blob: 35ce7c73a8f33d1ade1f092e5ac17be00647520e [file] [log] [blame]
import sys
import io
import os
import math
import random
import re
import copy
import shutil
import torch
import torch.cuda
import torch.backends.cuda
import tempfile
import unittest
import warnings
import pickle
import gzip
import types
import textwrap
import zipfile
from torch._utils_internal import get_file_path_2
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._utils import _rebuild_tensor
from torch._six import inf, nan, string_classes, istuple
from itertools import product, combinations, combinations_with_replacement, permutations
from functools import reduce
from random import randrange
from torch import multiprocessing as mp
from common_methods_invocations import tri_tests_args, run_additional_tri_tests, \
_compare_trilu_indices
from common_utils import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \
TEST_LIBROSA, run_tests, download_file, skipIfNoLapack, suppress_warnings, \
IS_WINDOWS, PY3, NO_MULTIPROCESSING_SPAWN, do_test_dtypes, do_test_empty_full, \
IS_SANDCASTLE, load_tests, brute_pdist, brute_cdist, slowTest, \
skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf
from multiprocessing.reduction import ForkingPickler
from common_device_type import instantiate_device_type_tests, \
skipCPUIfNoLapack, skipCUDAIfNoMagma, skipCUDAIfRocm, onlyCUDA, onlyCPU, \
dtypes, dtypesIfCUDA, deviceCountAtLeast, skipCUDAIf, precisionOverride
import torch.backends.quantized
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
if TEST_NUMPY:
import numpy as np
if TEST_SCIPY:
from scipy import signal
if TEST_LIBROSA:
import librosa
SIZE = 100
can_retrieve_source = True
with warnings.catch_warnings(record=True) as warns:
with tempfile.NamedTemporaryFile() as checkpoint:
x = torch.save(torch.nn.Module(), checkpoint)
for warn in warns:
if "Couldn't retrieve source code" in warn.message.args[0]:
can_retrieve_source = False
break
class FilelikeMock(object):
def __init__(self, data, has_fileno=True, has_readinto=False):
if has_readinto:
self.readinto = self.readinto_opt
if has_fileno:
# Python 2's StringIO.StringIO has no fileno attribute.
# This is used to test that.
self.fileno = self.fileno_opt
self.calls = set()
self.bytesio = io.BytesIO(data)
def trace(fn, name):
def result(*args, **kwargs):
self.calls.add(name)
return fn(*args, **kwargs)
return result
for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']:
traced_fn = trace(getattr(self.bytesio, attr), attr)
setattr(self, attr, traced_fn)
def fileno_opt(self):
raise io.UnsupportedOperation('Not a real file')
def readinto_opt(self, view):
self.calls.add('readinto')
return self.bytesio.readinto(view)
def was_called(self, name):
return name in self.calls
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
# This is intentionally prefixed by an underscore. Otherwise pytest will try to
# run its methods as test cases.
class _TestTorchMixin(object):
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True):
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
def make_contiguous(shape, dtype):
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype):
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype):
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
tensors = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
def test_dir(self):
dir(torch)
def test_type_conversion_via_dtype_name(self):
x = torch.tensor([1])
self.assertEqual(x.byte().dtype, torch.uint8)
self.assertEqual(x.bool().dtype, torch.bool)
self.assertEqual(x.char().dtype, torch.int8)
self.assertEqual(x.double().dtype, torch.float64)
self.assertEqual(x.float().dtype, torch.float32)
self.assertEqual(x.half().dtype, torch.float16)
self.assertEqual(x.int().dtype, torch.int32)
self.assertEqual(x.bfloat16().dtype, torch.bfloat16)
def test_doc_template(self):
from torch._torch_docs import __file__ as doc_file
from torch._torch_docs import multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args
with open(doc_file, "r") as f:
doc_strs = f.read()
for doc_str in re.findall(r'add_docstr\((.*?),.*?("""|\'\'\')(.*?)("""|\'\'\')\)', doc_strs, re.MULTILINE | re.DOTALL):
for common_args in [multi_dim_common, single_dim_common, factory_common_args, factory_like_common_args]:
for k, v in common_args.items():
self.assertNotIn(v, doc_str[2], 'The argument description "{}" in {} can be '
'replaced by {{{}}}'.format(v, doc_str[0], k))
def test_doc(self):
checked_types = (types.MethodType, types.FunctionType,
types.BuiltinFunctionType, types.BuiltinMethodType)
def test_namespace(ns, *skips):
if isinstance(ns, object):
ns_name = ns.__class__.__name__
else:
ns_name = ns.__name__
skip_regexes = []
for r in skips:
if isinstance(r, string_classes):
skip_regexes.append(re.compile('^{}$'.format(re.escape(r))))
else:
skip_regexes.append(r)
for name in dir(ns):
if name.startswith('_'):
continue
var = getattr(ns, name)
if not isinstance(var, checked_types):
continue
doc = var.__doc__
has_doc = doc is not None and len(doc.strip()) > 0
full_name = ns_name + '.' + name
if any(r.match(name) for r in skip_regexes):
self.assertFalse(has_doc,
'New docs have been added for {}, please remove '
'it from the skipped list in TestTorch.test_doc'.format(full_name))
else:
self.assertTrue(has_doc, '{} is missing documentation'.format(full_name))
# FIXME: All of the following should be marked as expected failures
# so that it is easier to tell when missing has been added.
# FIXME: fix all the skipped ones below!
test_namespace(torch.randn(1),
'as_strided_',
re.compile('^clamp_(min|max)_?$'),
'coalesce',
'is_coalesced',
'is_distributed',
'is_complex',
'is_nonzero',
'is_same_size',
'isclose',
'log_softmax',
'map2_',
'new',
'reinforce',
'relu',
'relu_',
'prelu',
'resize',
'resize_as',
'smm',
'softmax',
'split_with_sizes',
'sspaddmm',
'to_dense',
'sparse_resize_',
'sparse_resize_and_clear_',
)
test_namespace(torch.nn)
test_namespace(torch.nn.functional, 'assert_int_or_pair', 'feature_alpha_dropout')
# TODO: add torch.* tests when we have proper namespacing on ATen functions
# test_namespace(torch)
def test_allclose(self):
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([1.01, 2.01, 3.01])
self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02))
self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0))
self.assertFalse(torch.allclose(x, y))
self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8])))
x = torch.tensor([2.0, 3.0, nan])
y = torch.tensor([2.01, 3.01, nan])
self.assertFalse(torch.allclose(x, y, rtol=1e-2))
self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True))
self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True))
inf_t = torch.tensor([inf])
self.assertTrue(torch.allclose(inf_t, inf_t))
self.assertTrue(torch.allclose(-inf_t, -inf_t))
self.assertFalse(torch.allclose(inf_t, -inf_t))
self.assertFalse(torch.allclose(inf_t, torch.tensor([1e20])))
self.assertFalse(torch.allclose(-inf_t, torch.tensor([-1e20])))
def test_linear_algebra_scalar_raises(self):
m = torch.randn(5, 5)
v = torch.randn(5)
s = torch.tensor(7)
self.assertRaises(RuntimeError, lambda: torch.mv(m, s))
self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s))
self.assertRaises(RuntimeError, lambda: torch.ger(v, s))
self.assertRaises(RuntimeError, lambda: torch.ger(s, v))
self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s))
self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v))
def _test_math(self, torchfn, mathfn, input=None, test_expand=False):
if input is None:
input = []
input.append(list(range(-5, 5)))
input.append([0 for x in range(-5, 5)])
input.append([x + 1e-6 for x in range(-5, 5)])
# Some vectorized implementations don't support large ranges
input.append([x + 1e10 for x in range(-5, 5)])
input.append([x - 1e10 for x in range(-5, 5)])
input.append(torch.randn(10).tolist())
input.append((torch.randn(10) + 1e6).tolist())
input.append([math.pi * (x / 2) for x in range(-5, 5)])
def compare_reference(input, dtype):
input = torch.tensor(input, dtype=dtype)
res1 = torchfn(input.clone())
res2 = input.clone().apply_(mathfn)
torch.testing.assert_allclose(res1, res2)
# compare against the reference math function
compare_reference(input, torch.double)
compare_reference(input, torch.float)
def check_non_contiguous(shape, dtype):
contig = torch.randn(shape, dtype=dtype)
non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0]
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous')
# compare application against contiguous vs. non-contiguous
check_non_contiguous((5, 7), torch.double)
check_non_contiguous((1024,), torch.double)
check_non_contiguous((5, 7), torch.float)
check_non_contiguous((1024,), torch.float)
def check_non_contiguous_index(dtype):
contig = torch.randn((2, 2, 1, 2), dtype=dtype)
non_contig = contig[:, 1, ...]
contig = non_contig.clone()
self.assertFalse(non_contig.is_contiguous())
self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous index')
check_non_contiguous_index(torch.float)
check_non_contiguous_index(torch.double)
def check_non_contiguous_expand(shape, dtype):
contig = torch.randn(shape, dtype=dtype)
non_contig = contig.clone().expand(3, -1, -1)
self.assertFalse(non_contig.is_contiguous())
contig = torchfn(contig)
non_contig = torchfn(non_contig)
for i in range(3):
self.assertEqual(contig, non_contig[i], 'non-contiguous expand[' + str(i) + ']')
# Expand is not defined for in-place operations
if test_expand:
# The size 1 case is special as it leads to 0 stride and needs to persists
check_non_contiguous_expand((1, 3), torch.double)
check_non_contiguous_expand((1, 7), torch.double)
check_non_contiguous_expand((5, 7), torch.float)
# If size(dim) == 1, stride(dim) is not defined.
# The code needs to be able to handle this
def check_contiguous_size1(dtype):
contig = torch.randn((5, 100), dtype=dtype)
contig = contig[:1, :50]
contig2 = torch.empty(contig.size(), dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1')
check_contiguous_size1(torch.double)
check_contiguous_size1(torch.float)
def check_contiguous_size1_largedim(dtype):
contig = torch.randn((5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4), dtype=dtype)
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
contig2 = torch.empty(contig.size(), dtype=dtype)
contig2.copy_(contig)
self.assertTrue(contig.is_contiguous())
self.assertTrue(contig2.is_contiguous())
self.assertEqual(torchfn(contig), torchfn(contig2), 'contiguous size1')
check_contiguous_size1_largedim(torch.double)
check_contiguous_size1_largedim(torch.float)
def check_large(dtype):
input = torch.randn(1024, 512, dtype=dtype)
actual = torchfn(input)
expected = torch.stack([torchfn(slice) for slice in input])
self.assertEqual(actual, expected, 'large')
# compare large tensor vs. repeated small applications to expose
# possible parallelism bugs.
check_large(torch.double)
check_large(torch.float)
def __test_math_by_name(self, function_name, mathfn, selffn):
mathfn = getattr(math, mathfn)
if selffn:
def torchfn(x):
return getattr(x, function_name)()
else:
torchfn = getattr(torch, function_name)
self._test_math(torchfn, mathfn, test_expand=(not selffn))
def _test_math_by_name(self, function_name, test_self=True):
if test_self:
self.__test_math_by_name(function_name + "_", function_name, True)
self.__test_math_by_name(function_name, function_name, False)
def test_sin(self):
self._test_math_by_name('sin')
def test_sinh(self):
def sinh(x):
try:
return math.sinh(x)
except OverflowError:
return inf if x > 0 else -inf
self._test_math(torch.sinh, sinh)
def test_lgamma(self):
def lgamma(x):
if x <= 0 and x == int(x):
return inf
return math.lgamma(x)
self._test_math(torch.lgamma, lgamma)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_mvlgamma(self):
from scipy.special import multigammaln
for d in range(1, 5):
input = torch.empty(10).uniform_(d, 10)
res_torch = torch.mvlgamma(input, d)
res_scipy = multigammaln(input.numpy(), d)
self.assertEqual(res_torch.numpy(), res_scipy)
def test_mvlgamma_argcheck(self):
def run_test(d):
input = torch.linspace((d - 2) / 2, 10, 10)
torch.mvlgamma(input, d)
with self.assertRaisesRegex(RuntimeError, "Condition for computing multivariate log-gamma not met"):
run_test(3)
def _digamma_input(self, test_poles=True):
input = []
input.append((torch.randn(10).abs() + 1e-4).tolist())
input.append((torch.randn(10).abs() + 1e6).tolist())
zeros = torch.linspace(-9.5, -0.5, 10)
input.append(zeros.tolist())
input.append((zeros - 0.49).tolist())
input.append((zeros + 0.49).tolist())
input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist())
if test_poles:
input.append([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, -1931.99999994, 0.000000111,
-0.000000111, 0, -2, -329])
return input
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_digamma(self):
from scipy.special import digamma
# scipy 1.1.0 changed when it returns +/-inf vs. NaN
def torch_digamma_without_inf(inp):
res = torch.digamma(inp)
res[(res == -inf) | (res == inf)] = nan
return res
def scipy_digamma_without_inf(inp):
res = digamma(inp)
if np.isscalar(res):
return res if np.isfinite(res) else nan
res[np.isinf(res)] = nan
return res
self._test_math(torch_digamma_without_inf, scipy_digamma_without_inf, self._digamma_input())
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_polygamma(self):
from scipy.special import polygamma
for n in [0, 1]:
self._test_math(lambda x: torch.polygamma(n, x),
lambda x: polygamma(n, x).item(),
self._digamma_input(test_poles=False))
with self.assertRaisesRegex(RuntimeError, r'polygamma\(n, x\) does not support negative n\.'):
torch.polygamma(-1, torch.tensor([1.0, 2.0]))
def test_asin(self):
self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else nan)
def test_cos(self):
self._test_math_by_name('cos')
def test_cosh(self):
def cosh(x):
try:
return math.cosh(x)
except OverflowError:
# Return inf on overflow.
# See http://en.cppreference.com/w/cpp/numeric/math/cosh
return inf
self._test_math(torch.cosh, cosh)
def test_acos(self):
self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else nan)
def test_tan(self):
self._test_math_by_name('tan')
def test_tanh(self):
self._test_math_by_name('tanh')
def test_atan(self):
self._test_math_by_name('atan')
def test_log(self):
def log(x):
if x == 0:
return -inf
elif x < 0:
return nan
return math.log(x)
self._test_math(torch.log, log)
def test_log10(self):
def log10(x):
if x == 0:
return -inf
elif x < 0:
return nan
return math.log10(x)
self._test_math(torch.log10, log10)
def test_log1p(self):
def log1p(x):
if x == -1:
return -inf
elif x < -1:
return nan
return math.log1p(x)
self._test_math(torch.log1p, log1p)
def test_log2(self):
def log2(x):
if x == 0:
return -inf
elif x < 0:
return nan
try:
return math.log2(x)
except AttributeError:
return math.log(x, 2)
self._test_math(torch.log2, log2)
def test_sqrt(self):
self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else nan)
def test_erf(self):
self._test_math_by_name('erf')
def test_erfc(self):
self._test_math_by_name('erfc')
def test_exp(self):
def exp(x):
try:
return math.exp(x)
except OverflowError:
return inf
self._test_math(torch.exp, exp)
def test_expm1(self):
def expm1(x):
try:
return math.expm1(x)
except OverflowError:
return inf
self._test_math(torch.expm1, expm1)
def test_floor(self):
self._test_math_by_name('floor')
def test_ceil(self):
self._test_math_by_name('ceil')
def test_rsqrt(self):
def rsqrt(x):
if x == 0:
return inf
elif x < 0:
return nan
return 1.0 / math.sqrt(x)
self._test_math(torch.rsqrt, rsqrt)
def test_frac(self):
self._test_math(torch.frac, lambda x: math.fmod(x, 1))
def test_trunc(self):
self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1))
def test_round(self):
self._test_math(torch.round, round)
def test_has_storage(self):
self.assertIsNotNone(torch.Tensor().storage())
self.assertIsNotNone(torch.Tensor(0).storage())
self.assertIsNotNone(torch.Tensor([]).storage())
self.assertIsNotNone(torch.Tensor().clone().storage())
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
self.assertIsNotNone(torch.Tensor().new().storage())
def _testSelection(self, torchfn, mathfn):
# contiguous
m1 = torch.randn(100, 100)
res1 = torchfn(m1)
res2 = m1[0, 0]
for i, j in iter_indices(m1):
res2 = mathfn(res2, m1[i, j])
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10)
m2 = m1[:, 4]
res1 = torchfn(m2)
res2 = m2[0, 0]
for i, j in iter_indices(m2):
res2 = mathfn(res2, m2[i][j])
self.assertEqual(res1, res2)
# with indices
m1 = torch.randn(100, 100)
res1val, res1ind = torchfn(m1, 1, False)
res2val = m1[:, 0:1].clone().squeeze()
res2ind = res1ind.clone().fill_(0)
for i, j in iter_indices(m1):
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
res2val[i] = m1[i, j]
res2ind[i] = j
maxerr = 0
for i in range(res1val.size(0)):
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
self.assertEqual(res1ind[i], res2ind[i])
self.assertLessEqual(abs(maxerr), 1e-5)
# NaNs
for index in (0, 4, 99):
m1 = torch.randn(100)
m1[index] = nan
res1val, res1ind = torch.max(m1, 0)
self.assertTrue(math.isnan(res1val))
self.assertEqual(res1ind, index)
res1val = torchfn(m1)
self.assertTrue(math.isnan(res1val))
# Bool
m1 = torch.tensor([True, False, True], dtype=torch.bool)
res1 = torchfn(m1)
res2 = m1[0]
for i in iter_indices(m1):
res2 = mathfn(res2, m1[i])
self.assertEqual(res1, res2)
def test_max(self):
self._testSelection(torch.max, max)
def test_min(self):
self._testSelection(torch.min, min)
def test_dim_reduction_uint8_overflow(self):
example = [[-1, 2, 1], [5, 3, 6]]
x = torch.tensor(example, dtype=torch.uint8)
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.FloatTensor([4, 5, 7]))
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.FloatTensor([2, 14]))
y = torch.tensor(example, dtype=torch.uint8)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_logsumexp(self):
from scipy.special import logsumexp
a = torch.randn(5, 4)
a[0, 0] = inf
a[1, :] = -inf
actual = a.logsumexp(1)
expected = logsumexp(a.numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertTrue(np.allclose(expected, actual.numpy()))
# check that out is actually inplace
b = torch.zeros(5, 2)
c = b[:, 0]
torch.logsumexp(a, 1, out=c)
self.assertTrue(np.allclose(expected, b[:, 0].numpy()))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_cpu_parallel(self):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, 0)
def test_max_elementwise(self):
self._testCSelection(torch.max, max)
def test_min_elementwise(self):
self._testCSelection(torch.min, min)
def test_all_any(self):
def test(size):
x = torch.ones(*size).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
x = torch.ones(*size).bool()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = False
self.assertFalse(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_where_bool_tensor(self):
for d in torch.testing.get_all_device_types():
a = torch.tensor([True, False], device=d)
res = torch.where(a > 0)
self.assertEqual(1, len(res))
def test_all_any_with_dim(self):
def test(x):
r1 = x.prod(dim=0, keepdim=False).byte()
r2 = x.all(dim=0, keepdim=False)
self.assertEqual(r1.shape, r2.shape)
self.assertTrue((r1 == r2).all())
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
r4 = x.any(dim=1, keepdim=True)
self.assertEqual(r3.shape, r4.shape)
self.assertTrue((r3 == r4).all())
test(torch.ByteTensor([[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1]]))
def test_mv(self):
def _test_mv(m1, v1):
res1 = torch.mv(m1, v1)
res2 = res1.clone().zero_()
for i, j in iter_indices(m1):
res2[i] += m1[i][j] * v1[j]
self.assertEqual(res1, res2)
_test_mv(torch.randn(100, 100, dtype=torch.float32), torch.randn(100, dtype=torch.float32))
_test_mv(torch.randn(100, 100, dtype=torch.float64), torch.randn(100, dtype=torch.float64))
_test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int32), torch.randint(0, 100, (100, ), dtype=torch.int32))
_test_mv(torch.randint(0, 100, (100, 100), dtype=torch.int64), torch.randint(0, 100, (100, ), dtype=torch.int64))
_test_mv(torch.randn(100, 100, dtype=torch.float32).bfloat16(), torch.randn(100, dtype=torch.float32).bfloat16())
def test_numpy_args(self):
x1 = torch.randn(10)
x2 = torch.randn(10)
res1 = torch.add(input=x1, other=x2)
res2 = torch.add(x1=x1, x2=x2)
self.assertEqual(res1, res2)
x1 = torch.randn(10, 10, 10)
res1 = x1.sum(dim=(0, 2), keepdim=True)
res2 = x1.sum(axis=(0, 2), keepdims=True)
self.assertEqual(res1, res2)
def _assert_matches_numpy(self, t, n):
self.assertEqual(n.shape, t.shape)
if t.dtype == torch.float:
self.assertTrue(np.allclose(n, t.numpy(), rtol=1e-03, atol=1e-05,
equal_nan=True))
else:
self.assertTrue(np.allclose(n, t.numpy(), equal_nan=True))
def _test_dim_ops(self, pytorch_op, numpy_op,
use_floating=True, use_integral=True):
def do_one(tensors_dict, dim):
for category, tensors in tensors_dict.items():
if category == "slice":
dim = 0
for tensor in tensors:
