blob: 6fafb281390255461a477c81581608ad54e184f0 [file] [log] [blame]
#include "test/cpp/tensorexpr/test_base.h"
#include "test/cpp/tensorexpr/padded_buffer.h"
#include "test/cpp/tensorexpr/test_utils.h"
#include "torch/csrc/jit/tensorexpr/eval.h"
#include "torch/csrc/jit/tensorexpr/ir.h"
#include "torch/csrc/jit/tensorexpr/ir_printer.h"
#include "torch/csrc/jit/tensorexpr/loopnest.h"
#include "torch/csrc/jit/tensorexpr/tensor.h"
#include <cmath>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
using SimpleIRExprEval = ExprEval<SimpleIREvaluator>;
void testExprBasicValueTest() {
KernelScope kernel_scope;
ExprHandle a = IntImm::make(2), b = IntImm::make(3);
ExprHandle c = Add::make(a, b);
SimpleIRExprEval eval(c);
ASSERT_EQ(eval.value<int>(), 5);
}
void testExprBasicValueTest02() {
KernelScope kernel_scope;
ExprHandle a(2.0f);
ExprHandle b(3.0f);
ExprHandle c(4.0f);
ExprHandle d(5.0f);
ExprHandle f = (a + b) - (c + d);
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<float>(), -4.0f);
}
void testExprLetTest01() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
void testExprLetTest02() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
VarHandle y("y", kFloat);
ExprHandle body =
ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f) * y);
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
eval.bindVar(y, ExprHandle(6.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4 * 6));
}
void testExprLetStmtTest01() {
KernelScope kernel_scope;
Placeholder a_buf("a", kFloat, {1});
Placeholder b_buf("b", kFloat, {1});
ExprHandle load_a = a_buf.load(0);
VarHandle var = VarHandle("v", kFloat);
Stmt* let_store = Let::make(var, load_a);
Stmt* store_b = b_buf.store({0}, var);
Block* block = Block::make({let_store, store_b});
SimpleIREvaluator eval(block, a_buf, b_buf);
PaddedBuffer<float> a_v(1);
PaddedBuffer<float> b_v(1);
PaddedBuffer<float> b_ref(1);
a_v(0) = 23;
b_ref(0) = a_v(0);
eval(a_v, b_v);
ExpectAllNear(b_v, b_ref, 1e-5);
}
void testExprIntTest() {
KernelScope kernel_scope;
VarHandle x("x", kInt);
ExprHandle body = ExprHandle(2) + (x * ExprHandle(3) + ExprHandle(4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3));
ASSERT_EQ(eval.value<int>(), 2 + (3 * 3 + 4));
}
void testExprFloatTest() {
KernelScope kernel_scope;
VarHandle x("x", kFloat);
ExprHandle body = ExprHandle(2.f) + (x * ExprHandle(3.f) + ExprHandle(4.f));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle(3.f));
ASSERT_EQ(eval.value<float>(), 2 + (3 * 3 + 4));
}
void testExprByteTest() {
KernelScope kernel_scope;
VarHandle x("x", kByte);
ExprHandle body = ExprHandle((uint8_t)2) +
(x * ExprHandle((uint8_t)3) + ExprHandle((uint8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((uint8_t)3));
ASSERT_EQ(eval.value<uint8_t>(), 2 + (3 * 3 + 4));
}
void testExprCharTest() {
KernelScope kernel_scope;
VarHandle x("x", kChar);
ExprHandle body = ExprHandle((int8_t)2) +
(x * ExprHandle((int8_t)3) + ExprHandle((int8_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int8_t)3));
ASSERT_EQ(eval.value<int8_t>(), 2 + (3 * 3 + 4));
}
void testExprShortTest() {
KernelScope kernel_scope;
VarHandle x("x", kShort);
ExprHandle body = ExprHandle((int16_t)2) +
(x * ExprHandle((int16_t)3) + ExprHandle((int16_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int16_t)3));
ASSERT_EQ(eval.value<int16_t>(), 2 + (3 * 3 + 4));
}
void testExprLongTest() {
KernelScope kernel_scope;
VarHandle x("x", kLong);
ExprHandle body = ExprHandle((int64_t)2) +
(x * ExprHandle((int64_t)3) + ExprHandle((int64_t)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((int64_t)3));
ASSERT_EQ(eval.value<int64_t>(), 2 + (3 * 3 + 4));
