 
|  | state["exp_avg"] = torch.zeros_like( | 
|  | p, memory_format=torch.preserve_format | 
|  | ) | 
|  | state["exp_inf"] = torch.zeros_like( | 
|  | p, memory_format=torch.preserve_format | 
|  | ) | 
|  |  | 
|  | exp_avgs.append(state["exp_avg"]) | 
|  | exp_infs.append(state["exp_inf"]) | 
|  | state_steps.append(state["step"]) | 
|  |  | 
|  | @_use_grad_for_differentiable | 
|  | def step(self, closure=None): | 
|  | """Performs a single optimization step. | 
|  |  | 
|  | Args: | 
|  | closure (Callable, optional): A closure that reevaluates the model | 
|  | and returns the loss. | 
|  | """ | 
|  | loss = None | 
|  | if closure is not None: | 
|  | with torch.enable_grad(): | 
|  | loss = closure() | 
|  |  | 
|  | for group in self.param_groups: | 
|  | params_with_grad = [] | 
|  | grads = [] | 
|  | exp_avgs = [] | 
|  | exp_infs = [] | 
|  | state_steps = [] | 
|  |  | 
|  | beta1, beta2 = group["betas"] | 
|  | eps = group["eps"] | 
|  | lr = group["lr"] | 
|  | weight_decay = group["weight_decay"] | 
|  | foreach = group["foreach"] | 
|  | maximize = group["maximize"] | 
|  | differentiable = group["differentiable"] | 
|  |  | 
|  | self._init_group(group, params_with_grad, grads, exp_avgs, exp_infs, state_steps) | 
|  |  | 
|  | adamax( | 
|  | params_with_grad, | 
|  | grads, | 
|  | exp_avgs, | 
|  | exp_infs, | 
|  | state_steps, | 
|  | eps=eps, | 
|  | beta1=beta1, | 
|  | beta2=beta2, | 
|  | lr=lr, | 
|  | weight_decay=weight_decay, | 
|  | foreach=foreach, | 
|  | maximize=maximize, | 
|  | differentiable=differentiable, | 
|  | ) | 
|  |  | 
|  | return loss | 
|  |  | 
|  |  | 
|  | Adamax.__doc__ = r"""Implements Adamax algorithm (a variant of Adam based on infinity norm). | 
|  |  | 
|  | .. math:: | 
|  | \begin{aligned} | 
|  | &\rule{110mm}{0.4pt}                                                                 \\ | 
|  | &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2 | 
|  | \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, | 
|  | \: \lambda \text{ (weight decay)},                                                \\ | 
|  | &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\ | 
|  | &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)}, | 
|  | u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex] | 
|  | &\rule{110mm}{0.4pt}                                                                 \\ | 
|  | &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\ | 
|  | &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\ | 
|  | &\hspace{5mm}if \: \lambda \neq 0                                                    \\ | 
|  | &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\ | 
|  | &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\ | 
|  | &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\ | 
|  | &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ | 
|  | &\rule{110mm}{0.4pt}                                                          \\[-1.ex] | 
|  | &\bf{return} \:  \theta_t                                                     \\[-1.ex] | 
|  | &\rule{110mm}{0.4pt}                                                          \\[-1.ex] | 
|  | \end{aligned} | 
|  |  | 
|  | For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. | 
|  | """ + r""" | 
|  | Args: | 
|  | params (iterable): iterable of parameters to optimize or dicts defining | 
|  | parameter groups | 
|  | lr (float, optional): learning rate (default: 2e-3) | 
|  | betas (Tuple[float, float], optional): coefficients used for computing | 
|  | running averages of gradient and its square | 
|  | eps (float, optional): term added to the denominator to improve | 
|  | numerical stability (default: 1e-8) | 
|  | weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | 
|  | {foreach} | 
|  | {maximize} | 
|  | {differentiable} | 
|  |  | 
|  | .. _Adam\: A Method for Stochastic Optimization: | 
|  | https://arxiv.org/abs/1412.6980 | 
|  |  | 
|  | """.format(foreach=_foreach_doc, maximize=_maximize_doc, differentiable=_differentiable_doc) | 
|  |  | 
|  |  | 
|  | def adamax( | 
|  | params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | exp_avgs: List[Tensor], | 
|  | exp_infs: List[Tensor], | 
|  | state_steps: List[Tensor], | 
|  | # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 | 
|  | # setting this as kwarg for now as functional API is compiled by torch/distributed/optim | 
|  | foreach: Optional[bool] = None, | 
|  | maximize: bool = False, | 
|  | differentiable: bool = False, | 
|  | *, | 
|  | eps: float, | 
|  | beta1: float, | 
|  | beta2: float, | 
|  | lr: float, | 
|  | weight_decay: float, | 
|  | ): | 
|  | r"""Functional API that performs adamax algorithm computation. | 
|  |  | 
|  | See :class:`~torch.optim.Adamax` for details. | 