# we have no control over NumPy warnings...
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected = numpy_op(tensor.numpy(), dim)
actual = pytorch_op(tensor, dim)
self._assert_matches_numpy(actual, expected)
if torch.cuda.is_available():
self._assert_matches_numpy(pytorch_op(tensor.cuda(),
dim).cpu(),
expected)
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
use_integral=use_integral), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral), 0)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral), 2)
do_one(self._make_tensors((100000, ), use_floating=use_floating,
use_integral=use_integral), -1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), 0)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), 1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), 2)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), (1, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), (1, -1))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), (0, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral), (0, 2, 1))
@slowTest
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_sum_dim(self):
self._test_dim_ops(
lambda t, d: t.sum(d),
lambda n, d: n.sum(d))
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_mean_dim(self):
self._test_dim_ops(
lambda t, d: t.mean(d),
lambda n, d: n.mean(d),
use_integral=False)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_std_dim(self):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.std(d, unbiased=unbiased),
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
use_integral=False)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_var_dim(self):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.var(d, unbiased=unbiased),
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
use_integral=False)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
@unittest.skipIf(not TEST_SCIPY, 'Scipy not found')
def test_logsumexp_dim(self):
from scipy.special import logsumexp
self._test_dim_ops(
lambda t, d: t.logsumexp(d),
lambda n, d: logsumexp(n, d),
use_integral=False)
def _test_reduce_integer_upcast(self, fn, has_out=True):
shape = (3, 4, 5)
reduced_shape = fn(torch.ones(shape)).shape
def _test_out(dtype, other_dtype):
out = torch.ones(reduced_shape, dtype=dtype)
result = fn(x, out=out)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.type(dtype)), result)
result = fn(x, out=out, dtype=dtype)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.type(dtype)), result)
# 'out' is favored over dtype, check error
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
for dtype in [dtype for dtype in torch.testing.get_all_math_dtypes('cpu') if dtype != torch.float16]:
x = torch.ones(shape, dtype=dtype)
expected_dtype = dtype if dtype.is_floating_point else torch.int64
self.assertIs(expected_dtype, fn(x).dtype)
self.assertEqual(fn(x.type(expected_dtype)), fn(x))
if dtype.is_floating_point:
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
else:
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
self.assertEqual(fn(x.type(other_dtype)), fn(x, dtype=other_dtype))
# test mixed int/float
mixed_dtype = torch.int32 if dtype.is_floating_point else torch.float32
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
self.assertEqual(fn(x.type(mixed_dtype)), fn(x, dtype=mixed_dtype))
if has_out:
_test_out(dtype, other_dtype)
_test_out(dtype, mixed_dtype)
def test_sum_integer_upcast(self):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
def test_prod_integer_upcast(self):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
def test_cumsum_integer_upcast(self):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
def test_cumprod_integer_upcast(self):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
def test_cross_validation(self):
self.assertRaisesRegex(
RuntimeError, "inconsistent tensors dimensions",
lambda: torch.cross(torch.rand(100, 3), torch.rand(100, 3, 10)))
self.assertRaisesRegex(
RuntimeError, "inconsistent tensors sizes",
lambda: torch.cross(torch.rand(5, 3), torch.rand(3, 5)))
self.assertRaisesRegex(
RuntimeError, "no dimension of size 3 in input",
lambda: torch.cross(torch.rand(5, 4), torch.rand(5, 4)))
self.assertRaisesRegex(
RuntimeError, "dimension 0 does not have size 3",
lambda: torch.cross(torch.rand(5, 4, 3), torch.rand(5, 4, 3), dim=0))
self.assertRaisesRegex(
RuntimeError, "dimension -1 does not have size 3",
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-1))
self.assertRaisesRegex(
IndexError, "Dimension out of range",
lambda: torch.cross(torch.rand(5, 3, 4), torch.rand(5, 3, 4), dim=-5))
def test_zeros(self):
res1 = torch.zeros(100, 100)
res2 = torch.Tensor()
torch.zeros(100, 100, out=res2)
self.assertEqual(res1, res2)
boolTensor = torch.zeros(2, 2, dtype=torch.bool)
expected = torch.tensor([[False, False], [False, False]], dtype=torch.bool)
self.assertEqual(boolTensor, expected)
halfTensor = torch.zeros(1, 1, dtype=torch.half)
expected = torch.tensor([[0.]], dtype=torch.float16)
self.assertEqual(halfTensor, expected)
bfloat16Tensor = torch.zeros(1, 1, dtype=torch.bfloat16)
expected = torch.tensor([[0.]], dtype=torch.bfloat16)
self.assertEqual(bfloat16Tensor, expected)
def test_zeros_out(self):
shape = (3, 4)
out = torch.zeros(shape)
torch.zeros(shape, out=out)
# change the dtype, layout, device
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, dtype=torch.int64, out=out))
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, layout=torch.sparse_coo, out=out))
if torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device='cuda', out=out))
# leave them the same
self.assertEqual(torch.zeros(shape), torch.zeros(shape, dtype=out.dtype, out=out))
self.assertEqual(torch.zeros(shape), torch.zeros(shape, layout=torch.strided, out=out))
self.assertEqual(torch.zeros(shape), torch.zeros(shape, device='cpu', out=out))
def test_ones(self):
res1 = torch.ones(100, 100)
res2 = torch.Tensor()
torch.ones(100, 100, out=res2)
self.assertEqual(res1, res2)
# test boolean tensor
res1 = torch.ones(1, 2, dtype=torch.bool)
expected = torch.tensor([[True, True]], dtype=torch.bool)
self.assertEqual(res1, expected)
def test_ones_like(self):
expected = torch.ones(100, 100)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
# test boolean tensor
expected = torch.tensor([True, True], dtype=torch.bool)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
def test_dtypes(self):
all_dtypes = torch.testing.get_all_dtypes()
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu'))
if torch.cuda.is_available():
all_dtypes.remove(torch.bfloat16) # Remove once _th_zero_ is enabled on cuda for bfloat16
do_test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0'))
def test_copy_dtypes(self):
all_dtypes = torch.testing.get_all_dtypes()
for dtype in all_dtypes:
copied_dtype = copy.deepcopy(dtype)
self.assertIs(dtype, copied_dtype)
def test_copy_transpose(self):
x = torch.arange(100 * 100, dtype=torch.float).reshape(100, 100).t()
y = torch.empty(100, 100, dtype=torch.float)
y.copy_(x)
self.assertEqual(y[:, 0], range(100))
self.assertEqual(y[:, 40], range(4000, 4100))
y = torch.empty(100, 100, dtype=torch.double)
y.copy_(x)
self.assertEqual(y[:, 0], range(100))
self.assertEqual(y[:, 40], range(4000, 4100))
def test_device(self):
cpu = torch.device('cpu')
self.assertEqual('cpu', str(cpu))
self.assertEqual('cpu', cpu.type)
self.assertEqual(None, cpu.index)
cpu0 = torch.device('cpu:0')
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cpu0 = torch.device('cpu', 0)
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cuda = torch.device('cuda')
self.assertEqual('cuda', str(cuda))
self.assertEqual('cuda', cuda.type)
self.assertEqual(None, cuda.index)
cuda1 = torch.device('cuda:1')
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
cuda1 = torch.device('cuda', 1)
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cpu:1'))
self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1))
self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1))
self.assertRaises(RuntimeError, lambda: torch.device(-1))
self.assertRaises(RuntimeError, lambda: torch.device('other'))
self.assertRaises(RuntimeError, lambda: torch.device('other:0'))
device_set = {'cpu', 'cpu:0', 'cuda', 'cuda:0', 'cuda:1', 'cuda:10', 'cuda:100'}
device_hash_set = set()
for device in list(device_set):
device_hash_set.add(hash(torch.device(device)))
self.assertEqual(len(device_set), len(device_hash_set))
def test_tensor_device(self):
def assertEqual(device_str, fn):
self.assertEqual(torch.device(device_str), fn().device)
self.assertEqual(device_str, str(fn().device))
assertEqual('cpu', lambda: torch.tensor(5))
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu'))
# NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical
# representation of cuda devices.
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0'))
assertEqual('cpu', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0'))
if TEST_NUMPY:
assertEqual('cpu', lambda: torch.tensor(np.random.randn(2, 3), device='cpu'))
if torch.cuda.is_available():
assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0))
assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0'))
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu'))
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0'))
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0))
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0'))
assertEqual('cuda:' + str(torch.cuda.current_device()),
lambda: torch.tensor(5, dtype=torch.int64, device='cuda'))
assertEqual('cuda:0', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0'))
if TEST_NUMPY:
assertEqual('cuda:0', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:0'))
if torch.cuda.device_count() > 1:
assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1))
assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1'))
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1))
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1'))
assertEqual('cuda:1', lambda: torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1'))
if TEST_NUMPY:
assertEqual('cuda:1', lambda: torch.tensor(np.random.randn(2, 3), device='cuda:1'))
def test_to(self):
def test_copy_behavior(t, non_blocking=False):
self.assertIs(t, t.to(t, non_blocking=non_blocking))
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
devices = [t.device]
if t.device.type == 'cuda':
if t.device.index == -1:
devices.append('cuda:{}'.format(torch.cuda.current_device()))
elif t.device.index == torch.cuda.current_device():
devices.append('cuda')
for device in devices:
self.assertIs(t, t.to(device, non_blocking=non_blocking))
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
a = torch.tensor(5)
test_copy_behavior(a)
self.assertEqual(a.device, a.to('cpu').device)
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
self.assertEqual(a.device, a.to(torch.float32).device)
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
self.assertEqual(a.data_ptr(), a.to('cpu').data_ptr())
self.assertEqual(a.data_ptr(), a.to(dtype=a.dtype, device=a.device, copy=False).data_ptr())
self.assertEqual(a.data_ptr(), a.to('cpu', copy=False).data_ptr())
self.assertNotEqual(a.data_ptr(), a.to('cpu', copy=True).data_ptr())
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
test_copy_behavior(b, non_blocking)
self.assertEqual(b.device, b.to(cuda, non_blocking=non_blocking).device)
self.assertEqual(a.device, b.to('cpu', non_blocking=non_blocking).device)
self.assertEqual(b.device, a.to(cuda, non_blocking=non_blocking).device)
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
def test_to_with_tensor(self):
a = torch.tensor(5)
self.assertEqual(a.device, a.to(a).device)
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
self.assertEqual(b.device, b.to(b, non_blocking=non_blocking).device)
self.assertEqual(a.device, b.to(a, non_blocking=non_blocking).device)
self.assertEqual(b.device, a.to(b, non_blocking=non_blocking).device)
def test_empty_full(self):
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cpu'))
if torch.cuda.device_count() > 0:
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, None)
do_test_empty_full(self, torch.testing.get_all_math_dtypes('cpu'), torch.strided, torch.device('cuda:0'))
def test_dtype_out_match(self):
d = torch.autograd.Variable(torch.DoubleTensor(2, 3))
self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32))
def test_constructor_dtypes(self):
default_type = torch.Tensor().type()
self.assertIs(torch.Tensor().dtype, torch.get_default_dtype())
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
self.assertIs(torch.float32, torch.FloatTensor.dtype)
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
torch.set_default_tensor_type('torch.FloatTensor')
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.DoubleStorage, torch.Storage)
torch.set_default_tensor_type(torch.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.cuda.DoubleStorage, torch.Storage)
# don't support integral or sparse default types.
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64))
# don't allow passing dtype to set_default_tensor_type
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32))
torch.set_default_tensor_type(default_type)
def test_constructor_device_legacy(self):
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda'))
x = torch.randn((3,), device='cpu')
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda'))
if torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu'))
default_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu'))
torch.set_default_tensor_type(torch.cuda.FloatTensor)
torch.set_default_tensor_type(default_type)
x = torch.randn((3,), device='cuda')
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu'))
def test_type(self):
x = torch.randn(3, 3).double()
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
def test_tensor_factory(self):
expected = torch.Tensor([1, 1])
# test data
res1 = torch.tensor([1, 1])
self.assertEqual(res1, expected)
res1 = torch.tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = torch.tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = torch.tensor(expected, dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy with numpy
if TEST_NUMPY:
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
a = np.array([5.]).astype(dtype)
res1 = torch.tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
# test boolean tensor
a = torch.tensor([True, True, False, True, True], dtype=torch.bool)
b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool)
self.assertEqual(a, b)
def test_tensor_factory_copy_var(self):
def check_copy(copy, is_leaf, requires_grad, data_ptr=None):
if data_ptr is None:
data_ptr = copy.data_ptr
self.assertEqual(copy.data, source.data)
self.assertTrue(copy.is_leaf == is_leaf)
self.assertTrue(copy.requires_grad == requires_grad)
self.assertTrue(copy.data_ptr == data_ptr)
source = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
# test torch.tensor()
check_copy(torch.tensor(source), True, False)
check_copy(torch.tensor(source, requires_grad=False), True, False)
check_copy(torch.tensor(source, requires_grad=True), True, True)
# test tensor.new_tensor()
copy = torch.randn(1)
check_copy(copy.new_tensor(source), True, False)
check_copy(copy.new_tensor(source, requires_grad=False), True, False)
check_copy(copy.new_tensor(source, requires_grad=True), True, True)
# test torch.as_tensor()
check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy
check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph
def test_tensor_factory_type_inference(self):
def test_inference(default_dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(default_dtype)
self.assertIs(default_dtype, torch.tensor(()).dtype)
self.assertIs(default_dtype, torch.tensor(5.).dtype)
self.assertIs(torch.int64, torch.tensor(5).dtype)
self.assertIs(torch.bool, torch.tensor(True).dtype)
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
if TEST_NUMPY:
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
else:
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
torch.set_default_dtype(saved_dtype)
test_inference(torch.float64)
test_inference(torch.float32)
def test_qengine(self):
qengines = torch.backends.quantized.supported_engines
original_qe = torch.backends.quantized.engine
for qe in qengines:
torch.backends.quantized.engine = qe
assert torch.backends.quantized.engine == qe, 'qengine not set successfully'
torch.backends.quantized.engine = original_qe
def test_new_tensor(self):
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
# test data
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1, expected)
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = expected.new_tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertEqual(res2, expected)
self.assertIs(torch.int, res2.dtype)
# test copy with numpy
if TEST_NUMPY:
a = np.array([5.])