}
void testExprHalfTest() {
KernelScope kernel_scope;
VarHandle x("x", kHalf);
ExprHandle body = ExprHandle((at::Half)2) +
(x * ExprHandle((at::Half)3) + ExprHandle((at::Half)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((at::Half)3));
ASSERT_EQ(eval.value<at::Half>(), 2 + (3 * 3 + 4));
}
void testExprDoubleTest() {
KernelScope kernel_scope;
VarHandle x("x", kDouble);
ExprHandle body = ExprHandle((double)2) +
(x * ExprHandle((double)3) + ExprHandle((double)4));
SimpleIRExprEval eval(body);
eval.bindVar(x, ExprHandle((double)3));
ASSERT_EQ(eval.value<double>(), 2 + (3 * 3 + 4));
}
void testExprDisallowBoolArithmetic() {
KernelScope kernel_scope;
VarHandle x("x", kBool);
VarHandle y("y", kBool);
std::string error{"arithmetic binary operations on Bool not supported"};
ASSERT_THROWS_WITH((x + y), error);
ASSERT_THROWS_WITH((x - y), error);
ASSERT_THROWS_WITH((x * y), error);
ASSERT_THROWS_WITH((x / y), error);
ASSERT_THROWS_WITH((x & y), error);
ASSERT_THROWS_WITH((x | y), error);
ASSERT_THROWS_WITH((x ^ y), error);
ASSERT_THROWS_WITH((x << y), error);
ASSERT_THROWS_WITH((x >> y), error);
ASSERT_THROWS_WITH(Max::make(x, y, /*propagate_nans=*/true), error);
ASSERT_THROWS_WITH(Min::make(x, y, /*propagate_nans=*/true), error);
}
void testExprVectorAdd01() {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Placeholder a_buf(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Placeholder b_buf(BufHandle("B", {ExprHandle(kTotalSize)}, kFloat));
Placeholder c_buf(BufHandle("C", {ExprHandle(kTotalSize)}, kFloat));
/*
Build the following:
for (int index = 0; index < kVectorCount; index++) {
store(c_buf, ramp(index * 8, 1, 8),
load(a_buf, ramp(index * 8, 1, 8) +
load(b_buf, ramp(index * 8, 1, 8))))
}
*/
VarHandle index = VarHandle("index", kInt);
ExprHandle load_a = a_buf.loadWithMask(
{Ramp::make(index * kVectorSize, 1, kVectorSize)},
Broadcast::make(1, kVectorSize));
ExprHandle load_b = b_buf.loadWithMask(
{Ramp::make(index * kVectorSize, 1, kVectorSize)},
Broadcast::make(1, kVectorSize));
ExprHandle value = load_a + load_b;
Stmt* store_c = c_buf.storeWithMask(
{Ramp::make(index * kVectorSize, 1, kVectorSize)},
value,
Broadcast::make(1, kVectorSize));
Stmt* stmt = For::make(index, 0, kVectorCount, store_c);
ASSERT_EQ(load_a.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(load_b.dtype(), Dtype(kFloat, kVectorSize));
ASSERT_EQ(value.dtype(), Dtype(kFloat, kVectorSize));
PaddedBuffer<float> a_v(kTotalSize);
PaddedBuffer<float> b_v(kTotalSize);
PaddedBuffer<float> c_v(kTotalSize);
PaddedBuffer<float> c_ref(kTotalSize);
for (int i = 0; i < kTotalSize; i++) {
a_v(i) = i * i;
b_v(i) = i * i * 4;
c_ref(i) = a_v(i) + b_v(i);
}
SimpleIREvaluator ir_eval(stmt, a_buf, b_buf, c_buf);
ir_eval(a_v, b_v, c_v);
ExpectAllNear(c_v, c_ref, 1e-5);
}
void testExprCompareSelectEQ() {
KernelScope kernel_scope;
constexpr int N = 1024;
Placeholder a(BufHandle("A", {N}, kInt));
Placeholder b(BufHandle("B", {N}, kInt));
Placeholder c(BufHandle("C", {N}, kInt));
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<int> c_buffer(N, 0);
std::vector<int> c_ref(N, 0);
VarHandle i("i", kInt);
auto memcpy_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i), b.load(i), CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(memcpy_expr, a, b, c);
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
assertAllEqual(c_buffer, 1);
}
void testExprCompareSelectDtypes() {
// LHS and RHS expressions should have the same dtype, but this dtype could
// differ from the dtype of the return values (but dtypes of true and false
// return values should be the same).