|  | """ | 
|  |  | 
|  | if not all(isinstance(t, torch.Tensor) for t in state_steps): | 
|  | raise RuntimeError( | 
|  | "API has changed, `state_steps` argument must contain a list of singleton tensors" | 
|  | ) | 
|  |  | 
|  | if foreach is None: | 
|  | _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) | 
|  |  | 
|  | if foreach and torch.jit.is_scripting(): | 
|  | raise RuntimeError("torch.jit.script not supported with foreach optimizers") | 
|  |  | 
|  | if foreach and not torch.jit.is_scripting(): | 
|  | func = _multi_tensor_adamax | 
|  | else: | 
|  | func = _single_tensor_adamax | 
|  |  | 
|  | func( | 
|  | params, | 
|  | grads, | 
|  | exp_avgs, | 
|  | exp_infs, | 
|  | state_steps, | 
|  | eps=eps, | 
|  | beta1=beta1, | 
|  | beta2=beta2, | 
|  | lr=lr, | 
|  | weight_decay=weight_decay, | 
|  | maximize=maximize, | 
|  | differentiable=differentiable, | 
|  | ) | 
|  |  | 
|  |  | 
|  | def _single_tensor_adamax( | 
|  | params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | exp_avgs: List[Tensor], | 
|  | exp_infs: List[Tensor], | 
|  | state_steps: List[Tensor], | 
|  | *, | 
|  | eps: float, | 
|  | beta1: float, | 
|  | beta2: float, | 
|  | lr: float, | 
|  | weight_decay: float, | 
|  | maximize: bool, | 
|  | differentiable: bool, | 
|  | ): | 
|  |  | 
|  | for i, param in enumerate(params): | 
|  | grad = grads[i] | 
|  | grad = grad if not maximize else -grad | 
|  | exp_avg = exp_avgs[i] | 
|  | exp_inf = exp_infs[i] | 
|  | step_t = state_steps[i] | 
|  | # update step | 
|  | step_t += 1 | 
|  |  | 
|  | if weight_decay != 0: | 
|  | grad = grad.add(param, alpha=weight_decay) | 
|  |  | 
|  | if torch.is_complex(param): | 
|  | param = torch.view_as_real(param) | 
|  | grad = torch.view_as_real(grad) | 
|  | exp_avg = torch.view_as_real(exp_avg) | 
|  | exp_inf = torch.view_as_real(exp_inf) | 
|  |  | 
|  | # Update biased first moment estimate. | 
|  | exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | 
|  | # Update the exponentially weighted infinity norm. | 
|  | norm_buf = torch.cat( | 
|  | [exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0 | 
|  | ) | 
|  |  | 
|  | if not differentiable: | 
|  | torch.amax(norm_buf, 0, keepdim=False, out=exp_inf) | 
|  | else: | 
|  | exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False)) | 
|  |  | 
|  | bias_correction = 1 - beta1 ** _get_value(step_t) | 
|  | clr = lr / bias_correction | 
|  |  | 
|  | param.addcdiv_(exp_avg, exp_inf, value=-clr) | 
|  |  | 
|  |  | 
|  | def _multi_tensor_adamax( | 
|  | params: List[Tensor], | 
|  | grads: List[Tensor], | 
|  | exp_avgs: List[Tensor], | 
|  | exp_infs: List[Tensor], | 
|  | state_steps: List[Tensor], | 
|  | *, | 
|  | beta1: float, | 
|  | beta2: float, | 
|  | lr: float, | 
|  | weight_decay: float, | 
|  | eps: float, | 
|  | maximize: bool, | 
|  | differentiable: bool, | 
|  | ): | 
|  |  | 
|  | assert not differentiable, "_foreach ops don't support autograd" | 
|  |  | 
|  | if len(params) == 0: | 
|  | return | 
|  |  | 
|  | grouped_tensors = _group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_infs, state_steps]) | 
|  | for grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs, grouped_state_steps in grouped_tensors.values(): | 
|  | if maximize: | 
|  | grouped_grads = torch._foreach_neg(grouped_grads) | 
|  |  | 
|  | grouped_params = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_params] | 
|  | grouped_grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_grads] | 
|  | grouped_exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_avgs] | 
|  | grouped_exp_infs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grouped_exp_infs] | 
|  |  | 
|  | # Update steps | 
|  | torch._foreach_add_(grouped_state_steps, 1) | 
|  |  | 
|  | if weight_decay != 0: | 
|  | grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay) | 
|  |  | 
|  | # Update biased first moment estimate. | 
|  | torch._foreach_mul_(grouped_exp_avgs, beta1) | 
|  | torch._foreach_add_(grouped_exp_avgs, grouped_grads, alpha=1 - beta1) | 
|  |  | 
|  | # Update the exponentially weighted infinity norm. | 
|  | torch._foreach_mul_(grouped_exp_infs, beta2) | 
|  |  | 
|  | for exp_inf, grad in zip(grouped_exp_infs, grouped_grads): | 
|  | norm_buf = torch.cat( | 
|  | [exp_inf.unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0 | 
|  | ) | 
|  | torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) | 
|  | bias_corrections = [1 - beta1 ** _get_value(step) for step in grouped_state_steps] | 
|  | clr = _stack_if_compiling([-1 * (lr / bias_correction) for bias_correction in bias_corrections]) | 
|  | torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, grouped_exp_infs, clr) |