res1 = torch.tensor(a)
res1 = res1.new_tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
if torch.cuda.device_count() >= 2:
expected = expected.cuda(1)
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
res2 = expected.new_tensor(expected)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), 0)
res1 = expected.new_tensor(1)
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor(1, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
def test_as_tensor(self):
# from python data
x = [[0, 1], [2, 3]]
self.assertEqual(torch.tensor(x), torch.as_tensor(x))
self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32))
# python data with heterogeneous types
z = [0, 'torch']
with self.assertRaisesRegex(TypeError, "invalid data type"):
torch.tensor(z)
torch.as_tensor(z)
# python data with self-referential lists
z = [0]
z += [z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
z = [[1, 2], z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
# from tensor (doesn't copy unless type is different)
y = torch.tensor(x)
self.assertIs(y, torch.as_tensor(y))
self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32))
if torch.cuda.is_available():
self.assertIsNot(y, torch.as_tensor(y, device='cuda'))
y_cuda = y.to('cuda')
self.assertIs(y_cuda, torch.as_tensor(y_cuda))
self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda'))
if TEST_NUMPY:
# doesn't copy
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
n = np.random.rand(5, 6).astype(dtype)
n_astensor = torch.as_tensor(n)
self.assertEqual(torch.tensor(n), n_astensor)
n_astensor[0][0] = 25.7
self.assertEqual(torch.tensor(n), n_astensor)
# changing dtype causes copy
n = np.random.rand(5, 6).astype(np.float32)
n_astensor = torch.as_tensor(n, dtype=torch.float64)
self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
n_astensor[0][1] = 250.8
self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
# changing device causes copy
if torch.cuda.is_available():
n = np.random.randn(5, 6)
n_astensor = torch.as_tensor(n, device='cuda')
self.assertEqual(torch.tensor(n, device='cuda'), n_astensor)
n_astensor[0][2] = 250.9
self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor)
def test_renorm(self):
m1 = torch.randn(10, 5)
res1 = torch.Tensor()
def renorm(matrix, value, dim, max_norm):
m1 = matrix.transpose(dim, 0).contiguous()
# collapse non-dim dimensions.
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
norms = m2.norm(value, 1, True)
# clip
new_norms = norms.clone()
new_norms[torch.gt(norms, max_norm)] = max_norm
new_norms.div_(norms.add_(1e-7))
# renormalize
m1.mul_(new_norms.expand_as(m1))
return m1.transpose(dim, 0)
# note that the axis fed to torch.renorm is different (2~=1)
maxnorm = m1.norm(2, 1).mean()
m2 = renorm(m1, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
self.assertEqual(m1, m2, 1e-5)
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)
m1 = torch.randn(3, 4, 5)
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
maxnorm = m2.norm(2, 0).mean()
m2 = renorm(m2, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
self.assertEqual(m3, m2)
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
def _spawn_method(self, method, arg):
try:
mp.set_start_method('spawn')
except RuntimeError:
pass
with mp.Pool(1) as pool:
self.assertTrue(pool.map(method, [arg]))
@staticmethod
def _test_multinomial_invalid_probs(probs):
try:
# n_sample = 1 is a special case, test n_sample=2 which is more general
torch.multinomial(probs.to('cpu'), 2)
return False # Should not be reached
except RuntimeError as e:
return 'invalid multinomial distribution' in str(e)
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
@unittest.skipIf(IS_WINDOWS, 'FIXME: CUDA OOM error on Windows')
@unittest.skipIf(not PY3,
"spawn start method is not supported in Python 2, \
but we need it for for testing failure case for CPU RNG on Windows")
def test_multinomial_invalid_probs(self):
test_method = _TestTorchMixin._test_multinomial_invalid_probs
self._spawn_method(test_method, torch.Tensor([1, -1, 1]))
self._spawn_method(test_method, torch.Tensor([1, inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, -inf, 1]))
self._spawn_method(test_method, torch.Tensor([1, 1, nan]))
self._spawn_method(test_method, torch.Tensor([0, 1, 0]))
@suppress_warnings
def test_range(self):
res1 = torch.range(0, 1)
res2 = torch.Tensor()
torch.range(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check range for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.range(0, 3, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.range(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.range(1, 1, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.range(1, 1, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 31)
# DoubleTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 31)
def test_range_warning(self):
with warnings.catch_warnings(record=True) as w:
torch.range(0, 10)
self.assertEqual(len(w), 1)
def test_arange(self):
res1 = torch.arange(0, 1)
res2 = torch.Tensor()
torch.arange(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check arange with only one argument
res1 = torch.arange(10)
res2 = torch.arange(0, 10)
self.assertEqual(res1, res2, 0)
# Check arange for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.arange(0, 4, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.arange(1, -1, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.arange(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.arange(1, 2, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# DoubleTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# Check that it's exclusive
r = torch.arange(0, 5)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 5)
r = torch.arange(0, 5, 2)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 3)
r1 = torch.arange(0, 5 + 1e-6)
r2 = torch.arange(0, 5)
r3 = torch.arange(0, 5 - 1e-6)
self.assertEqual(r1[:-1], r2, 0)
self.assertEqual(r2, r3, 0)
r1 = torch.arange(10, -1 + 1e-6, -1)
r2 = torch.arange(10, -1, -1)
r3 = torch.arange(10, -1 - 1e-6, -1)
self.assertEqual(r1, r2, 0)
self.assertEqual(r2, r3[:-1], 0)
x = torch.empty(1).expand(10)
self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x))
msg = "unsupported range"
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf')))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf')))
for device in torch.testing.get_all_device_types():
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device))
# check with step size
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device))
self.assertRaisesRegex(
RuntimeError, "overflow",
lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device))
# check that it holds a consistent output shape on precision-cornered step sizes
d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device)
self.assertEqual(d.shape[0], 800)
def test_arange_inference(self):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.float32)
# end only
self.assertIs(torch.float32, torch.arange(1.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype)
# start, end, [step]
self.assertIs(torch.float32, torch.arange(1., 3).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype)
self.assertIs(torch.float32, torch.arange(1, 3.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype)
self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype)
self.assertIs(torch.float32,
torch.arange(torch.tensor(1),
torch.tensor(3, dtype=torch.int16),
torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype)
self.assertIs(torch.int64,
torch.arange(torch.tensor(1),
torch.tensor(3),
torch.tensor(1, dtype=torch.int16)).dtype)
torch.set_default_dtype(saved_dtype)
def test_randint_inference(self):
size = (2, 1)
for args in [(3,), (1, 3)]: # (low,) and (low, high)
self.assertIs(torch.int64, torch.randint(*args, size=size).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.float32)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.int64)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype)
def test_broadcast_empty(self):
# empty + empty
self.assertRaises(RuntimeError, lambda: torch.randn(5, 0) + torch.randn(0, 5))
self.assertEqual(torch.randn(5, 0), torch.randn(0) + torch.randn(5, 0))
self.assertEqual(torch.randn(5, 0, 0), torch.randn(0) + torch.randn(5, 0, 1))
# scalar + empty
self.assertEqual(torch.randn(5, 0, 6), torch.randn(()) + torch.randn(5, 0, 6))
# non-empty, empty
self.assertEqual(torch.randn(0), torch.randn(0) + torch.randn(1))
self.assertEqual(torch.randn(0, 7, 0, 6, 5, 0, 7),
torch.randn(0, 7, 0, 6, 5, 0, 1) + torch.randn(1, 1, 5, 1, 7))
self.assertRaises(RuntimeError, lambda: torch.randn(7, 0) + torch.randn(2, 1))
def test_scalars_as_floats(self):
"zero-dim variables that don't require grad should bind to scalar arguments"
x = torch.tensor(2.)
y = torch.tensor(3.)
# 3 + (3 * 3) * 2
self.assertEqual(y.addcmul(y, y, value=x), 21)
x = torch.tensor(2., requires_grad=True)
self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x))
def test_copy_broadcast(self):
torch.zeros(5, 6).copy_(torch.zeros(6))
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
def test_copy_many_to_one(self):
# Testing in-place copy where it attempt to write from many memory
# storage to a single storage would cause RuntimeError to be thrown
self.assertRaises(RuntimeError, lambda: torch.zeros(1, 6).expand(5, 6).copy_(torch.zeros(5, 6)))
def test_not_equal(self):
ones = torch.ones(10, dtype=torch.int)
self.assertRaisesRegex(AssertionError, "0 not greater than or equal to",
lambda: self.assertNotEqual(ones, ones))
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = 4
if order == 'descending':
def check_order(a, b):
# `a != a` because we put NaNs
# at the end of ascending sorted lists,
# and the beginning of descending ones.
return a != a or a >= b
elif order == 'ascending':
def check_order(a, b):
# see above
return b != b or a <= b
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for j, k in product(range(SIZE), range(1, SIZE)):
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size = x.size(x.dim() - 1)
for k in range(size):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
'torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self):
SIZE = 4
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
self.assertEqual(torch.argsort(x), res1ind)
self.assertEqual(x.argsort(), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
torch.Tensor((10, 20, 30, 40, 50)),
0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
torch.Tensor((50, 40, 30, 20, 10)),
0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
# Test sorting with NaNs
x = torch.rand(SIZE, SIZE)
x[1][2] = float('NaN')
x[3][0] = float('NaN')
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind,
'random with NaNs')
torch.sort(x, out=(res2val, res2ind), descending=True)
self.assertIsOrdered('descending', x, res2val, res2ind,
'random with NaNs')
def test_topk(self):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, 0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, 0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE))
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
def test_topk_arguments(self):
q = torch.randn(10, 2, 10)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
def test_median(self):
for size in (155, 156):
x = torch.rand(size, size)
x0 = x.clone()
nelem = x.nelement()
res1val = torch.median(x)
res2val, _ = torch.sort(x.view(nelem))
ind = int(math.floor((nelem + 1) / 2) - 1)
self.assertEqual(res2val[ind], res1val, 0)
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
res2val, res2ind = torch.sort(x)
ind = int(math.floor((size + 1) / 2) - 1)
self.assertEqual(res2val.select(1, ind), res1val, 0)
self.assertEqual(res2val.select(1, ind), res1val, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res2val, res1val, 0)
self.assertEqual(res2ind, res1ind, 0)
# Test non-default dim
res1val, res1ind = torch.median(x, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[ind], 0)
self.assertEqual(res1ind, res2ind[ind], 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_mode(self):
x = torch.arange(1., SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.Tensor(SIZE).fill_(1)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.LongTensor(SIZE).fill_(1)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_trilu_indices(self):
for test_args in tri_tests_args:
_compare_trilu_indices(self, *test_args)
run_additional_tri_tests(self, 'cpu')
# test default options
x = torch.ones(
3, 3, dtype=torch.long, device='cpu', layout=torch.strided)
self.assertEqual(
x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3))
self.assertEqual(
x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3))
# test stride 0 cases
x = torch.ones(
3, 1, 3, 3, dtype=torch.long, device='cpu', layout=torch.strided)
output = x.triu(2).expand(3, 3, 3, 3)
b = x.clone().expand(3, 3, 3, 3)
self.assertEqual(b.triu(2), output)
self.assertRaises(RuntimeError, lambda: b.triu_(2))
def test_narrow(self):
x = torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
self.assertEqual(x.narrow(0, 0, 1), torch.Tensor([[0, 1, 2]]))
self.assertEqual(x.narrow(0, 0, 2), torch.Tensor([[0, 1, 2], [3, 4, 5]]))
self.assertEqual(x.narrow(0, 1, 1), torch.Tensor([[3, 4, 5]]))
self.assertEqual(x.narrow(0, -1, 1), torch.Tensor([[6, 7, 8]]))
self.assertEqual(x.narrow(0, -2, 2), torch.Tensor([[3, 4, 5], [6, 7, 8]]))
self.assertEqual(x.narrow(0, -3, 3), torch.Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]))
self.assertEqual(x.narrow(-1, -1, 1), torch.Tensor([[2], [5], [8]]))
self.assertEqual(x.narrow(-2, -1, 1), torch.Tensor([[6, 7, 8]]))
def test_stack(self):
for dtype in (torch.half, torch.double, torch.int):
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
for dim in range(4):
res = torch.stack((x, y, z), dim)
res_neg = torch.stack((x, y, z), dim - 4)
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
self.assertEqual(res, res_neg)
self.assertEqual(res.size(), expected_size)
self.assertEqual(res.select(dim, 0), x, 0)
self.assertEqual(res.select(dim, 1), y, 0)
self.assertEqual(res.select(dim, 2), z, 0)
def test_stack_out(self):
for dtype in (torch.half, torch.double, torch.int):
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
for dim in range(4):
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
res_out = x.new(expected_size)
res_neg_out = x.new(expected_size)
res_out_dp = res_out.data_ptr()
res_out_neg_dp = res_neg_out.data_ptr()
torch.stack((x, y, z), dim, out=res_out)
torch.stack((x, y, z), dim - 4, out=res_neg_out)
self.assertEqual(res_out, res_neg_out)
self.assertEqual(res_out.size(), expected_size)
self.assertEqual(res_out_dp, res_out.data_ptr())
self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr())
self.assertEqual(res_out.select(dim, 0), x, 0)
self.assertEqual(res_out.select(dim, 1), y, 0)
self.assertEqual(res_out.select(dim, 2), z, 0)
def test_unbind(self):
x = torch.rand(2, 3, 4, 5)
for dim in range(4):
res = torch.unbind(x, dim)
res2 = x.unbind(dim)
self.assertEqual(x.size(dim), len(res))
self.assertEqual(x.size(dim), len(res2))
for i in range(dim):
self.assertEqual(x.select(dim, i), res[i])
self.assertEqual(x.select(dim, i), res2[i])
def test_logspace(self):
_from = random.random()
to = _from + random.random()
res1 = torch.logspace(_from, to, 137)
res2 = torch.Tensor()
torch.logspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1))
self.assertEqual(torch.logspace(0, 1, 1), torch.ones(1), 0)
# Check non-default base=2
self.assertEqual(torch.logspace(1, 1, 1, 2), torch.ones(1) * 2)
self.assertEqual(torch.logspace(0, 2, 3, 2), torch.Tensor((1, 2, 4)))
# Check logspace_ for generating with start > end.
self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0)
# Check logspace_ for non-contiguous tensors.
x = torch.zeros(2, 3)
y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0)
def test_rand(self):
torch.manual_seed(123456)
res1 = torch.rand(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.rand(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_randint(self):
torch.manual_seed(123456)
res1 = torch.randint(0, 6, (SIZE, SIZE))
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.randint(0, 6, (SIZE, SIZE), out=res2)
torch.manual_seed(123456)
res3 = torch.randint(6, (SIZE, SIZE))
res4 = torch.Tensor()
torch.manual_seed(123456)
torch.randint(6, (SIZE, SIZE), out=res4)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
self.assertEqual(res1, res4)
self.assertEqual(res2, res3)
self.assertEqual(res2, res4)
self.assertEqual(res3, res4)
res1 = res1.view(-1)
high = (res1 < 6).type(torch.LongTensor)
low = (res1 >= 0).type(torch.LongTensor)
tensorSize = res1.size()[0]
assert(tensorSize == high.sum())
assert(tensorSize == low.sum())
def test_randn(self):
torch.manual_seed(123456)
res1 = torch.randn(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.randn(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_slice(self):
empty = torch.empty(0, 4)
x = torch.arange(0., 16).view(4, 4)
self.assertEqual(x[:], x)
self.assertEqual(x[:4], x)
# start and stop are clamped to the size of dim
self.assertEqual(x[:5], x)
# if start >= stop then the result is empty
self.assertEqual(x[2:1], empty)
self.assertEqual(x[2:2], empty)
# out of bounds is also empty
self.assertEqual(x[10:12], empty)
# additional correctness checks
self.assertEqual(x[:1].data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x[:-3].data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x[:, -2:3].data.tolist(), [[2], [6], [10], [14]])
self.assertEqual(x[0:-1:2].data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
@skipIfNoLapack
def test_ormqr(self):
mat1 = torch.randn(7, 7)
mat2 = torch.randn(7, 7)
q, r = torch.qr(mat1)
m, tau = torch.geqrf(mat1)
out_holder = torch.empty_like(mat1)
res1 = torch.mm(q, mat2)
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=False)
torch.ormqr(m, tau, mat2, out=out_holder)
self.assertEqual(res1, res2)
self.assertEqual(res2, out_holder)
res1 = torch.mm(mat2, q)
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=False)
torch.ormqr(m, tau, mat2, left=False, transpose=False, out=out_holder)
self.assertEqual(res1, res2)
self.assertEqual(res2, out_holder)
res1 = torch.mm(q.t(), mat2)
res2 = torch.ormqr(m, tau, mat2, left=True, transpose=True)
torch.ormqr(m, tau, mat2, left=True, transpose=True, out=out_holder)
self.assertEqual(res1, res2)
self.assertEqual(res2, out_holder)
res1 = torch.mm(mat2, q.t())
res2 = torch.ormqr(m, tau, mat2, left=False, transpose=True)
torch.ormqr(m, tau, mat2, left=False, transpose=True, out=out_holder)
self.assertEqual(res1, res2)
self.assertEqual(res2, out_holder)
@staticmethod
def _test_fft_ifft_rfft_irfft(self, device='cpu', dtype=torch.double):
def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device))
for normalized in (True, False):
res = x.fft(signal_ndim, normalized=normalized)
rec = res.ifft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec, 1e-8, 'fft and ifft')
res = x.ifft(signal_ndim, normalized=normalized)
rec = res.fft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec, 1e-8, 'ifft and fft')
def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device))
signal_numel = 1
signal_sizes = x.size()[-signal_ndim:]
for normalized, onesided in product((True, False), repeat=2):
res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided)
if not onesided: # check Hermitian symmetry
def test_one_sample(res, test_num=10):
idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes]
for idx in zip(*idxs_per_dim):
reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size()))
idx_val = res.__getitem__(idx)
reflected_val = res.__getitem__(reflected_idx)
self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part')
self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part')
if len(sizes) == signal_ndim:
test_one_sample(res)
else:
output_non_batch_shape = res.size()[-(signal_ndim + 1):]
flatten_batch_res = res.view(-1, *output_non_batch_shape)
nb = flatten_batch_res.size(0)
test_idxs = torch.LongTensor(min(nb, 4)).random_(nb)
for test_idx in test_idxs.tolist():
test_one_sample(flatten_batch_res[test_idx])
# compare with C2C
xc = torch.stack([x, torch.zeros_like(x)], -1)
xc_res = xc.fft(signal_ndim, normalized=normalized)
self.assertEqual(res, xc_res)
test_input_signal_sizes = [signal_sizes]
rec = res.irfft(signal_ndim, normalized=normalized,
onesided=onesided, signal_sizes=signal_sizes)
self.assertEqual(x, rec, 1e-8, 'rfft and irfft')
if not onesided: # check that we can use C2C ifft
rec = res.ifft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real')
self.assertEqual(rec.select(-1, 1).data.abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary')
# contiguous case
_test_real((100,), 1)
_test_real((10, 1, 10, 100), 1)
_test_real((100, 100), 2)
_test_real((2, 2, 5, 80, 60), 2)
_test_real((50, 40, 70), 3)
_test_real((30, 1, 50, 25, 20), 3)
_test_complex((100, 2), 1)
_test_complex((100, 100, 2), 1)
_test_complex((100, 100, 2), 2)
_test_complex((1, 20, 80, 60, 2), 2)
_test_complex((50, 40, 70, 2), 3)
_test_complex((6, 5, 50, 25, 20, 2), 3)
# non-contiguous case
_test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type
_test_real((100, 100, 3), 1, lambda x: x[:, :, 0])
_test_real((100, 100), 2, lambda x: x.t())
_test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60])
_test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80])
_test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3))
_test_complex((2, 100), 1, lambda x: x.t())
_test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2))
_test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type
_test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100))
_test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:])
_test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21])
# non-contiguous with strides not representable as aligned with complex type
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1]))
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
def test_fft_ifft_rfft_irfft(self):
self._test_fft_ifft_rfft_irfft(self)
@unittest.skip("Not implemented yet")
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
@unittest.skip("Not implemented yet")
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
@unittest.skip("Not implemented yet")
def _test_conv_corr_eq(self, fn, fn_2_to_3):
ix = math.floor(random.randint(20, 40))
iy = math.floor(random.randint(20, 40))
iz = math.floor(random.randint(20, 40))
kx = math.floor(random.randint(5, 10))
ky = math.floor(random.randint(5, 10))
kz = math.floor(random.randint(5, 10))
x = torch.rand(ix, iy, iz)
k = torch.rand(kx, ky, kz)
o3 = fn(x, k)
o32 = torch.zeros(o3.size())
fn_2_to_3(x, k, o3, o32)
self.assertEqual(o3, o32)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
self._test_conv_corr_eq(torch.xcorr3, reference)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq_full(self):
def reference(x, k, o3, o32):
for i in range(x.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
@unittest.skip("Not implemented yet")
def test_conv3_conv2_eq_valid(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
self._test_conv_corr_eq(torch.conv3, reference)
@unittest.skip("Not implemented yet")
def test_fconv3_fconv2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
def test_isfinite(self):
x = torch.Tensor([1, inf, 2, -inf, nan, -10])
self.assertEqual(torch.isfinite(x), torch.BoolTensor([True, False, True, False, False, True]))
def test_isfinite_int(self):
x = torch.tensor([1, 2, 3])
self.assertEqual(torch.isfinite(x), torch.BoolTensor([True, True, True]))
def test_isfinite_type(self):
with self.assertRaises(TypeError):
torch.isfinite(1) # Parameter must be a tensor
def test_isinf_type(self):
with self.assertRaises(TypeError):
torch.isinf(1) # Parameter must be a tensor
def test_isnan(self):
x = torch.Tensor([1, nan, 2])
self.assertEqual(torch.isnan(x), torch.ByteTensor([0, 1, 0]))
def test_RNGState(self):
state = torch.get_rng_state()
stateCloned = state.clone()
before = torch.rand(1000)
self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0)
torch.set_rng_state(state)
after = torch.rand(1000)
self.assertEqual(before, after, 0)
def test_RNGStateAliasing(self):
# Fork the random number stream at this point
gen = torch.Generator()
gen.set_state(torch.get_rng_state())
self.assertEqual(gen.get_state(), torch.get_rng_state())
target_value = torch.rand(1000)
# Dramatically alter the internal state of the main generator
_ = torch.rand(100000)
forked_value = torch.rand(1000, generator=gen)
self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.")