// This test constructs a CompareSelect expression where the input dtype is
// different from the output dtype and verifies that it works correctly:
// result = ((int)lhs == (int)rhs) ? (float)retval1 : (float)retval2
KernelScope kernel_scope;
constexpr int N = 1024;
Placeholder a(BufHandle("A", {N}, kInt));
Placeholder b(BufHandle("B", {N}, kInt));
Placeholder c(BufHandle("C", {N}, kFloat));
std::vector<int> a_buffer(N, 1);
std::vector<int> b_buffer(N, 1);
std::vector<float> c_buffer(N, 0.0f);
std::vector<float> c_ref(N, 3.14f);
VarHandle i("i", kInt);
// C[i] = (A[i] == B[i]) ? 3.14f : 2.78f
// A and B are int, C is float.
auto select_expr = For::make(
i,
0,
N,
c.store(
{i},
CompareSelect::make(
a.load(i),
b.load(i),
FloatImm::make(3.14f),
FloatImm::make(2.78f),
CompareSelectOperation::kEQ)));
SimpleIREvaluator ir_eval(select_expr, a, b, c);
ir_eval(a_buffer, b_buffer, c_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
ASSERT_EQ(c_buffer.size(), N);
assertAllEqual(a_buffer, 1);
assertAllEqual(b_buffer, 1);
ExpectAllNear(c_buffer, c_ref, 1e-7);
}
void testExprIntrinsicsDtypes() {
KernelScope kernel_scope;
constexpr int N = 256;
Placeholder a(BufHandle("A", {N}, kDouble));
Placeholder b(BufHandle("B", {N}, kDouble));
std::vector<double> a_buffer(N, -10.0);
std::vector<double> b_buffer(N, 0.0);
std::vector<double> b_ref(N, 10.0);
VarHandle i("i", kInt);
auto fabs_expr = For::make(i, 0, N, b.store({i}, fabs(a.load(i))));
SimpleIREvaluator ir_eval(fabs_expr, a, b);
ir_eval(a_buffer, b_buffer);
ASSERT_EQ(a_buffer.size(), N);
ASSERT_EQ(b_buffer.size(), N);
assertAllEqual(a_buffer, -10.0);
ExpectAllNear(b_buffer, b_ref, 1e-7);
}
void testExprSubstitute01() {
KernelScope kernel_scope;
const Var* x = new Var("x", kFloat);
const Var* y = new Var("y", kFloat);
const Expr* e = new Mul(new Sub(x, new FloatImm(1.0f)), new Add(x, y));
const Var* z = new Var("z", kFloat);
const Expr* e2 = Substitute(e, {{x, new Add(z, new FloatImm(5.0f))}});
const Expr* e2_ref = new Mul(
new Sub(new Add(z, new FloatImm(5.0f)), new FloatImm(1.0f)),
new Add(new Add(z, new FloatImm(5.0f)), y));
std::ostringstream oss;
oss << *e2;
std::string e2_str = oss.str();
oss.str("");
oss << *e2_ref;
std::string e2_ref_str = oss.str();
ASSERT_EQ(e2_str, e2_ref_str);
}
void testExprMath01() {
KernelScope kernel_scope;
ExprHandle v = sin(ExprHandle(1.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "sin(1.f)");
SimpleIRExprEval eval(v);
float v_ref = std::sin(1.0f);
float res = eval.value<float>();
ASSERT_NEAR(res, v_ref, 1e-6);
}
void testExprUnaryMath01() {
KernelScope kernel_scope;
struct TestConfig {
std::function<ExprHandle(const ExprHandle&)> func;
std::function<float(float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return sin(v); },
[](float v) { return std::sin(v); }},
{[](const ExprHandle& v) { return tan(v); },
[](float v) { return std::tan(v); }},
{[](const ExprHandle& v) { return asin(v); },
[](float v) { return std::asin(v); }},
