|  | from __future__ import absolute_import, division, print_function, unicode_literals | 
|  |  | 
|  | import torch | 
|  | import torch.onnx.symbolic_helper as sym_help | 
|  | import torch.onnx.symbolic_opset9 as sym_opset9 | 
|  |  | 
|  | from torch.onnx.symbolic_helper import parse_args, _unimplemented, _black_list_in_opset, _try_get_scalar_type | 
|  | from torch.onnx.symbolic_opset9 import _cast_Float | 
|  |  | 
|  | import warnings | 
|  |  | 
|  | # Note [ONNX operators that are added/updated from opset 8 to opset 9] | 
|  | # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | # New operators: | 
|  | #   Compress | 
|  | #   ConstantOfShape | 
|  | #   EyeLike | 
|  | #   MaxUnpool | 
|  | #   OneHot | 
|  | #   Sinh | 
|  | #   Cosh | 
|  | #   Asinh | 
|  | #   Acosh | 
|  | #   Atanh | 
|  | #   Shrink | 
|  | #   IsNaN | 
|  | #   Sign | 
|  | #   Erf | 
|  | #   Scatter | 
|  | #   Where | 
|  | #   NonZero | 
|  | #   TfIdfVectorizer | 
|  | #   MeanVarianceNormalization | 
|  | # | 
|  | # Updated operators: | 
|  | #   BatchNormalization: removed spatial attribute. | 
|  | #   Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported. | 
|  | #   Cast: more data types{string} supported. | 
|  | #   Upsample: moved scales from attribute to input. | 
|  | #   Scan | 
|  |  | 
|  | black_listed_operators = [ | 
|  | "nonzero", "where", "scatter", "scatter_add", "erf", "sign", "isnan", "gather", | 
|  | "arange", "masked_fill", | 
|  | "index_fill", "index_copy" | 
|  | ] | 
|  |  | 
|  | for black_listed_op in black_listed_operators: | 
|  | vars()[black_listed_op] = _black_list_in_opset(black_listed_op) | 
|  |  | 
|  |  | 
|  | def _interpolate(name, dim, interpolate_mode): | 
|  | def symbolic_fn(g, input, output_size, *args): | 
|  | scales, align_corners = sym_help._get_interpolate_attributes(g, interpolate_mode, args) | 
|  | sym_help._interpolate_warning(interpolate_mode) | 
|  | align_corners = sym_help._maybe_get_scalar(align_corners) | 
|  | if align_corners: | 
|  | return _unimplemented(name, "align_corners == True") | 
|  | output_size = sym_help._maybe_get_const(output_size, 'is') | 
|  | if sym_help._is_value(output_size): | 
|  | return _unimplemented(name, "torch._C.Value (output_size) indexing") | 
|  | if scales is None: | 
|  | scales = [1. if i < 2 else | 
|  | float(output_size[-(dim - i)]) / float(input.type().sizes()[-(dim - i)]) | 
|  | for i in range(0, dim)] | 
|  | return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales) | 
|  | return symbolic_fn | 
|  |  | 
|  |  | 
|  | upsample_nearest1d = _interpolate('upsample_nearest1d', 3, "nearest") | 
|  | upsample_nearest2d = _interpolate('upsample_nearest2d', 4, "nearest") | 
|  | upsample_nearest3d = _interpolate('upsample_nearest3d', 5, "nearest") | 
|  | upsample_linear1d = _interpolate('upsample_linear1d', 3, "linear") | 
|  | upsample_bilinear2d = _interpolate('upsample_bilinear2d', 4, "linear") | 
|  | upsample_trilinear3d = _interpolate('upsample_trilinear3d', 5, "linear") | 
|  |  | 
|  |  | 
|  | def __interpolate(g, input, size, scale_factor, mode, align_corners, recompute_scale_factor): | 
|  | align_corners = sym_help._maybe_get_const(align_corners, 'b') | 
|  | if not sym_help._is_none(align_corners) and align_corners: | 
|  | return _unimplemented("interpolate", "align_corners == True") | 
|  |  | 
|  | if not sym_help._is_none(scale_factor) and sym_help._is_value(scale_factor): | 
|  | return _unimplemented("interpolate", "dynamic scales in opset 8") | 
|  |  | 
|  | if not sym_help._is_none(size) and sym_help._is_value(size): | 
|  | return _unimplemented("interpolate", "dynamic size in opset 8") | 
|  |  | 
|  | scales, mode = sym_help._interpolate_get_scales_and_mode(g, input, size, scale_factor, | 
|  | mode , align_corners) | 
|  | return g.op("Upsample", input, mode_s=mode, scales_f=scales) | 
|  |  | 
|  |  | 
|  | # NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation | 
|  | #       issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which | 