def test_RNG_after_pickle(self):
torch.random.manual_seed(100)
before = torch.rand(10)
torch.random.manual_seed(100)
buf = io.BytesIO()
tensor = torch.Tensor([1, 2, 3])
ForkingPickler(buf, pickle.HIGHEST_PROTOCOL).dump(tensor)
after = torch.rand(10)
self.assertEqual(before, after, 0)
def test_boxMullerState(self):
torch.manual_seed(123)
odd_number = 101
seeded = torch.randn(odd_number)
state = torch.get_rng_state()
midstream = torch.randn(odd_number)
torch.set_rng_state(state)
repeat_midstream = torch.randn(odd_number)
torch.manual_seed(123)
reseeded = torch.randn(odd_number)
self.assertEqual(midstream, repeat_midstream, 0,
'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
self.assertEqual(seeded, reseeded, 0,
'repeated calls to manual_seed not generating same sequence of normally distributed numbers')
def test_manual_seed(self):
rng_state = torch.get_rng_state()
torch.manual_seed(2)
x = torch.randn(100)
self.assertEqual(torch.initial_seed(), 2)
torch.manual_seed(2)
y = torch.randn(100)
self.assertEqual(x, y)
torch.set_rng_state(rng_state)
def test_numel(self):
b = torch.ByteTensor(3, 100, 100)
self.assertEqual(b.nelement(), 3 * 100 * 100)
self.assertEqual(b.numel(), 3 * 100 * 100)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_empty_storage_view(self):
# we should be able to "modify" slices of a 0-element
# array without an error being raised due to
# trying to resize its storage
t = torch.from_numpy(np.empty((0, 4)))
t[:, 1::2] *= 1
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_newaxis_numpy_comparison(self):
def run_test(tensor, *idx):
npt = tensor.numpy()
self.assertEqual(tensor[idx], npt[idx])
# 1D Tensor Tests
x = torch.arange(0, 10)
cases = [
[None],
[None, None],
[Ellipsis, None],
[None, Ellipsis],
[2, None],
[None, 2],
[Ellipsis, None, 2],
[Ellipsis, 2, None],
[2, Ellipsis, None],
[2, None, Ellipsis],
[None, 2, Ellipsis],
[None, Ellipsis, 2],
]
for case in cases:
run_test(x, *case)
# 2D Tensor Tests
x = torch.arange(0, 12).view(3, 4)
cases = [
[None],
[None, None],
[None, None, None],
[Ellipsis, None],
[Ellipsis, None, None],
[None, Ellipsis],
[None, Ellipsis, None],
[None, None, Ellipsis],
[2, None],
[2, None, Ellipsis],
[2, Ellipsis, None],
[None, 2, Ellipsis],
[Ellipsis, 2, None],
[Ellipsis, None, 2],
[None, Ellipsis, 2],
[1, 2, None],
[1, 2, Ellipsis, None],
[1, Ellipsis, 2, None],
[Ellipsis, 1, None, 2],
[Ellipsis, 1, 2, None],
[1, None, 2, Ellipsis],
[None, 1, Ellipsis, 2],
[None, 1, 2, Ellipsis],
]
for case in cases:
run_test(x, *case)
def _consecutive(self, size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
sequence.add_(start - 1)
return sequence.resize_(*size)
def test_newindex(self):
reference = self._consecutive((3, 3, 3))
# This relies on __index__() being correct - but we have separate tests for that
def checkPartialAssign(index):
reference = torch.zeros(3, 3, 3)
reference[index] = self._consecutive((3, 3, 3))[index]
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0)
reference[index] = 0
self.assertEqual(reference, torch.zeros(3, 3, 3), 0)
checkPartialAssign(0)
checkPartialAssign(1)
checkPartialAssign(2)
checkPartialAssign((0, 1))
checkPartialAssign((1, 2))
checkPartialAssign((0, 2))
checkPartialAssign(torch.LongTensor((0, 2)))
with self.assertRaises(IndexError):
reference[1, 1, 1, 1] = 1
with self.assertRaises(IndexError):
reference[1, 1, 1, (1, 1)] = 1
with self.assertRaises(IndexError):
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
with self.assertRaises(IndexError):
reference[0.0] = 1
with self.assertRaises(TypeError):
reference[0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, ..., 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0] = 1
def test_index_add(self):
num_copy, num_dest = 3, 3
dest = torch.randn(num_dest, 4, 5)
src = torch.randn(num_copy, 4, 5)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] += src[i]
self.assertEqual(dest, dest2)
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = dest2[idx[i]] + src[i]
self.assertEqual(dest, dest2)
def test_t(self):
# Test 0D tensors
x = torch.randn(())
self.assertEqual(x, x.t())
x = x.to_sparse()
self.assertEqual(x, x.t())
# Test 1D tensors
x = torch.arange(4)
self.assertEqual(x, x.t())
x = x.to_sparse()
self.assertEqual(x, x.t())
# Test 2D tensors
x = torch.rand((2, 2))
self.assertEqual(x.t(), x.transpose(0, 1))
x = x.to_sparse()
self.assertEqual(x.t(), x.transpose(0, 1))
# Test 3D tensor
x = torch.rand((2, 2, 2))
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'):
x.t()
x = x.to_sparse()
with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'):
x.t()
def test_take(self):
def check(src, idx):
expected = src.contiguous().view(-1).index_select(
0, idx.contiguous().view(-1)).view_as(idx)
actual = src.take(idx)
self.assertEqual(actual.size(), idx.size())
self.assertEqual(expected, actual)
src = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
check(src, idx)
check(src.transpose(1, 2), idx)
check(src.bool(), idx)
def test_put_(self):
def check(dst, idx, value):
expected = dst.clone().view(-1).index_copy_(
0, idx.contiguous().view(-1), value.contiguous().view(-1))
expected = expected.view_as(dst)
dst.put_(idx, value)
self.assertEqual(expected, dst)
dst = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
values = torch.randn(2, 2)
check(dst, idx, values)
check(dst.transpose(1, 2), idx, values)
values = torch.tensor([[False, False], [False, False]])
check(dst.bool(), idx, values)
def test_put_accumulate(self):
dst = torch.ones(2, 2)
idx = torch.LongTensor([[0, 1], [0, 1]])
src = torch.Tensor([1, 2, 3, 4])
dst.put_(idx, src, accumulate=True)
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
# Fill idx with valid indices.
@staticmethod
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
def test_flatten(self):
# Test that flatten returns 1-dim tensor when given a 0-dim tensor
zero_dim_tensor = torch.tensor(123)
flat0 = zero_dim_tensor.flatten()
one_dim_tensor = torch.tensor([123])
flat1 = zero_dim_tensor.flatten()
self.assertEqual(zero_dim_tensor.shape, torch.Size([]))
self.assertEqual(flat0.shape, torch.Size([1]))
self.assertEqual(one_dim_tensor.shape, torch.Size([1]))
self.assertEqual(flat1.shape, torch.Size([1]))
self.assertEqual(flat0, one_dim_tensor)
self.assertEqual(flat0, flat1)
self.assertEqual(flat0.shape, flat1.shape)
# Test both float tensor and quantized tensor
tensors = [torch.randn(5, 5, 5, 5),
torch._empty_affine_quantized([5, 5, 5, 5],
scale=2,
zero_point=3,
dtype=torch.quint8)]
for src in tensors:
flat = src.flatten(0, -1)
self.assertEqual(flat.shape, torch.Size([625]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(0, 2)
self.assertEqual(flat.shape, torch.Size([125, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(0, 1)
self.assertEqual(flat.shape, torch.Size([25, 5, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(1, 2)
self.assertEqual(flat.shape, torch.Size([5, 25, 5]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(2, 3)
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(-2, -1)
self.assertEqual(flat.shape, torch.Size([5, 5, 25]))
self.assertEqual(src.view(-1), flat.view(-1))
flat = src.flatten(2, 2)
self.assertEqual(flat, src)
# out of bounds index
with self.assertRaisesRegex(IndexError, 'Dimension out of range'):
src.flatten(5, 10)
# invalid start and end
with self.assertRaisesRegex(RuntimeError, 'start_dim cannot come after end_dim'):
src.flatten(2, 0)
@staticmethod
def _test_gather(self, cast, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
src = torch.randn(m, n, o)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.LongTensor().resize_(*idx_size)
_TestTorchMixin._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
src = cast(src)
idx = cast(idx)
actual = torch.gather(src, dim, idx)
expected = cast(torch.Tensor().resize_(*idx_size))
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 23
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
src = cast(torch.randn(3, 4, 5))
expected, idx = src.max(2, True)
expected = cast(expected)
idx = cast(idx)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, 0)
# Bool test case
t = torch.tensor([[False, True], [True, True]])
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])), torch.tensor([[False, False], [True, True]]))
def test_gather(self):
self._test_gather(self, lambda t: t)
@staticmethod
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = cast(torch.LongTensor().resize_(*idx_size))
_TestTorchMixin._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
if is_scalar:
src = random.random()
else:
src = cast(torch.Tensor(*idx_size).normal_())
base = cast(torch.randn(m, n, o))
actual = getattr(base.clone(), method)(dim, idx, src)
expected = base.clone()
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if method == 'scatter_' and not is_scalar:
expected[tuple(ii)] = src[i, j, k]
elif method == 'scatter_add_':
expected[tuple(ii)] += src[i, j, k]
else:
expected[tuple(ii)] = src
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 34
with self.assertRaises(RuntimeError):
getattr(base.clone(), method)(dim, idx, src)
# test for empty index, should be a no-op
idx = cast(torch.LongTensor())
actual = getattr(base.clone(), method)(dim, idx, src)
self.assertEqual(actual, base, 0)
def test_scatter(self):
self._test_scatter_base(self, lambda t: t, 'scatter_')
def test_scatterAdd(self):
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
def test_scatterFill(self):
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
def test_masked_scatter(self):
with warnings.catch_warnings(record=True) as w:
for maskType in [torch.uint8, torch.bool]:
for dt in torch.testing.get_all_dtypes():
num_copy, num_dest = 3, 10
dest = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dt)
dest2 = dest.clone()
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
mask = torch.tensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0), dtype=maskType)
if dt == torch.bool:
# torch.bool is a special case and is being tested
# in a separate test
continue
if dt == torch.half:
self.assertRaises(RuntimeError, lambda: dest.masked_scatter_(mask, src))
continue
dest.masked_scatter_(mask, src)
j = 0
for i in range(num_dest):
if mask[i]:
dest2[i] = src[j]
j += 1
self.assertEqual(dest, dest2, 0)
# make source bigger than number of 1s in mask
src = torch.tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=dt)
dest.masked_scatter_(mask, src)
# make src smaller. this should fail
src = torch.randn(num_copy - 1)
with self.assertRaises(RuntimeError):
dest.masked_scatter_(mask, src)
self.assertEqual(len(w), 25)
warn = 'masked_scatter_ received a mask with dtype torch.uint8,'
for wi in w:
self.assertEqual(str(wi.message)[0:55], str(warn))
def test_masked_fill(self):
with warnings.catch_warnings(record=True) as w:
for dt in torch.testing.get_all_dtypes():
for dtype in [torch.uint8, torch.bool]:
num_dest = 10
dst = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt)
mask = torch.rand(num_dest).mul(2).floor().to(dtype)
val = random.random()
dst2 = dst.clone()
if dt == torch.half:
self.assertRaises(RuntimeError, lambda: dst.masked_fill_(mask, val))
continue
dst.masked_fill_(mask, val)
for i in range(num_dest):
if mask[i]:
dst2[i] = val
self.assertEqual(dst, dst2, 0)
# test non-contiguous case
dst = torch.randn(num_dest, num_dest, num_dest).permute((2, 0, 1))
dst2 = dst.clone()
dst.masked_fill_((dst > 0).to(dtype), val)
dst2.masked_fill_((dst2 > 0).to(dtype), val)
self.assertEqual(dst, dst2, 0)
self.assertEqual(len(w), 28)
warn = 'masked_fill_ received a mask with dtype torch.uint8,'
for wi in w:
self.assertEqual(str(wi.message)[0:52], str(warn))
def test_abs(self):
def _test_abs(tensors_dict):
for _category, tensors in tensors_dict.items():
for data in tensors:
_test_abs_single(data)
def _test_abs_single(data):
switch = torch.rand(data.size()).mul(2).floor().mul(2).add(-1).type(data.dtype)
res = torch.mul(data, switch)
self.assertTensorsSlowEqual(res.abs(), data, 1e-16)
shapes = [(3, 4), (3, 5, 7), (2, 2, 5, 8, 2, 3), (1000,), (10, 10, 10)]
for shape in shapes:
# Test all except char/byte
_test_abs(self._make_tensors(shape, val_range=(0, 1000)))
# Test char
_test_abs_single(torch.CharTensor(*shape).random_(0, 100))
# Test byte
byte_tensor = torch.ByteTensor(*shape).random_(0, 100)
self.assertTensorsSlowEqual(byte_tensor, byte_tensor.abs(), 1e-16)
# Checking that the right abs function is called for LongTensor
bignumber = 2 ** 31 + 1
res = torch.LongTensor((-bignumber,))
self.assertGreater(res.abs()[0], 0)
# One of
rec = torch.randn(2, 2, 3, 7, 6, 2).type(torch.float64).clamp(0, 1)
val1 = rec.select(-1, -1).data[0][0][0].sum()
val2 = rec.select(-1, -1).data.abs()[0][0][0].sum()
self.assertEqual(val1, val2, 1e-8, 'absolute value')
# Both abs(0.0) and abs(-0.0) should result in 0.0
for dtype in (torch.float, torch.double):
for abs_zeros in (torch.tensor([0.0, -0.0], dtype=dtype).abs().tolist(),
# test a large tensor so that the vectorized version is tested
torch.abs(-torch.zeros(10000, dtype=dtype)).tolist()):
for num in abs_zeros:
self.assertGreater(math.copysign(1.0, num), 0.0)
def test_unbiased(self):
tensor = torch.randn(100)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.FloatTensor([1.0, 2.0])
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_structseq_repr(self):
a = torch.arange(250).reshape(5, 5, 10)
expected = """
torch.return_types.max(
values=tensor([[ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],
[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
[190, 191, 192, 193, 194, 195, 196, 197, 198, 199],
[240, 241, 242, 243, 244, 245, 246, 247, 248, 249]]),
indices=tensor([[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]]))"""
self.assertEqual(repr(a.max(1)), textwrap.dedent(expected).strip())
def test_var_stability(self):
tensor = torch.FloatTensor([2281.5, 2281.25])
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_view_empty(self):
x = torch.randn(0, 6)
self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape)
def test_reshape(self):
x = torch.randn(3, 3)
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
y = torch.randn(4, 4, 4)[:, 0, :]
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
s = torch.randn(())
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
self.assertEqual(s.reshape(-1).shape, (1,))
self.assertRaises(RuntimeError, lambda: s.reshape(2))
empty = torch.tensor([])
self.assertEqual(empty, empty.reshape(-1))
self.assertEqual(empty, empty.reshape([0]))
# TODO: fix these once we have multi-dimensional empty tensors
self.assertEqual(empty.reshape([0, 1]).shape, (0, 1))
self.assertEqual(empty.reshape([1, -1]).shape, (1, 0))
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
x = torch.randn(3, 3)
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr())
self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr())
self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10)))
def test_empty_reshape(self):
x = torch.randn(0, 6)
self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape)