{[](const ExprHandle& v) { return acos(v); },
[](float v) { return std::acos(v); }},
{[](const ExprHandle& v) { return atan(v); },
[](float v) { return std::atan(v); }},
{[](const ExprHandle& v) { return sinh(v); },
[](float v) { return std::sinh(v); }},
{[](const ExprHandle& v) { return cosh(v); },
[](float v) { return std::cosh(v); }},
{[](const ExprHandle& v) { return tanh(v); },
[](float v) { return std::tanh(v); }},
{[](const ExprHandle& v) { return exp(v); },
[](float v) { return std::exp(v); }},
{[](const ExprHandle& v) { return fabs(v); },
[](float v) { return std::fabs(v); }},
{[](const ExprHandle& v) { return log(v); },
[](float v) { return std::log(v); }},
{[](const ExprHandle& v) { return log2(v); },
[](float v) { return std::log2(v); }},
{[](const ExprHandle& v) { return log10(v); },
[](float v) { return std::log10(v); }},
{[](const ExprHandle& v) { return erf(v); },
[](float v) { return std::erf(v); }},
{[](const ExprHandle& v) { return sqrt(v); },
[](float v) { return std::sqrt(v); }},
{[](const ExprHandle& v) { return rsqrt(v); },
[](float v) { return 1.0f / std::sqrt(v); }},
{[](const ExprHandle& v) { return ceil(v); },
[](float v) { return std::ceil(v); }},
{[](const ExprHandle& v) { return floor(v); },
[](float v) { return std::floor(v); }},
{[](const ExprHandle& v) { return round(v); },
[](float v) { return std::round(v); }},
{[](const ExprHandle& v) { return trunc(v); },
[](float v) { return std::trunc(v); }},
};
for (const TestConfig& test_config : test_configs) {
const float input_v = 0.8765f;
ExprHandle v = test_config.func(ExprHandle(input_v));
float v_ref = test_config.ref_func(input_v);
SimpleIRExprEval eval(v);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
}
void testExprBinaryMath01() {
KernelScope kernel_scope;
struct TestConfig {
std::function<ExprHandle(const ExprHandle&, const ExprHandle&)> func;
std::function<float(float, float)> ref_func;
};
std::vector<TestConfig> test_configs = {
{[](const ExprHandle& v1, const ExprHandle& v2) { return pow(v1, v2); },
[](float v1, float v2) { return std::pow(v1, v2); }},
{[](const ExprHandle& v1, const ExprHandle& v2) { return fmod(v1, v2); },
[](float v1, float v2) { return std::fmod(v1, v2); }},
};
for (const TestConfig& test_config : test_configs) {
const float v1 = 0.8765f;
float v2 = 1.2345f;
ExprHandle v_expr = test_config.func(ExprHandle(v1), ExprHandle(v2));
float v_ref = test_config.ref_func(v1, v2);
SimpleIRExprEval eval(v_expr);
ASSERT_NEAR(eval.value<float>(), v_ref, 1e-6);
}
}
void testExprBitwiseOps() {
KernelScope kernel_scope;
ExprHandle a(59);
ExprHandle b(11);
ExprHandle c(101);
ExprHandle d(2);
ExprHandle f = (((a ^ (b << 1)) & c) >> 2) | d;
SimpleIRExprEval eval(f);
ASSERT_EQ(eval.value<int>(), 11);
}
void testExprDynamicShapeAdd() {
KernelScope kernel_scope;
auto testWithSize = [](int32_t size) {
VarHandle n("n", kInt);
Placeholder a(BufHandle("a", {n}, kFloat));
Placeholder b(BufHandle("b", {n}, kFloat));
Placeholder c(BufHandle("c", {n}, kFloat));