|  | #       is lost after casting. | 
|  | def _try_cast_integer_to_float(g, *args): | 
|  | floating_scalar_types = ['Half', 'Float', 'Double'] | 
|  | old_type = None | 
|  | # Cast the input tensor to Float if its scalarType is known and is not floating number. | 
|  | # If casting is performed, return the old scalarType, otherwise return None. | 
|  | arg0_type = args[0].type().scalarType() | 
|  | if arg0_type is not None: | 
|  | old_type = arg0_type | 
|  | if old_type not in floating_scalar_types: | 
|  | args = tuple(_cast_Float(g, arg, False) for arg in args) | 
|  | else: | 
|  | return (None,) + args | 
|  | else: | 
|  | warnings.warn("Only floating datatype is supported for these operators: " | 
|  | "{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause " | 
|  | "the onnx model to be incorrect, if inputs have integer datatypes.") | 
|  | return (old_type,) + args | 
|  |  | 
|  |  | 
|  | def _cast_to_type(g, input, to_type): | 
|  | if to_type is None: | 
|  | return input | 
|  | return getattr(sym_opset9, '_cast_{}'.format(to_type))(g, input, False) | 
|  |  | 
|  |  | 
|  | def _comparison_operator(g, input, other, op_name): | 
|  | other = sym_help._maybe_get_scalar(other) | 
|  | other = sym_help._if_scalar_type_as(g, other, input) | 
|  | _, input, other = _try_cast_integer_to_float(g, input, other) | 
|  | return g.op(op_name, input, other) | 
|  |  | 
|  |  | 
|  | # NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten}, | 
|  | #       integer input type not supported in opset8. Cast to float if possible. | 
|  | def gt(g, input, other): | 
|  | return _comparison_operator(g, input, other, "Greater") | 
|  |  | 
|  |  | 
|  | def lt(g, input, other): | 
|  | return _comparison_operator(g, input, other, "Less") | 
|  |  | 
|  |  | 
|  | def bmm(g, self, other): | 
|  | if _try_get_scalar_type(self): | 
|  | old_type, self, other = _try_cast_integer_to_float(g, self, other) | 
|  | return _cast_to_type(g, g.op("MatMul", self, other), old_type) | 
|  | else: | 
|  | return g.op("MatMul", self, other) | 
|  |  | 
|  |  | 
|  | def matmul(g, self, other): | 
|  | return bmm(g, self, other) | 
|  |  | 
|  |  | 
|  | def prelu(g, self, weight): | 
|  | if self.isCompleteTensor(): | 
|  | self_sizes = self.type().sizes() | 
|  | if self_sizes and len(self_sizes) > 2: | 
|  | weight = g.op("Unsqueeze", weight, axes_i=list(range(1, len(self_sizes) - 1))) | 
|  | if _try_get_scalar_type(self): | 
|  | old_type, self, weight = _try_cast_integer_to_float(g, self, weight) | 
|  | return _cast_to_type(g, g.op("PRelu", self, weight), old_type) | 
|  | else: | 
|  | return g.op("PRelu", self, weight) | 
|  |  | 
|  |  | 
|  | def mm(g, self, other): | 
|  | # Create a dummy C tensor. Only needed for API purposes, the value is | 
|  | # since beta = 0 | 
|  | ty = sym_help._try_get_scalar_type(self, other).lower() | 
|  | C = g.constant(0, [1], ty) | 
|  | if _try_get_scalar_type(self): | 
|  | old_type, self, other, C = _try_cast_integer_to_float(g, self, other, C) | 
|  | return _cast_to_type(g, g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0), old_type) | 
|  | else: | 
|  | return g.op("Gemm", self, other, C, beta_f=0.0, alpha_f=1.0) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'v', 'v', 't', 't') | 
|  | def addmm(g, self, mat1, mat2, beta, alpha): | 
|  | if _try_get_scalar_type(self): | 
|  | old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2) | 
|  | return _cast_to_type( | 
|  | g, g.op("Gemm", mat1, mat2, self, | 
|  | beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)), old_type) | 
|  | else: | 
|  | return g.op("Gemm", mat1, mat2, self, beta_f=sym_help._scalar(beta), alpha_f=sym_help._scalar(alpha)) | 
|  |  | 
|  |  | 
|  | def view(g, self, size): | 
|  | size = sym_help._maybe_get_const(size, 'is') | 
|  | if sym_help._is_value(size): | 
|  | shape = size | 
|  | else: | 
|  | if self.isCompleteTensor(): | 
|  | self_sizes = self.type().sizes() | 