# should be viewable -- i.e. data_ptr is the same.
self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr())
# match NumPy semantics -- don't infer the size of dimension with a degree of freedom
self.assertRaises(RuntimeError, lambda: x.reshape(0, -1))
def check_single_matmul(self, x, y, shape):
a = np.array(x, copy=False)
b = np.array(y, copy=False)
expected = np.matmul(a, b)
ans = torch.matmul(x, y)
self.assertTrue(ans.is_contiguous())
self.assertTrue(np.array_equal(ans, expected))
out = torch.zeros(*shape, dtype=torch.int64)
ans = torch.matmul(x, y, out=out)
self.assertIs(ans, out)
self.assertTrue(ans.is_contiguous())
self.assertTrue(np.array_equal(ans, expected))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_matmul_small_brute_force_1d_Nd(self):
# Issue #20452: range(0, 10) does not work.
n = 1
for m in range(1, 8):
for p in range(1, 8):
for o in range(1, 5):
# 1d, 3d, inner dimensions C
x = torch.arange(m)
y = torch.arange(o * m * p).reshape(o, m, p)
self.check_single_matmul(x, y, (o, n, p))
# 1d, 3d, inner dimensions Fortran
x = torch.arange(m)
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
self.check_single_matmul(x, y, (o, n, p))
# 1d, 3d, inner dimensions non-contiguous
x = torch.arange(2 * m)[::2]
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
self.check_single_matmul(x, y, (o, n, p))
for r in range(1, 5):
# 1d, 4d, inner dimensions C
x = torch.arange(m)
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
self.check_single_matmul(x, y, (r, o, n, p))
# 1d, 4d, inner dimensions Fortran
x = torch.arange(m)
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
self.check_single_matmul(x, y, (r, o, n, p))
# 1d, 4d, inner dimensions non-contiguous
x = torch.arange(2 * m)[::2]
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
self.check_single_matmul(x, y, (r, o, n, p))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_matmul_small_brute_force_2d_Nd(self):
# Issue #20452: range(0, 10) does not work.
for n in range(1, 5):
for m in range(1, 5):
for p in range(1, 5):
for o in range(1, 3):
# 2d, 3d, inner dimensions C
x = torch.arange(n * m).reshape(n, m)
y = torch.arange(o * m * p).reshape(o, m, p)
self.check_single_matmul(x, y, (o, n, p))
# 2d, 3d, inner dimensions Fortran
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
y = torch.arange(o * p * m).reshape(o, p, m).transpose(-1, -2)
self.check_single_matmul(x, y, (o, n, p))
# 2d, 3d, inner dimensions non-contiguous
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
y = torch.arange(o * m * 2 * p).reshape(o, m, 2 * p)[:, :, ::2]
self.check_single_matmul(x, y, (o, n, p))
for r in range(1, 2):
# 2d, 4d, inner dimensions C
x = torch.arange(n * m).reshape(n, m)
y = torch.arange(r * o * m * p).reshape(r, o, m, p)
self.check_single_matmul(x, y, (r, o, n, p))
# 2d, 4d, inner dimensions Fortran
x = torch.arange(m * n).reshape(m, n).transpose(-1, -2)
y = torch.arange(r * o * p * m).reshape(r, o, p, m).transpose(-1, -2)
self.check_single_matmul(x, y, (r, o, n, p))
# 2d, 4d, inner dimensions non-contiguous
x = torch.arange(n * 2 * m).reshape(n, 2 * m)[:, ::2]
y = torch.arange(r * o * m * 2 * p).reshape(r, o, m, 2 * p)[:, :, :, ::2]
self.check_single_matmul(x, y, (r, o, n, p))
def test_expand(self):
tensor = torch.rand(1, 8, 1)
tensor2 = torch.rand(5)
template = torch.rand(4, 8, 5)
target = template.size()
self.assertEqual(tensor.expand_as(template).size(), target)
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
self.assertEqual(tensor.expand(target).size(), target)
self.assertEqual(tensor2.expand_as(template).size(), target)
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
self.assertEqual(tensor2.expand(target).size(), target)
# test double expand
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
# test non-contiguous
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
self.assertFalse(noncontig.is_contiguous())
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
# make sure it's compatible with unsqueeze
expanded = tensor2.expand(1, 1, 5)
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
self.assertEqual(expanded, unsqueezed)
self.assertEqual(expanded.stride(), unsqueezed.stride())
# test -1 as target size
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
# test expanding empty to empty
self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0))
def test_repeat(self):
initial_shape = (8, 4)
tensor = torch.rand(*initial_shape)
size = (3, 1, 1)
torchSize = torch.Size(size)
target = [3, 8, 4]
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
self.assertEqual(tensor.repeat(torchSize).size(), target,
'Error in repeat using LongStorage')
result = tensor.repeat(*size)
self.assertEqual(result.size(), target, 'Error in repeat using result')
result = tensor.repeat(torchSize)
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
zeroDimTarget = torch.Size([24, 0])
self.assertEqual(tensor.repeat((3, 0)).size(), zeroDimTarget, "Error when calling with 0 repeats")
def test_repeat_interleave(self):
x = torch.tensor([0, 1, 2, 3])
expected = torch.tensor([1, 2, 2, 3, 3, 3])
self.assertEqual(torch.repeat_interleave(x), expected)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.arange(4).reshape(2, 2))
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.arange(4.0))
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4]))
y = torch.tensor([[1, 2], [3, 4]])
y1_v1 = torch.repeat_interleave(y, 2)
y1_v2 = torch.repeat_interleave(y, torch.tensor(2))
y1_v3 = torch.repeat_interleave(y, torch.tensor([2]))
y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4])
self.assertEqual(y1_v1, y1_expect)
self.assertEqual(y1_v2, y1_expect)
self.assertEqual(y1_v3, y1_expect)
y2 = torch.repeat_interleave(y, 3, dim=1)
y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
self.assertEqual(y2, y2_expect)
y3 = torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
y3_expect = torch.tensor([[1, 2],
[3, 4],
[3, 4]])
self.assertEqual(y3, y3_expect)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(y, torch.tensor([1, 2, 3]), dim=0)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(y, torch.arange(9).reshape(3, 3), dim=0)
# test zero sized dimension
x = torch.zeros((5, 0))
y = torch.repeat_interleave(x, repeats=3, dim=1)
self.assertEqual(y, x.new_zeros(5, 0))
x = torch.tensor([], dtype=torch.int64)
y = torch.repeat_interleave(x, x)
self.assertEqual(y, x)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_repeat_tile(self):
initial_shape = (8, 4)
repeats = ((3, 1, 1),
(3, 3, 3),
(1, 2, 1),
(2, 2, 2, 2))
def _generate_noncontiguous_input():
out = np.broadcast_to(np.random.random((1, 4)),
initial_shape)
assert not (out.flags.c_contiguous or out.flags.f_contiguous)
return out
for repeat in repeats:
for tensor in (torch.from_numpy(np.random.random(initial_shape)),
torch.from_numpy(_generate_noncontiguous_input()),):
self.assertEqual(tensor.repeat(*repeat).numpy(),
np.tile(tensor.numpy(), repeat))
def test_is_same_size(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4)
t3 = torch.Tensor(1, 9, 3, 3)
t4 = torch.Tensor(3, 4, 9, 10)
self.assertFalse(t1.is_same_size(t2))
self.assertFalse(t1.is_same_size(t3))
self.assertTrue(t1.is_same_size(t4))
def test_is_set_to(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4, 9, 10)
t3 = torch.Tensor().set_(t1)
t4 = t3.clone().resize_(12, 90)
self.assertFalse(t1.is_set_to(t2))
self.assertTrue(t1.is_set_to(t3))
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
self.assertFalse(t1.is_set_to(t4))
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
"Tensors with no storages should not appear to be set "
"to each other")
t1 = torch.tensor([True, True], dtype=torch.bool)
t2 = torch.tensor([0], dtype=torch.bool).set_(t1)
self.assertTrue(t1.is_set_to(t2))
def test_tensor_set(self):
t1 = torch.Tensor()
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
size = torch.Size([9, 3, 4, 10])
t1.set_(t2.storage(), 0, size)
self.assertEqual(t1.size(), size)
t1.set_(t2.storage(), 0, tuple(size))
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), (120, 40, 10, 1))
stride = (10, 360, 90, 1)
t1.set_(t2.storage(), 0, size, stride)
self.assertEqual(t1.stride(), stride)
t1.set_(t2.storage(), 0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
# test argument names
t1 = torch.Tensor()
# 1. case when source is tensor
t1.set_(source=t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
# 2. case when source is storage
t1.set_(source=t2.storage())
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
# 3. case when source is storage, and other args also specified
t1.set_(source=t2.storage(), storage_offset=0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
t1 = torch.tensor([True, True], dtype=torch.bool)
t2 = torch.tensor([False, False], dtype=torch.bool)
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
def test_tensor_set_errors(self):
f_cpu = torch.randn((2, 3), dtype=torch.float32)
d_cpu = torch.randn((2, 3), dtype=torch.float64)
# change dtype
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu.storage()))
self.assertRaises(RuntimeError,
lambda: f_cpu.set_(d_cpu.storage(), 0, d_cpu.size(), d_cpu.stride()))
self.assertRaises(RuntimeError, lambda: f_cpu.set_(d_cpu))
# change device
if torch.cuda.is_available():
f_cuda = torch.randn((2, 3), dtype=torch.float32, device='cuda')
# cpu -> cuda
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda.storage()))
self.assertRaises(RuntimeError,
lambda: f_cpu.set_(f_cuda.storage(), 0, f_cuda.size(), f_cuda.stride()))
self.assertRaises(RuntimeError, lambda: f_cpu.set_(f_cuda))
# cuda -> cpu
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu.storage()))
self.assertRaises(RuntimeError,
lambda: f_cuda.set_(f_cpu.storage(), 0, f_cpu.size(), f_cpu.stride()))
self.assertRaises(RuntimeError, lambda: f_cuda.set_(f_cpu))
def test_equal(self):
# Contiguous, 1D
t1 = torch.Tensor((3, 4, 9, 10))
t2 = t1.contiguous()
t3 = torch.Tensor((1, 9, 3, 10))
t4 = torch.Tensor((3, 4, 9))
t5 = torch.Tensor()
self.assertTrue(t1.equal(t2))
self.assertFalse(t1.equal(t3))
self.assertFalse(t1.equal(t4))
self.assertFalse(t1.equal(t5))
self.assertTrue(torch.equal(t1, t2))
self.assertFalse(torch.equal(t1, t3))
self.assertFalse(torch.equal(t1, t4))
self.assertFalse(torch.equal(t1, t5))
# Non contiguous, 2D
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
s1 = s[:, 1:3]
s2 = s1.clone()
s3 = torch.Tensor(((2, 3), (6, 7)))
s4 = torch.Tensor(((0, 0), (0, 0)))
self.assertFalse(s1.is_contiguous())
self.assertTrue(s1.equal(s2))
self.assertTrue(s1.equal(s3))
self.assertFalse(s1.equal(s4))
self.assertTrue(torch.equal(s1, s2))
self.assertTrue(torch.equal(s1, s3))
self.assertFalse(torch.equal(s1, s4))
def test_element_size(self):
byte = torch.ByteStorage().element_size()
char = torch.CharStorage().element_size()
short = torch.ShortStorage().element_size()
int = torch.IntStorage().element_size()
long = torch.LongStorage().element_size()
float = torch.FloatStorage().element_size()
double = torch.DoubleStorage().element_size()
bool = torch.BoolStorage().element_size()
bfloat16 = torch.BFloat16Storage().element_size()
self.assertEqual(byte, torch.ByteTensor().element_size())
self.assertEqual(char, torch.CharTensor().element_size())
self.assertEqual(short, torch.ShortTensor().element_size())
self.assertEqual(int, torch.IntTensor().element_size())
self.assertEqual(long, torch.LongTensor().element_size())
self.assertEqual(float, torch.FloatTensor().element_size())
self.assertEqual(double, torch.DoubleTensor().element_size())
self.assertEqual(bool, torch.BoolTensor().element_size())
self.assertGreater(byte, 0)
self.assertGreater(char, 0)
self.assertGreater(short, 0)
self.assertGreater(int, 0)
self.assertGreater(long, 0)
self.assertGreater(float, 0)
self.assertGreater(double, 0)
self.assertGreater(bool, 0)
self.assertGreater(bfloat16, 0)
# These tests are portable, not necessarily strict for your system.
self.assertEqual(byte, 1)
self.assertEqual(char, 1)
self.assertEqual(bool, 1)
self.assertGreaterEqual(short, 2)
self.assertGreaterEqual(int, 2)
self.assertGreaterEqual(int, short)
self.assertGreaterEqual(long, 4)
self.assertGreaterEqual(long, int)
self.assertGreaterEqual(double, float)
def test_split(self):
tensor = torch.rand(7, 4)
split_size = 3
dim = 0
target_sizes = ([3, 4], [3, 4], [1, 4])
splits = tensor.split(split_size, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
# Variable sections split
tensor = torch.randn(20, 10)
dim = 0
split_sizes = [5, 5, 10]
target_sizes = ([[5, 10], [5, 10], [10, 10]])
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
split_sizes = [2, 2, 6]
target_sizes = ([20, 2], [20, 2], [20, 6])
dim = 1
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
def test_chunk(self):
tensor = torch.rand(4, 7)
num_chunks = 3
dim = 1
target_sizes = ([4, 3], [4, 3], [4, 1])
splits = tensor.chunk(num_chunks, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
# Invalid chunk sizes
error_regex = 'chunk expects.*greater than 0'
with self.assertRaisesRegex(RuntimeError, error_regex):
tensor.chunk(0)
with self.assertRaisesRegex(RuntimeError, error_regex):
tensor.chunk(-2)
def test_tolist(self):
list0D = []
tensor0D = torch.Tensor(list0D)
self.assertEqual(tensor0D.tolist(), list0D)
table1D = [1, 2, 3]
tensor1D = torch.Tensor(table1D)
storage = torch.Storage(table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
table2D = [[1, 2], [3, 4]]
tensor2D = torch.Tensor(table2D)
self.assertEqual(tensor2D.tolist(), table2D)
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
tensorNonContig = tensor3D.select(1, 1)
self.assertFalse(tensorNonContig.is_contiguous())
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
def test_permute(self):
orig = [1, 2, 3, 4, 5, 6, 7]
perm = torch.randperm(7).tolist()
x = torch.Tensor(*orig).fill_(0)
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
self.assertEqual(perm, new)
self.assertEqual(x.size(), orig)
def test_reversed(self):
val = torch.arange(0, 10)
self.assertEqual(reversed(val), torch.arange(9, -1, -1))
val = torch.arange(1, 10).view(3, 3)
self.assertEqual(reversed(val), torch.tensor([[7, 8, 9], [4, 5, 6], [1, 2, 3]]))
val = torch.tensor(42)
self.assertEqual(reversed(val), torch.tensor(42))
def test_contains(self):
x = torch.arange(0, 10)
self.assertEqual(4 in x, True)
self.assertEqual(12 in x, False)
x = torch.arange(1, 10).view(3, 3)
val = torch.arange(1, 4)
self.assertEqual(val in x, True)
val += 10
self.assertEqual(val in x, False)
self.assertRaisesRegex(
RuntimeError,
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type("foo")),
lambda: "foo" in x)
self.assertRaisesRegex(
RuntimeError,
"Tensor.__contains__ only supports Tensor or scalar, but you passed in a {}.".format(type([1, 2])),
lambda: [1, 2] in x)
def test_storage(self):
v = torch.randn(3, 5)
self.assertEqual(v.storage()[0], v.data[0][0])
self.assertEqual(v.storage()[14], v.data[2][4])
def test_deepcopy(self):
from copy import deepcopy
a = torch.randn(5, 5)
b = torch.randn(5, 5)
c = a.view(25)
q = [a, [a.storage(), b.storage()], b, c]
w = deepcopy(q)
self.assertEqual(w[0], q[0], 0)
self.assertEqual(w[1][0], q[1][0], 0)
self.assertEqual(w[1][1], q[1][1], 0)
self.assertEqual(w[1], q[1], 0)
self.assertEqual(w[2], q[2], 0)
# Check that deepcopy preserves sharing
w[0].add_(1)
for i in range(a.numel()):
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
self.assertEqual(w[3], c + 1)
w[2].sub_(1)
for i in range(a.numel()):
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
def test_deepcopy_scalar(self):
from copy import deepcopy
a = torch.tensor(5)
self.assertEqual(a.size(), deepcopy(a).size())
self.assertEqual(a, deepcopy(a))
def test_deepcopy_parameter(self):
from copy import deepcopy
l = torch.nn.Linear(10, 1)
s = l.state_dict(keep_vars=True)
self.assertEqual(torch.nn.Parameter, type(s['weight']))
self.assertEqual(torch.nn.Parameter, type(s['bias']))
s2 = deepcopy(s)
self.assertEqual(torch.nn.Parameter, type(s2['weight']))
self.assertEqual(torch.nn.Parameter, type(s2['bias']))
def test_pickle(self):
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
a = torch.randn(5, 5)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(a, b)
def test_pickle_parameter(self):
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
a = torch.nn.Parameter(torch.randn(5, 5))
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.nn.Parameter))
self.assertEqual(a.requires_grad, b.requires_grad)
self.assertEqual(a, b)
def test_pickle_parameter_no_requires_grad(self):
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
a = torch.nn.Parameter(torch.randn(5, 5), requires_grad=False)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.nn.Parameter))
self.assertEqual(a.requires_grad, b.requires_grad)
self.assertEqual(a, b)
def test_pickle_dtype(self):
t = torch.float32
serialized = pickle.dumps(t)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.dtype))
self.assertEqual(id(b), id(t))
def test_pickle_size(self):
a = torch.rand(10).size()
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertTrue(isinstance(b, torch.Size))
self.assertEqual(a, b)
def test_norm_fastpaths(self):
x = torch.randn(3, 5)
# slow path
result = torch.norm(x, 4.5, 1)
expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5)
self.assertEqual(result, expected)
# fast 0-norm
result = torch.norm(x, 0, 1)
expected = (x != 0).type_as(x).sum(1)
self.assertEqual(result, expected)
# fast 1-norm
result = torch.norm(x, 1, 1)
expected = x.abs().sum(1)
self.assertEqual(result, expected)
# fast 2-norm
result = torch.norm(x, 2, 1)
expected = torch.sqrt(x.pow(2).sum(1))
self.assertEqual(result, expected)
# fast 3-norm
result = torch.norm(x, 3, 1)
expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0)
self.assertEqual(result, expected)
@staticmethod
def _test_bernoulli(self, t_dtype, p_dtype, device):
for trivial_p in ([0, 1], [1, 0, 1, 1, 0, 1]):
x = torch.tensor(trivial_p, dtype=p_dtype, device=device)
self.assertEqual(x.bernoulli().tolist(), trivial_p)
def isBinary(t):
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum().item() == 0
p = torch.rand(5, 5, dtype=p_dtype, device=device)
self.assertTrue(isBinary(p.bernoulli()))
p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5)
self.assertTrue(isBinary(p.bernoulli()))
p = torch.rand(5, 5, dtype=p_dtype, device=device)
torch.bernoulli(torch.rand_like(p), out=p)
self.assertTrue(isBinary(p))
p = torch.rand(5, dtype=p_dtype, device=device).expand(5, 5)
torch.bernoulli(torch.rand_like(p), out=p)
self.assertTrue(isBinary(p))
t = torch.empty(10, 10, dtype=t_dtype, device=device)
t.fill_(2)
t.bernoulli_(0.5)
self.assertTrue(isBinary(t))
p = torch.rand(10, dtype=p_dtype, device=device).expand(10, 10)
t.fill_(2)
t.bernoulli_(p)
self.assertTrue(isBinary(t))
t.fill_(2)
torch.bernoulli(torch.rand_like(t, dtype=p_dtype), out=t)
self.assertTrue(isBinary(t))
t.fill_(2)
t.bernoulli_(torch.rand_like(t, dtype=p_dtype))
self.assertTrue(isBinary(t))
def test_bernoulli(self):
self._test_bernoulli(self, torch.float32, torch.float64, 'cpu')
# test that it works with integral tensors
self._test_bernoulli(self, torch.uint8, torch.float64, 'cpu')
# test that it works with bool tensors
self._test_bernoulli(self, torch.bool, torch.float32, 'cpu')
def test_bernoulli_edge_cases(self):