VarHandle i("i", kInt);
Stmt* s = For::make(i, 0, n, c.store({i}, a.load(i) + b.load(i)));
std::vector<float> aData(size, 1.0f);
std::vector<float> bData(size, 2.0f);
std::vector<float> cData(size, 0.0f);
SimpleIREvaluator(s, a, b, c, n)(aData, bData, cData, size);
ExpectAllNear(cData, std::vector<float>(size, 3.0f), 1e-7);
};
testWithSize(1);
testWithSize(16);
testWithSize(37);
}
void testCond01() {
KernelScope kernel_scope;
const int N = 16;
PaddedBuffer<float> a_v(N);
Placeholder a_buf("a", kFloat, {N});
VarHandle index = VarHandle("index", kInt);
Stmt* assign_x2 = a_buf.store({index}, cast<float>(index) * 2);
Stmt* assign_x3 = a_buf.store({index}, cast<float>(index) * 3);
ExprHandle even_cond = CompareSelect::make(Mod::make(index, 2), 0, kEQ);
Stmt* assign = Cond::make(even_cond, assign_x2, assign_x3);
Stmt* for_stmt = For::make(index, 0, N, assign);
SimpleIREvaluator(for_stmt, a_buf)(a_v);
PaddedBuffer<float> a_ref(N);
for (int i = 0; i < N; i++) {
if (i % 2 == 0) {
a_ref(i) = i * 2;
} else {
a_ref(i) = i * 3;
}
}
ExpectAllNear(a_v, a_ref, 1e-5);
}
void testIfThenElse01() {
KernelScope kernel_scope;
ExprHandle v = ifThenElse(ExprHandle(1), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(1, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 1.0f);
}
void testIfThenElse02() {
KernelScope kernel_scope;
ExprHandle v = ifThenElse(ExprHandle(0), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testIfThenElse03() {
KernelScope kernel_scope;
ExprHandle v =
ifThenElse(BoolImm::make(false), ExprHandle(1.0f), ExprHandle(2.0f));
std::ostringstream oss;
oss << v;
ASSERT_EQ(oss.str(), "IfThenElse(0, 1.f, 2.f)");
SimpleIRExprEval eval(v);
ASSERT_EQ(eval.value<float>(), 2.0f);
}
void testStmtClone() {
KernelScope kernel_scope;
const int N = 16;
Placeholder a_buf("a", kInt, {N});
VarHandle index = VarHandle("index", kInt);
Stmt* body = a_buf.store({index}, 5);
Stmt* loop = For::make(index, 0, N, body);
Stmt* cloned_loop = Stmt::clone(loop);
std::vector<int> orig_loop_results(N);
std::vector<int> cloned_loop_results(N);
SimpleIREvaluator(loop, a_buf)(orig_loop_results);
SimpleIREvaluator(cloned_loop, a_buf)(cloned_loop_results);
assertAllEqual(orig_loop_results, 5);
assertAllEqual(cloned_loop_results, 5);
// Let's add another assign to the body in the cloned loop and verify that the
// original statement hasn't changed while the cloned one has.
Stmt* body_addition = a_buf.store({index}, 33);
Block* cloned_body =
static_cast<Block*>(static_cast<const For*>(cloned_loop)->body());
cloned_body->append_stmt(body_addition);
std::vector<int> orig_loop_results_after_mutation(N);
std::vector<int> cloned_loop_results_after_mutation(N);
SimpleIREvaluator(loop, a_buf)(orig_loop_results_after_mutation);
SimpleIREvaluator(cloned_loop, a_buf)(cloned_loop_results_after_mutation);
assertAllEqual(orig_loop_results_after_mutation, 5);
assertAllEqual(cloned_loop_results_after_mutation, 33);
}
} // namespace jit
} // namespace torch