|  | if self_sizes and len(size) == 2 and self_sizes[0] == size[0]: | 
|  | old_type, self = _try_cast_integer_to_float(g, self) | 
|  | return _cast_to_type(g, g.op("Flatten", self, axis_i=1), old_type) | 
|  | shape = g.op("Constant", value_t=torch.LongTensor(size)) | 
|  | return g.op("Reshape", self, shape) | 
|  |  | 
|  |  | 
|  | def flatten(g, input, start_dim, end_dim): | 
|  | start_dim_i = sym_help._get_const(start_dim, 'i', 'start_dim') | 
|  | end_dim_i = sym_help._get_const(end_dim, 'i', 'end_dim') | 
|  |  | 
|  | dim = input.type().dim() | 
|  | if end_dim_i < 0 : | 
|  | end_dim_i = dim + end_dim_i | 
|  | # use ONNX's Flatten operator for cases where the output shape is 2D | 
|  | if start_dim_i == 1 and end_dim_i == dim - 1 : | 
|  | if _try_get_scalar_type(input): | 
|  | old_type, input = _try_cast_integer_to_float(g, input) | 
|  | return _cast_to_type(g, g.op("Flatten", input, axis_i=start_dim_i), old_type) | 
|  | else: | 
|  | return g.op("Flatten", input, axis_i=start_dim_i) | 
|  | if start_dim_i == 0 and end_dim_i == dim - 2 : | 
|  | if _try_get_scalar_type(input): | 
|  | old_type, input = _try_cast_integer_to_float(g, input) | 
|  | return _cast_to_type(g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type) | 
|  | else: | 
|  | return g.op("Flatten", input, axis_i=end_dim_i + 1) | 
|  |  | 
|  | return sym_opset9.flatten(g, input, start_dim, end_dim) | 
|  |  | 
|  |  | 
|  | def _constant_fill(g, sizes, dtype, const_value): | 
|  | if dtype is None: | 
|  | dtype = 6  # float | 
|  | if not sym_help.scalar_type_to_pytorch_type[dtype].is_floating_point: | 
|  | result = g.op( | 
|  | "ConstantFill", sizes, dtype_i=sym_help.cast_pytorch_to_onnx["Float"], input_as_shape_i=1, value_f=const_value) | 
|  | return sym_help._cast_func_template(sym_help.scalar_type_to_onnx[dtype], g, result, None) | 
|  | else: | 
|  | return g.op("ConstantFill", sizes, dtype_i=sym_help.scalar_type_to_onnx[dtype], input_as_shape_i=1, value_f=const_value) | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v', 'v') | 
|  | def empty(g, sizes, dtype, layout, device, pin_memory=False, memory_format=None): | 
|  | return zeros(g, sizes, dtype, layout, device, pin_memory) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v', 'v') | 
|  | def empty_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): | 
|  | return zeros_like(g, input, dtype, layout, device, pin_memory) | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v') | 
|  | def zeros(g, sizes, dtype, layout, device, pin_memory=False): | 
|  | # NOTE: no way to set device and layout in ONNX, so we ignore it | 
|  | return _constant_fill(g, sizes, dtype, 0) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v', 'v') | 
|  | def zeros_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): | 
|  | shape = g.op("Shape", input) | 
|  | return _constant_fill(g, shape, dtype, 0) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v') | 
|  | def ones(g, sizes, dtype, layout, device, pin_memory=False): | 
|  | return _constant_fill(g, sizes, dtype, 1) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'i', 'v', 'v', 'v', 'v') | 
|  | def ones_like(g, input, dtype, layout, device, pin_memory=False, memory_format=None): | 
|  | shape = g.op("Shape", input) | 
|  | return _constant_fill(g, shape, dtype, 1) | 
|  |  | 
|  |  | 
|  | def full(g, sizes, value, dtype, layout, device, pin_memory=False): | 
|  | const_value = sym_help._maybe_get_const(value, 't') | 
|  | if sym_help._is_value(const_value): | 
|  | tmp = zeros(g, sizes, dtype, layout, device) | 
|  | return sym_opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1))) | 
|  | else: | 
|  | dtype = sym_help._get_const(dtype, 'i', 'dtype') | 
|  | return _constant_fill(g, sizes, dtype, const_value) | 
|  |  | 
|  |  | 
|  | @parse_args('v', 'f', 'i', 'v', 'v', 'v', 'v') | 
|  | def full_like(g, input, fill_value, dtype, layout, device, pin_memory=False, memory_format=None): | 
|  | shape = g.op("Shape", input) | 
|  | return _constant_fill(g, shape, dtype, fill_value) |