# Need to draw a lot of samples to cover every random floating point number.
a = torch.zeros(10000, 10000, dtype=torch.float32) # probability of drawing "1" is 0
num_ones = (torch.bernoulli(a) == 1).sum()
self.assertEqual(num_ones, 0)
b = torch.ones(10000, 10000, dtype=torch.float32) # probability of drawing "1" is 1
num_zeros = (torch.bernoulli(b) == 0).sum()
self.assertEqual(num_zeros, 0)
def test_generator_cpu(self):
# test default generators are equal
self.assertEqual(torch.default_generator, torch.default_generator)
# tests Generator API
# manual_seed, seed, initial_seed, get_state, set_state
g1 = torch.Generator()
g2 = torch.Generator()
g1.manual_seed(12345)
g2.manual_seed(12345)
self.assertEqual(g1.initial_seed(), g2.initial_seed())
g1.seed()
g2.seed()
self.assertNotEqual(g1.initial_seed(), g2.initial_seed())
g1 = torch.Generator()
g2_state = g2.get_state()
g2_randn = torch.randn(1, generator=g2)
g1.set_state(g2_state)
g1_randn = torch.randn(1, generator=g1)
self.assertEqual(g1_randn, g2_randn)
default_state = torch.default_generator.get_state()
q = torch.Tensor(100)
g1_normal = q.normal_()
g2 = torch.Generator()
g2.set_state(default_state)
g2_normal = q.normal_(generator=g2)
self.assertEqual(g1_normal, g2_normal)
def test_sobolengine_unscrambled_lowdim(self):
engine_1d = torch.quasirandom.SobolEngine(1)
expected_1d = torch.tensor([0.5, 0.75, 0.25, 0.375, 0.875, 0.625, 0.125, 0.1875, 0.6875, 0.9375])
actual_1d = engine_1d.draw(10)
self.assertEqual(actual_1d.view(-1), expected_1d)
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
# Test out kwarg
engine_1d.reset()
actual_1d_out = torch.Tensor().float()
engine_1d.draw(10, out=actual_1d_out)
self.assertEqual(actual_1d.view(-1), expected_1d)
engine_3d = torch.quasirandom.SobolEngine(3)
expected_3d = torch.tensor([0.5, 0.75, 0.25, 0.625, 0.125, 0.375, 0.875, 0.3125, 0.8125, 0.5625])
actual_3d = engine_3d.draw(10)
self.assertEqual(actual_3d[:, 2], expected_3d)
self.assertEqual(actual_3d[:, 0], expected_1d)
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
engine_3d = torch.quasirandom.SobolEngine(3)
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
self.assertEqual(draws, actual_3d)
engine_3d = torch.quasirandom.SobolEngine(3).fast_forward(5)
draws = engine_3d.draw(5)
self.assertEqual(draws, actual_3d[5:])
engine_3d.reset()
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
engine_3d.fast_forward(2)
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
def test_sobolengine_unscrambled_highdim(self):
from collections import Counter
engine = torch.quasirandom.SobolEngine(1111)
count1 = dict(Counter(engine.draw().view(-1).tolist()))
count2 = dict(Counter(engine.draw().view(-1).tolist()))
count3 = dict(Counter(engine.draw().view(-1).tolist()))
self.assertTrue(count1 == {0.5: 1111})
self.assertTrue(count2 == {0.25: 580, 0.75: 531})
self.assertTrue(count3 == {0.25: 531, 0.75: 580})
engine = torch.quasirandom.SobolEngine(1111)
draws = engine.draw(1000)
self.assertTrue(torch.all(draws <= 1))
self.assertTrue(torch.all(draws >= 0))
def test_sobolengine_scrambled_lowdim(self):
engine_1d = torch.quasirandom.SobolEngine(1, scramble=True, seed=1729)
expected_1d = [0.16478512, 0.43221009, 0.84261382, 0.99750268, 0.27460563,
0.01084163, 0.73373985, 0.65039611, 0.12329865, 0.35587373]
actual_1d = engine_1d.draw(10)
self.assertEqual(actual_1d.flatten(), torch.tensor(expected_1d))
self.assertEqual(actual_1d.size(), torch.Size([10, 1]))
# make sure random seed if chosen if none is provided
engine_1d_a = torch.quasirandom.SobolEngine(1, scramble=True)
engine_1d_b = torch.quasirandom.SobolEngine(1, scramble=True)
self.assertNotEqual(engine_1d_a.draw(2), engine_1d_b.draw(2))
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
expected_3d = [0.32642800, 0.17881306, 0.68837059, 0.46492538, 0.91789097,
0.58075899, 0.03642474, 0.68229187, 0.20051685, 0.30083340]
actual_3d = engine_3d.draw(10)
self.assertEqual(actual_3d[:, 2], torch.tensor(expected_3d))
self.assertEqual(actual_3d.size(), torch.Size([10, 3]))
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
draws = torch.cat([engine_3d.draw() for _ in range(0, 10)])
self.assertEqual(draws, actual_3d)
engine_3d = torch.quasirandom.SobolEngine(3, scramble=True, seed=1729)
engine_3d.fast_forward(5)
draws = engine_3d.draw(5)
self.assertEqual(draws, actual_3d[5:])
engine_3d.reset()
self.assertEqual(engine_3d.draw(3), actual_3d[:3])
engine_3d.fast_forward(2)
self.assertEqual(engine_3d.draw(5), actual_3d[5:])
def test_sobolengine_scrambled_highdim(self):
engine = torch.quasirandom.SobolEngine(1111, scramble=True)
draws = engine.draw(1000)
self.assertTrue(torch.all(draws <= 1))
self.assertTrue(torch.all(draws >= 0))
def test_parsing_int64(self):
# accepts integer arguments
x = torch.cumsum(torch.ones(5, 5), 0)
self.assertEqual(x, torch.cumsum(torch.ones(5, 5), torch.tensor(0)))
# doesn't accept floating point variables
self.assertRaises(TypeError, lambda: torch.cumsum(torch.ones(5, 5), torch.tensor(0.)))
def test_parsing_double(self):
# accepts floating point and integer arguments
x = torch.randn(2, 3)
torch.isclose(x, x, 1, 1)
self.assertTrue(torch.isclose(x, x, 1, 1).all())
self.assertTrue(torch.isclose(x, x, 1.5, 1.).all())
# accepts floating point and integer tensors
self.assertTrue(torch.isclose(x, x, torch.tensor(1), torch.tensor(1)).all())
self.assertTrue(torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1.)).all())
# doesn't accept variables with requires_grad
self.assertRaises(TypeError,
lambda: torch.isclose(x, x, torch.tensor(1.5), torch.tensor(1., requires_grad=True)).all())
def test_parsing_intlist(self):
# parse with integer variables
self.assertEqual(torch.Size([3, 4]), torch.ones((torch.tensor(3), torch.tensor(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(torch.tensor(3), torch.tensor(4)).shape)
# parse with numpy integers
if TEST_NUMPY:
self.assertEqual(torch.Size([3, 4]), torch.ones((np.array(3), np.int64(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(np.array(3), np.int64(4)).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones((np.int64(3), np.array(4))).shape)
self.assertEqual(torch.Size([3, 4]), torch.ones(np.int64(3), np.array(4)).shape)
# fail parse with float variables
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3.), torch.tensor(4))))
# fail parse with numpy floats
if TEST_NUMPY:
self.assertRaises(TypeError, lambda: torch.ones((np.float(3.), torch.tensor(4))))
self.assertRaises(TypeError, lambda: torch.ones((np.array(3.), torch.tensor(4))))
# fail parse with > 1 element variables
self.assertRaises(TypeError, lambda: torch.ones(torch.tensor(3, 3)))
self.assertRaises(TypeError, lambda: torch.ones((torch.tensor(3, 3))))
if TEST_NUMPY:
self.assertRaises(TypeError, lambda: torch.ones(np.array(3, 3)))
self.assertRaises(TypeError, lambda: torch.ones((np.array(3, 3))))
# fail parse with additional positional args after intlist arg
self.assertRaisesRegex(TypeError,
"received an invalid combination of arguments",
lambda: torch.LongTensor((6, 0), 1, 1, 0))
self.assertRaisesRegex(TypeError,
"missing 1 required positional arguments",
lambda: torch.tensor().new_zeros((5, 5), 0))
def _test_serialization_data(self):
a = [torch.randn(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)] # 0-3
b += [a[0].storage()] # 4
b += [a[0].reshape(-1)[1:4].storage()] # 5
b += [torch.arange(1, 11).int()] # 6
t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
b += [(t1.storage(), t1.storage(), t2.storage())] # 7
b += [a[0].reshape(-1)[0:2].storage()] # 8
return b
def _test_serialization_assert(self, b, c):
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
# I have to do it in this roundabout fashion, because there's no
# way to slice storages
for i in range(4):
self.assertEqual(c[4][i + 1], c[5][i])
# check that serializing the same storage view object unpickles
# it as one object not two (and vice versa)
views = c[7]
self.assertEqual(views[0]._cdata, views[1]._cdata)
self.assertEqual(views[0], views[2])
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
rootview = c[8]
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
def test_serialization(self):
# Test serialization with a real file
b = self._test_serialization_data()
for use_name in (False, True):
# Passing filename to torch.save(...) will cause the file to be opened twice,
# which is not supported on Windows
if sys.platform == "win32" and use_name:
continue
with tempfile.NamedTemporaryFile() as f:
handle = f if not use_name else f.name
torch.save(b, handle)
f.seek(0)
c = torch.load(handle)
self._test_serialization_assert(b, c)
# test non-ascii encoding of bytes arrays/strings
# The following bytes are produced by serializing
# [b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc', torch.zeros(1, dtype=torch.float), 2]
# in Python 2.7.12 and PyTorch 0.4.1, where the first element contains
# bytes of some utf-8 characters (i.e., `utf8_str.encode('utf-8')`).
serialized = (
b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03.'
b'\x80\x02}q\x01(U\x10protocol_versionq\x02M\xe9\x03U\n'
b'type_sizesq\x03}q\x04(U\x03intq\x05K\x04U\x05shortq\x06K\x02U'
b'\x04longq\x07K\x04uU\rlittle_endianq\x08\x88u.\x80\x02]q'
b'\x01(U\x0e\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85'
b'\xc5\xbcq\x02ctorch._utils\n_rebuild_tensor_v2\nq\x03((U'
b'\x07storageq\x04ctorch\nFloatStorage\nq\x05U\x0845640624q'
b'\x06U\x03cpuq\x07\x8a\x01\x01NtQK\x00K\x01\x85K\x01\x85'
b'\x89NtRq\x08K\x02e.\x80\x02]q\x01U\x0845640624q\x02a.\x01\x00'
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
)
buf = io.BytesIO(serialized)
utf8_bytes = b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc'
utf8_str = utf8_bytes.decode('utf-8')
if PY3:
loaded_utf8 = torch.load(buf, encoding='utf-8')
self.assertEqual(loaded_utf8, [utf8_str, torch.zeros(1, dtype=torch.float), 2])
buf.seek(0)
loaded_bytes = torch.load(buf, encoding='bytes')
else:
loaded_bytes = torch.load(buf)
self.assertEqual(loaded_bytes, [utf8_bytes, torch.zeros(1, dtype=torch.float), 2])
def test_serialization_filelike(self):
# Test serialization (load and save) with a filelike object
b = self._test_serialization_data()
with BytesIOContext() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self._test_serialization_assert(b, c)
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
def test_serialization_fake_zip(self):
data = [
ord('P'),
ord('K'),
5,
6
]
for i in range(0, 100):
data.append(0)
t = torch.tensor(data, dtype=torch.uint8)
with tempfile.NamedTemporaryFile() as f:
torch.save(t, f.name)
# If this check is False for all Python versions (i.e. the fix
# has been backported), this test and torch.serialization._is_zipfile
# can be deleted
self.assertTrue(zipfile.is_zipfile(f))
self.assertFalse(torch.serialization._is_zipfile(f))
self.assertEqual(torch.load(f.name), t)
def test_serialization_gzip(self):
# Test serialization with gzip file
b = self._test_serialization_data()
f1 = tempfile.NamedTemporaryFile(delete=False)
f2 = tempfile.NamedTemporaryFile(delete=False)
torch.save(b, f1)
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
with gzip.open(f2.name, 'rb') as f:
c = torch.load(f)
self._test_serialization_assert(b, c)
def test_serialization_offset(self):
a = torch.randn(5, 5)
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
m = torch.nn.Conv2d(1, 1, (1, 3))
i, j = 41, 43
with tempfile.NamedTemporaryFile() as f:
pickle.dump(i, f)
torch.save(a, f)
pickle.dump(j, f)
torch.save(b, f)
torch.save(m, f)
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
f.seek(0)
i_loaded = pickle.load(f)
a_loaded = torch.load(f)
j_loaded = pickle.load(f)
b_loaded = torch.load(f)
m_loaded = torch.load(f)
self.assertTrue(torch.equal(a, a_loaded))
self.assertTrue(torch.equal(b, b_loaded))
self.assertTrue(m.kernel_size == m_loaded.kernel_size)
self.assertEqual(i, i_loaded)
self.assertEqual(j, j_loaded)
def test_serialization_offset_filelike(self):
a = torch.randn(5, 5)
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
i, j = 41, 43
with BytesIOContext() as f:
pickle.dump(i, f)
torch.save(a, f)
pickle.dump(j, f)
torch.save(b, f)
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
f.seek(0)
i_loaded = pickle.load(f)
a_loaded = torch.load(f)
j_loaded = pickle.load(f)
b_loaded = torch.load(f)
self.assertTrue(torch.equal(a, a_loaded))
self.assertTrue(torch.equal(b, b_loaded))
self.assertEqual(i, i_loaded)
self.assertEqual(j, j_loaded)
def test_serialization_offset_gzip(self):
a = torch.randn(5, 5)
i = 41
f1 = tempfile.NamedTemporaryFile(delete=False)
f2 = tempfile.NamedTemporaryFile(delete=False)
with open(f1.name, 'wb') as f:
pickle.dump(i, f)
torch.save(a, f)
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
with gzip.open(f2.name, 'rb') as f:
j = pickle.load(f)
b = torch.load(f)
self.assertTrue(torch.equal(a, b))
self.assertEqual(i, j)
def test_half_tensor(self):
x = torch.randn(5, 5).float()
y = torch.randn(5, 5).float()
xh, yh = x.half(), y.half()
self.assertEqual(x.half().float(), x, 1e-3)
z = torch.Tensor(5, 5)
self.assertEqual(z.copy_(xh), x, 1e-3)
with tempfile.NamedTemporaryFile() as f:
torch.save(xh, f)
f.seek(0)
xh2 = torch.load(f)
self.assertEqual(xh.float(), xh2.float())
def test_serialize_device(self):
device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0']
device_obj = [torch.device(d) for d in device_str]
for device in device_obj:
device_copied = copy.deepcopy(device)
self.assertEqual(device, device_copied)
def test_serialization_backwards_compat(self):
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].reshape(-1)[1:4].clone().storage()]
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
c = torch.load(path)
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
# test some old tensor serialization mechanism
class OldTensorBase(object):
def __init__(self, new_tensor):
self.new_tensor = new_tensor
def __getstate__(self):
return (self.new_tensor.storage(),
self.new_tensor.storage_offset(),
tuple(self.new_tensor.size()),
self.new_tensor.stride())
class OldTensorV1(OldTensorBase):
def __reduce__(self):
return (torch.Tensor, (), self.__getstate__())
class OldTensorV2(OldTensorBase):
def __reduce__(self):
return (_rebuild_tensor, self.__getstate__())
x = torch.randn(30).as_strided([2, 3], [9, 3], 2)
for old_cls in [OldTensorV1, OldTensorV2]:
with tempfile.NamedTemporaryFile() as f:
old_x = old_cls(x)
torch.save(old_x, f)
f.seek(0)
load_x = torch.load(f)
self.assertEqual(x.storage(), load_x.storage())
self.assertEqual(x.storage_offset(), load_x.storage_offset())
self.assertEqual(x.size(), load_x.size())
self.assertEqual(x.stride(), load_x.stride())
# unique_key is necessary because on Python 2.7, if a warning passed to
# the warning module is the same, it is not raised again.
def _test_serialization_container(self, unique_key, filecontext_lambda):
tmpmodule_name = 'tmpmodule{}'.format(unique_key)
def import_module(name, filename):
if sys.version_info >= (3, 5):
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
else:
import imp
module = imp.load_source(name, filename)
sys.modules[module.__name__] = module
return module
with filecontext_lambda() as checkpoint:
fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network1.py')
module = import_module(tmpmodule_name, fname)
torch.save(module.Net(), checkpoint)
# First check that the checkpoint can be loaded without warnings
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEquals(len(w), 0)
# Replace the module with different source
fname = get_file_path_2(os.path.dirname(__file__), 'data', 'network2.py')
module = import_module(tmpmodule_name, fname)
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEquals(len(w), 1)
self.assertTrue(w[0].category, 'SourceChangeWarning')
def test_serialization_container(self):
self._test_serialization_container('file', tempfile.NamedTemporaryFile)
def test_serialization_container_filelike(self):
self._test_serialization_container('filelike', BytesIOContext)
def test_serialization_map_location(self):
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
def map_location(storage, loc):
return storage
def load_bytes():
with open(test_file_path, 'rb') as f:
return io.BytesIO(f.read())
fileobject_lambdas = [lambda: test_file_path, load_bytes]
cpu_map_locations = [
map_location,
{'cuda:0': 'cpu'},
'cpu',
torch.device('cpu'),
]
gpu_0_map_locations = [
{'cuda:0': 'cuda:0'},
'cuda',
'cuda:0',
torch.device('cuda'),
torch.device('cuda', 0)
]
gpu_last_map_locations = [
'cuda:{}'.format(torch.cuda.device_count() - 1),
]
def check_map_locations(map_locations, tensor_class, intended_device):
for fileobject_lambda in fileobject_lambdas:
for map_location in map_locations:
tensor = torch.load(fileobject_lambda(), map_location=map_location)
self.assertEqual(tensor.device, intended_device)
self.assertIsInstance(tensor, tensor_class)
self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]]))
check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu'))
if torch.cuda.is_available():
check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0))
check_map_locations(
gpu_last_map_locations,
torch.cuda.FloatTensor,
torch.device('cuda', torch.cuda.device_count() - 1)
)
@unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine")
@unittest.skipIf(not PY3, "Test tensors were serialized using python 3")
def test_load_nonexistent_device(self):
# Setup: create a serialized file object with a 'cuda:0' restore location
# The following was generated by saving a torch.randn(2, device='cuda') tensor.
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9'
b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq'
b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n'
b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq'
b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00'
b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2'
b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage'
b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00'
b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q'
b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00'
b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb'
b'\x1f\x82\xbe\xea\x81\xd1>')
buf = io.BytesIO(serialized)
error_msg = r'Attempting to deserialize object on a CUDA device'
with self.assertRaisesRegex(RuntimeError, error_msg):
_ = torch.load(buf)
def test_serialization_filelike_api_requirements(self):
filemock = FilelikeMock(b'', has_readinto=False)
tensor = torch.randn(3, 5)
torch.save(tensor, filemock)
expected_superset = {'write', 'flush'}
self.assertTrue(expected_superset.issuperset(filemock.calls))
# Reset between save and load
filemock.seek(0)
filemock.calls.clear()
_ = torch.load(filemock)
expected_superset = {'read', 'readline', 'seek', 'tell'}
self.assertTrue(expected_superset.issuperset(filemock.calls))
def _test_serialization_filelike(self, tensor, mock, desc):
f = mock(b'')
torch.save(tensor, f)
f.seek(0)
data = mock(f.read())
msg = 'filelike serialization with {}'
b = torch.load(data)
self.assertTrue(torch.equal(tensor, b), msg.format(desc))
def test_serialization_filelike_missing_attrs(self):
# Test edge cases where filelike objects are missing attributes.
# The Python io docs suggests that these attributes should really exist
# and throw io.UnsupportedOperation, but that isn't always the case.
mocks = [
('no readinto', lambda x: FilelikeMock(x)),
('has readinto', lambda x: FilelikeMock(x, has_readinto=True)),
('no fileno', lambda x: FilelikeMock(x, has_fileno=False)),
]
to_serialize = torch.randn(3, 10)
for desc, mock in mocks:
self._test_serialization_filelike(to_serialize, mock, desc)
def test_serialization_filelike_stress(self):
a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9))
# This one should call python read multiple times
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False),
'read() stress test')
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True),
'readinto() stress test')
def test_serialization_filelike_uses_readinto(self):
# For maximum effiency, when reading a file-like object,
# ensure the C API calls readinto instead of read.
a = torch.randn(5, 4)
f = io.BytesIO()
torch.save(a, f)
f.seek(0)
data = FilelikeMock(f.read(), has_readinto=True)
b = torch.load(data)
self.assertTrue(data.was_called('readinto'))
def test_serialization_storage_slice(self):
# Generated using:
#
# t = torch.zeros(2);
# s1 = t.storage()[:1]
# s2 = t.storage()[1:]
# torch.save((s1, s2), 'foo.ser')
#
# with PyTorch 0.3.1
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03'
b'.\x80\x02}q\x00(X\n\x00\x00\x00type_sizesq\x01}q\x02(X\x03'
b'\x00\x00\x00intq\x03K\x04X\x05\x00\x00\x00shortq\x04K\x02X'
b'\x04\x00\x00\x00longq\x05K\x04uX\x10\x00\x00\x00protocol_versionq'
b'\x06M\xe9\x03X\r\x00\x00\x00little_endianq\x07\x88u.\x80\x02'
b'(X\x07\x00\x00\x00storageq\x00ctorch\nFloatStorage\nq\x01X\x0e'
b'\x00\x00\x0094279043900432q\x02X\x03\x00\x00\x00cpuq\x03K\x02'
b'X\x0e\x00\x00\x0094279029750368q\x04K\x00K\x01\x87q\x05tq\x06'
b'Q(h\x00h\x01X\x0e\x00\x00\x0094279043900432q\x07h\x03K\x02X'
b'\x0e\x00\x00\x0094279029750432q\x08K\x01K\x01\x87q\ttq\nQ'
b'\x86q\x0b.\x80\x02]q\x00X\x0e\x00\x00\x0094279043900432q'
b'\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
b'\x00\x00\x00\x00')
buf = io.BytesIO(serialized)
(s1, s2) = torch.load(buf)
self.assertEqual(s1[0], 0)
self.assertEqual(s2[0], 0)
self.assertEqual(s1.data_ptr() + 4, s2.data_ptr())
def test_load_unicode_error_msg(self):
# This Pickle contains a Python 2 module with Unicode data and the
# loading should fail if the user explicitly specifies ascii encoding!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
if sys.version_info >= (3, 0):
self.assertRaises(UnicodeDecodeError, lambda: torch.load(path, encoding='ascii'))
else:
# Just checks the module loaded
self.assertIsNotNone(torch.load(path))
def test_load_python2_unicode_module(self):
# This Pickle contains some Unicode data!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
self.assertIsNotNone(torch.load(path))
def test_load_error_msg(self):
expected_err_msg = (".*You can only torch.load from a file that is seekable. " +
"Please pre-load the data into a buffer like io.BytesIO and " +
"try to load from it instead.")
resource = FilelikeMock(data=b"data")
delattr(resource, "tell")
delattr(resource, "seek")
self.assertRaisesRegex(AttributeError, expected_err_msg, lambda: torch.load(resource))
def test_from_buffer(self):
a = bytearray([1, 2, 3, 4])
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
shorts = torch.ShortStorage.from_buffer(a, 'big')
self.assertEqual(shorts.size(), 2)
self.assertEqual(shorts.tolist(), [258, 772])
ints = torch.IntStorage.from_buffer(a, 'little')
self.assertEqual(ints.size(), 1)
self.assertEqual(ints[0], 67305985)
f = bytearray([0x40, 0x10, 0x00, 0x00])
floats = torch.FloatStorage.from_buffer(f, 'big')
self.assertEqual(floats.size(), 1)
self.assertEqual(floats[0], 2.25)
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 8)
self.assertEqual(bools.tolist(), [False, True, True, True, True, True, True, True])
self.assertEqual(bools.type(), 'torch.BoolStorage')
f = bytearray(b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9')
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 19)
f = bytearray(b'\0x4A')
bools = torch.BoolStorage.from_buffer(f, 'big')
self.assertEqual(bools.size(), 4)
self.assertEqual(bools.tolist(), [False, True, True, True])
def test_storage_casts(self):
storage = torch.IntStorage([-1, 0, 1, 2, 3, 4])
self.assertEqual(storage.size(), 6)
self.assertEqual(storage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(storage.type(), 'torch.IntStorage')
self.assertIs(storage.dtype, torch.int32)
floatStorage = storage.float()
self.assertEqual(floatStorage.size(), 6)
self.assertEqual(floatStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(floatStorage.type(), 'torch.FloatStorage')
self.assertEqual(floatStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(floatStorage.dtype, torch.float32)
halfStorage = storage.half()
self.assertEqual(halfStorage.size(), 6)
self.assertEqual(halfStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(halfStorage.type(), 'torch.HalfStorage')
self.assertEqual(halfStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(halfStorage.dtype, torch.float16)
bfloat16Storage = storage.bfloat16()
self.assertEqual(bfloat16Storage.size(), 6)
self.assertEqual(bfloat16Storage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(bfloat16Storage.type(), 'torch.BFloat16Storage')
self.assertEqual(bfloat16Storage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(bfloat16Storage.dtype, torch.bfloat16)
longStorage = storage.long()
self.assertEqual(longStorage.size(), 6)
self.assertEqual(longStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(longStorage.type(), 'torch.LongStorage')
self.assertEqual(longStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(longStorage.dtype, torch.int64)
shortStorage = storage.short()
self.assertEqual(shortStorage.size(), 6)
self.assertEqual(shortStorage.tolist(), [-1, 0, 1, 2, 3, 4])
self.assertEqual(shortStorage.type(), 'torch.ShortStorage')
self.assertEqual(shortStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(shortStorage.dtype, torch.int16)
doubleStorage = storage.double()
self.assertEqual(doubleStorage.size(), 6)
self.assertEqual(doubleStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
self.assertEqual(doubleStorage.type(), 'torch.DoubleStorage')
self.assertEqual(doubleStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(doubleStorage.dtype, torch.float64)
charStorage = storage.char()
self.assertEqual(charStorage.size(), 6)
self.assertEqual(charStorage.tolist(), [-1.0, 0.0, 1.0, 2.0, 3.0, 4.0])
self.assertEqual(charStorage.type(), 'torch.CharStorage')
self.assertEqual(charStorage.int().tolist(), [-1, 0, 1, 2, 3, 4])
self.assertIs(charStorage.dtype, torch.int8)
byteStorage = storage.byte()
self.assertEqual(byteStorage.size(), 6)
self.assertEqual(byteStorage.tolist(), [255, 0, 1, 2, 3, 4])
self.assertEqual(byteStorage.type(), 'torch.ByteStorage')
self.assertEqual(byteStorage.int().tolist(), [255, 0, 1, 2, 3, 4])
self.assertIs(byteStorage.dtype, torch.uint8)
boolStorage = storage.bool()
self.assertEqual(boolStorage.size(), 6)
self.assertEqual(boolStorage.tolist(), [True, False, True, True, True, True])
self.assertEqual(boolStorage.type(), 'torch.BoolStorage')
self.assertEqual(boolStorage.int().tolist(), [1, 0, 1, 1, 1, 1])
self.assertIs(boolStorage.dtype, torch.bool)
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
def test_from_file(self):
size = 10000
with tempfile.NamedTemporaryFile() as f:
s1 = torch.FloatStorage.from_file(f.name, True, size)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.FloatStorage.from_file(f.name, True, size)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, 0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, 0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, 0)
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
def test_torch_from_file(self):
size = 10000
with tempfile.NamedTemporaryFile() as f:
s1 = torch.from_file(f.name, True, size, dtype=torch.float)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.from_file(f.name, True, size, dtype=torch.float)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, 0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, 0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, 0)
def test_print(self):
default_type = torch.Tensor().type()
for t in torch._tensor_classes:
if t == torch.HalfTensor:
continue # HalfTensor does not support fill
if t.is_sparse:
continue
if t.is_cuda and not torch.cuda.is_available():
continue
if t == torch.cuda.BFloat16Tensor:
self.assertRaises(RuntimeError, lambda: t(100, 100).fill_(1))
continue
obj = t(100, 100).fill_(1)
obj.__repr__()
str(obj)
# test half tensor
obj = torch.rand(100, 100, device='cpu').half()
obj.__repr__()
str(obj)
for t in torch._storage_classes:
if t == torch.BFloat16Storage:
continue # Fix once fill is enabled for bfloat16
if t.is_cuda and not torch.cuda.is_available():
continue
if t == torch.BoolStorage or t == torch.cuda.BoolStorage:
obj = t(100).fill_(True)
else:
obj = t(100).fill_(1)
obj.__repr__()
str(obj)
# test big integer
x = torch.tensor(2341234123412341)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(2341234123412341)''')
# test scientific notation
x = torch.tensor([1e28, 1e-28])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+28, 1.0000e-28])''')
# test scientific notation using set_printoptions
x = torch.tensor([1e2, 1e-2])
torch.set_printoptions(sci_mode=True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+02, 1.0000e-02])''')
torch.set_printoptions(sci_mode=False)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 100.0000, 0.0100])''')
torch.set_printoptions(sci_mode=None) # reset to the default value
# test no leading space if all elements positive
x = torch.tensor([1, 2])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1, 2])''')
# test for leading space if there are negative elements
x = torch.tensor([1, -2])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1, -2])''')
# test inf and nan
x = torch.tensor([4, inf, 1.5, -inf, 0, nan, 1])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([4.0000, inf, 1.5000, -inf, 0.0000, nan, 1.0000])''')
# test dtype
torch.set_default_dtype(torch.float)
x = torch.tensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309], dtype=torch.float64)
self.assertEqual(x.__repr__(), str(x))
expected_str = '''\
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
inf], dtype=torch.float64)'''
self.assertExpectedInline(str(x), expected_str)
# test changing default dtype
torch.set_default_dtype(torch.float64)
self.assertEqual(x.__repr__(), str(x))
expected_str = '''\
tensor([ 0.0000e+00, 9.8813e-324, 9.8813e-323, 1.0000e+307, 1.0000e+308,
inf])'''
self.assertExpectedInline(str(x), expected_str)
# test summary
x = torch.zeros(10000)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([0., 0., 0., ..., 0., 0., 0.])''')
# test internal summary function
x = torch.rand(1, 20, 5, 30)
summary = torch._tensor_str.get_summarized_data(x)
self.assertEqual(summary.shape, (1, 6, 5, 6))
first_and_last = [0, 1, 2, -3, -2, -1]
self.assertEqual(summary, x[:, first_and_last][..., first_and_last])
# test device
if torch.cuda.is_available():
x = torch.tensor([123], device='cuda:0')
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
# test changing default to cuda
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123])''')
# test printing a tensor on a different gpu than current one.
if torch.cuda.device_count() >= 2:
with torch.cuda.device(1):
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123], device='cuda:0')''')
# test printing cpu tensor when default device is cuda
y = torch.tensor([123], device='cpu')
self.assertEqual(y.__repr__(), str(y))
self.assertExpectedInline(str(y), '''tensor([123], device='cpu')''')
torch.set_default_tensor_type(default_type)
# test integral floats and requires_grad
x = torch.tensor([123.], requires_grad=True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([123.], requires_grad=True)''')
# test non-contiguous print
# sliced tensor should have > PRINT_OPTS.threshold elements
x = torch.ones(100, 2, 2, 10)
y = x.as_strided(size=(100, 2, 10), stride=(2 * 2 * 10, 2 * 10, 1))
self.assertEqual(str(y), y.__repr__())
expected_str = '''\
tensor([[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
...,
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]],
[[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]]])\
'''
self.assertExpectedInline(str(y), expected_str)
# test print 0-dim tensor: there's no 0-dim in Numpy, we match arrayprint style
x = torch.tensor(0.00002)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(2.0000e-05)''')
# test print boolean tensor
x = torch.tensor([True])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([True])''')
x = torch.tensor(True)
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor(True)''')
# [Numpy] test print float in sci_mode when min < 0.0001.
x = torch.tensor([0.00002])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([2.0000e-05])''')
# [Numpy] test print float in sci_mode when max > 1e8.
# TODO: Pytorch uses fixed precision to print, while Numpy uses dragon4_scientific
# to do automatic trimming and padding.
x = torch.tensor([123456789.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.2346e+08])''')
# [Numpy] test print float in sci_mode when max / min > 1000.
x = torch.tensor([0.01, 11])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e-02, 1.1000e+01])''')
# [Numpy] test print int max / min > 1000, no sci_mode
x = torch.tensor([1, 1010])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1, 1010])''')
# [Numpy] test print int > 1e8, no sci_mode
x = torch.tensor([1000000000]) # 1e9
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1000000000])''')
# [Numpy] test printing float in int_mode
x = torch.tensor([1., 1000.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([ 1., 1000.])''')
# [Numpy] test printing float in int_mode in sci format when max / min > 1000.
x = torch.tensor([1., 1010.])
self.assertEqual(x.__repr__(), str(x))
self.assertExpectedInline(str(x), '''tensor([1.0000e+00, 1.0100e+03])''')
def test_sizeof(self):
sizeof_empty = torch.randn(0).storage().__sizeof__()
sizeof_10 = torch.randn(10).storage().__sizeof__()
sizeof_100 = torch.randn(100).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
def test_unsqueeze(self):
x = torch.randn(2, 3, 4)
y = x.unsqueeze(1)
self.assertEqual(y, x.view(2, 1, 3, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.view(2, 3, 1, 4))
x = x[:, 1]
self.assertFalse(x.is_contiguous())
y = x.unsqueeze(1)
self.assertEqual(y, x.contiguous().view(2, 1, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.contiguous().view(2, 4, 1))
def test_iter(self):
x = torch.randn(5, 5)
for i, sub in enumerate(x):
self.assertEqual(sub, x[i])
x = torch.Tensor()
self.assertEqual(list(x), [])
def test_accreal_type(self):
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_assertEqual(self):
x = torch.FloatTensor([0])
self.assertEqual(x, 0)
xv = torch.autograd.Variable(x)
self.assertEqual(xv, 0)
self.assertEqual(x, xv)
self.assertEqual(xv, x)
def test_new(self):
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
self.assertEqual(x.new().shape, [0])
self.assertEqual(x.new(), x)
self.assertEqual(x.new(1, 2).shape, [1, 2])
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
self.assertEqual(x.new([3, 4]).shape, [2])
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
if TEST_NUMPY:
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
self.assertEqual(x.new(()).shape, [0])
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
self.assertIsNot(x.new(y), y)
self.assertRaises(TypeError, lambda: x.new(z))
# TypeError would be better
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
def test_empty_like(self):
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
for a in (x, y, z):
self.assertEqual(torch.empty_like(a).shape, a.shape)
self.assertEqual(torch.empty_like(a).type(), a.type())
def test_pin_memory(self):
x = torch.randn(3, 5)
self.assertFalse(x.is_pinned())
if not torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: x.pin_memory())
else:
pinned = x.pin_memory()
self.assertTrue(pinned.is_pinned())
self.assertEqual(pinned, x)
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
# test that pin_memory on already pinned tensor has no effect
self.assertIs(pinned, pinned.pin_memory())
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_unresizable(self):
x = np.zeros((2, 2))
y = torch.from_numpy(x)
with self.assertRaises(ValueError):
x.resize((5, 5))
z = torch.randn(5, 5)
w = z.numpy()
with self.assertRaises(RuntimeError):
z.resize_(10, 10)
with self.assertRaises(ValueError):
w.resize((10, 10))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_to_numpy(self):
def get_castable_tensor(shape, tp):
dtype = tp.dtype
if dtype.is_floating_point:
dtype_info = torch.finfo(dtype)
# can't directly use min and max, because for double, max - min
# is greater than double range and sampling always gives inf.
low = max(dtype_info.min, -1e10)
high = min(dtype_info.max, 1e10)
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
else:
# can't directly use min and max, because for int64_t, max - min
# is greater than int64_t range and triggers UB.
dtype_info = torch.iinfo(dtype)
low = max(dtype_info.min, int(-1e10))
high = min(dtype_info.max, int(1e10))
dtype_info = torch.iinfo(dtype)
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
return t.to(dtype)
types = [
torch.ByteTensor,
torch.CharTensor,
torch.ShortTensor,
torch.IntTensor,
torch.HalfTensor,
torch.FloatTensor,
torch.DoubleTensor,
torch.LongTensor,
]
for tp in types:
# 1D
sz = 10
x = get_castable_tensor(sz, tp)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
# 1D > 0 storage offset
xm = get_castable_tensor(sz * 2, tp)
x = xm.narrow(0, sz - 1, sz)
self.assertTrue(x.storage_offset() > 0)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
def check2d(x, y):
for i in range(sz1):
for j in range(sz2):
self.assertEqual(x[i][j], y[i][j])
# empty
x = torch.Tensor().type(tp)
y = x.numpy()
self.assertEqual(y.size, 0)
# contiguous 2D
sz1 = 3
sz2 = 5
x = get_castable_tensor((sz1, sz2), tp)
y = x.numpy()
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = get_castable_tensor((sz1 * 2, sz2), tp)
x = xm.narrow(0, sz1 - 1, sz1)
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# non-contiguous 2D
x = get_castable_tensor((sz2, sz1), tp).t()
y = x.numpy()
check2d(x, y)
self.assertFalse(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = get_castable_tensor((sz2 * 2, sz1), tp)
x = xm.narrow(0, sz2 - 1, sz2).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# non-contiguous 2D with holes
xm = get_castable_tensor((sz2 * 2, sz1 * 2), tp)
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
if tp != torch.HalfTensor:
# check writeable
x = get_castable_tensor((3, 4), tp)
y = x.numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
y = x.t().numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_to_numpy_bool(self):
x = torch.tensor([True, False], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool)
for i in range(len(x)):
self.assertEqual(x[i], y[i])
x = torch.tensor([True], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool)
self.assertEqual(x[0], y[0])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_from_numpy(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.int8,
np.uint8,
np.longlong,
np.bool,
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
tensor_from_array = torch.from_numpy(array)
# TODO: change to tensor equality check once HalfTensor
# implements `==`
for i in range(len(array)):
self.assertEqual(tensor_from_array[i], array[i])
# This is a special test case for Windows
# https://github.com/pytorch/pytorch/issues/22615
array2 = array % 2
tensor_from_array2 = torch.from_numpy(array2)
for i in range(len(array2)):
self.assertEqual(tensor_from_array2[i], array2[i])
# Test unsupported type
array = np.array([1, 2, 3, 4], dtype=np.complex)
with self.assertRaises(TypeError):
tensor_from_array = torch.from_numpy(array)
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
# check zero dimensional
x = np.zeros((0, 2))
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
x = np.zeros((2, 0))
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
# check ill-sized strides raise exception
x = np.array([3., 5., 8.])
x.strides = (3,)
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_ctor_with_numpy_scalar_ctor(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
np.bool,
]
for dtype in dtypes:
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_index(self):
i = np.int32([0, 1, 2])
x = torch.randn(5, 5)
for idx in i:
self.assertFalse(isinstance(idx, int))
self.assertEqual(x[idx], x[int(idx)])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_array_interface(self):
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.ByteTensor,
]
dtypes = [
np.float64,
np.float32,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
]
for tp, dtype in zip(types, dtypes):
if np.dtype(dtype).kind == 'u':
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
else:
x = torch.Tensor([1, -2, 3, -4]).type(tp)
array = np.array([1, -2, 3, -4], dtype=dtype)
# Test __array__ w/o dtype argument
asarray = np.asarray(x)
self.assertIsInstance(asarray, np.ndarray)
self.assertEqual(asarray.dtype, dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test __array_wrap__, same dtype
abs_x = np.abs(x)
abs_array = np.abs(array)
self.assertIsInstance(abs_x, tp)
for i in range(len(x)):
self.assertEqual(abs_x[i], abs_array[i])
# Test __array__ with dtype argument
for dtype in dtypes:
x = torch.IntTensor([1, -2, 3, -4])
asarray = np.asarray(x, dtype=dtype)
self.assertEqual(asarray.dtype, dtype)
if np.dtype(dtype).kind == 'u':
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], wrapped_x[i])
else:
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test some math functions with float types
float_types = [torch.DoubleTensor, torch.FloatTensor]
float_dtypes = [np.float64, np.float32]
for tp, dtype in zip(float_types, float_dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
for func in ['sin', 'sqrt', 'ceil']:
ufunc = getattr(np, func)
res_x = ufunc(x)
res_array = ufunc(array)
self.assertIsInstance(res_x, tp)
for i in range(len(x)):
self.assertEqual(res_x[i], res_array[i])
# Test functions with boolean return value
for tp, dtype in zip(types, dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
geq2_x = np.greater_equal(x, 2)
geq2_array = np.greater_equal(array, 2).astype('uint8')
self.assertIsInstance(geq2_x, torch.ByteTensor)
for i in range(len(x)):
self.assertEqual(geq2_x[i], geq2_array[i])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_multiplication_numpy_scalar(self):
for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]:
for t_dtype in [torch.float, torch.double]:
np_sc = np_dtype(2.0)
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
r1 = t * np_sc
self.assertIsInstance(r1, torch.Tensor)
self.assertTrue(r1.dtype == t_dtype)
self.assertTrue(r1.requires_grad)
r2 = np_sc * t
self.assertIsInstance(r2, torch.Tensor)
self.assertTrue(r2.dtype == t_dtype)
self.assertTrue(r2.requires_grad)
def test_error_msg_type_translation(self):
with self.assertRaisesRegex(
RuntimeError,
# message includes both Double and Long
'(?=.*Double)(?=.*Long)'):
# Calls model with a DoubleTensor input but LongTensor weights
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
weight = torch.zeros(1, 1, 1, 3).long()
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
model.weight.data = weight
out = model(input)
def test_tensor_from_sequence(self):
class MockSequence(object):
def __init__(self, lst):
self.lst = lst
def __len__(self):
return len(self.lst)
def __getitem__(self, item):
raise TypeError
class GoodMockSequence(MockSequence):
def __getitem__(self, item):
return self.lst[item]
bad_mock_seq = MockSequence([1.0, 2.0, 3.0])
good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0])
with self.assertRaisesRegex(ValueError, 'could not determine the shape'):
torch.Tensor(bad_mock_seq)
self.assertEqual(torch.Tensor([1.0, 2.0, 3.0]), torch.Tensor(good_mock_seq))
def test_comparison_ops(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
eq = x == y
for idx in iter_indices(x):
self.assertEqual(x[idx] == y[idx], eq[idx] == 1)
ne = x != y
for idx in iter_indices(x):
self.assertEqual(x[idx] != y[idx], ne[idx] == 1)
lt = x < y
for idx in iter_indices(x):
self.assertEqual(x[idx] < y[idx], lt[idx] == 1)
le = x <= y
for idx in iter_indices(x):
self.assertEqual(x[idx] <= y[idx], le[idx] == 1)
gt = x > y
for idx in iter_indices(x):
self.assertEqual(x[idx] > y[idx], gt[idx] == 1)
ge = x >= y
for idx in iter_indices(x):
self.assertEqual(x[idx] >= y[idx], ge[idx] == 1)
def test_comparison_ops_must_take_bool_output(self):
with self.assertRaisesRegex(RuntimeError, 'The output tensor of a comparison or logical op must be a bool'):
for op in [torch.lt, torch.le, torch.gt, torch.ge, torch.eq, torch.ne, torch.logical_xor]:
op(torch.tensor([True]), torch.tensor([False]), out=torch.empty(1, dtype=torch.uint8))
def test_inplace_comparison_ops_require_inputs_have_same_dtype(self):
with self.assertRaisesRegex(RuntimeError, 'Expected object of scalar type'):
for op in ['lt_', 'le_', 'gt_', 'ge_', 'eq_', 'ne_', 'logical_xor_']:
x = torch.tensor([1], dtype=torch.int)
y = torch.tensor([2], dtype=torch.long)
in_place_method = getattr(x, op)
in_place_method(y)
def test_comparison_ops_check_for_scalar_overflow(self):
with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'):
torch.tensor([1 << 5], dtype=torch.uint8) < (1 << 20)
(1 << 20) < torch.tensor([1 << 5], dtype=torch.uint8)
torch.tensor([1 << 5], dtype=torch.uint8) <= (1 << 20)
(1 << 20) <= torch.tensor([1 << 5], dtype=torch.uint8)
torch.tensor([1 << 5], dtype=torch.uint8) > (1 << 20)
(1 << 20) > torch.tensor([1 << 5], dtype=torch.uint8)
torch.tensor([1 << 5], dtype=torch.uint8) >= (1 << 20)
(1 << 20) >= torch.tensor([1 << 5], dtype=torch.uint8)
torch.tensor([1 << 5], dtype=torch.uint8) == (1 << 20)
(1 << 20) == torch.tensor([1 << 5], dtype=torch.uint8)
torch.tensor([1 << 5], dtype=torch.uint8) != (1 << 20)
(1 << 20) != torch.tensor([1 << 5], dtype=torch.uint8)
def test_comparison_ops_check_for_zerodim_tensor_overflow(self):
with self.assertRaisesRegex(RuntimeError, 'value cannot be converted to type'):
torch.tensor([1 << 5], dtype=torch.uint8) < torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) < torch.tensor([1 << 30], dtype=torch.int32)
torch.tensor([1 << 5], dtype=torch.uint8) <= torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) <= torch.tensor([1 << 30], dtype=torch.int32)
torch.tensor([1 << 5], dtype=torch.uint8) > torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) > torch.tensor([1 << 30], dtype=torch.int32)
torch.tensor([1 << 5], dtype=torch.uint8) >= torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) >= torch.tensor([1 << 30], dtype=torch.int32)
torch.tensor([1 << 5], dtype=torch.uint8) == torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) == torch.tensor([1 << 30], dtype=torch.int32)
torch.tensor([1 << 5], dtype=torch.uint8) != torch.tensor(1 << 20, dtype=torch.int32)
torch.tensor(1 << 40, dtype=torch.int64) != torch.tensor([1 << 30], dtype=torch.int32)
def test_bitwise_ops(self):
x = torch.randn(5, 5).gt(0)
y = torch.randn(5, 5).gt(0)
and_result = x & y
for idx in iter_indices(x):
if and_result[idx]:
self.assertTrue(x[idx] and y[idx])
else:
self.assertFalse(x[idx] and y[idx])
or_result = x | y
for idx in iter_indices(x):
if or_result[idx]:
self.assertTrue(x[idx] or y[idx])
else:
self.assertFalse(x[idx] or y[idx])
xor_result = x ^ y
for idx in iter_indices(x):
if xor_result[idx]:
self.assertTrue(x[idx] ^ y[idx])
else:
self.assertFalse(x[idx] ^ y[idx])
x_clone = x.clone()
x_clone &= y
self.assertEqual(x_clone, and_result)
x_clone = x.clone()
x_clone |= y
self.assertEqual(x_clone, or_result)
x_clone = x.clone()
x_clone ^= y
self.assertEqual(x_clone, xor_result)
def test_op_invert(self):
res = 0xffff - torch.arange(127, dtype=torch.int8)
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
a = torch.arange(127, dtype=dtype)
self.assertEqual(res.to(dtype), ~a)
self.assertEqual(torch.tensor([True, False]),
~torch.tensor([False, True]))
# test exceptions
for dtype in(torch.half, torch.float, torch.double):
a = torch.zeros(10, dtype=dtype)
with self.assertRaises(TypeError):
b = ~a
def test_apply(self):
x = torch.arange(1, 6)
res = x.clone().apply_(lambda k: k + k)
self.assertEqual(res, x * 2)
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
def test_map(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
res = x.clone()
res.map_(y, lambda a, b: a + b)
self.assertEqual(res, x + y)
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
def test_map2(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
z = torch.autograd.Variable(torch.randn(1, 3))
res = x.clone()
res.map2_(y, z, lambda a, b, c: a + b * c)
self.assertEqual(res, x + y * z)
z.requires_grad = True
self.assertRaisesRegex(
RuntimeError, "requires grad",
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
def test_Size(self):
x = torch.Size([1, 2, 3])
self.assertIsInstance(x, tuple)
self.assertEqual(x[0], 1)
self.assertEqual(x[1], 2)
self.assertEqual(x[2], 3)
self.assertEqual(len(x), 3)
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
self.assertIsInstance(x * 2, torch.Size)
self.assertIsInstance(x[:-1], torch.Size)
self.assertIsInstance(x + x, torch.Size)
def test_Size_scalar(self):
three = torch.tensor(3)
two = torch.tensor(2)
x = torch.Size([0, 1, two, three, 4])
for i in range(1, 5):
self.assertEqual(x[i], i)
def test_Size_iter(self):
for sizes in [iter([1, 2, 3, 4, 5]), range(1, 6)]:
x = torch.Size(sizes)
for i in range(0, 5):
self.assertEqual(x[i], i + 1)
def test_t_not_2d_error(self):
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t())
self.assertRaises(RuntimeError, lambda: torch.randn(2, 3, 4).t_())
# unit test for special case transposed copy (see ATen/native/Copy.cpp for details)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_big_transpose(self):
t = torch.rand(456, 789)
t1 = t.t().contiguous()
t2 = torch.from_numpy(t.numpy().transpose())
self.assertEqual(t1, t2)
def test_inplace_division(self):
t = torch.rand(5, 5)
id_before = id(t)
t /= 2
id_after = id(t)
self.assertEqual(id_before, id_after)
def test_simple_scalar_cast(self):
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
ok_values = [1.5, 0]
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
for tensor, value in zip(ok, ok_values):
self.assertEqual(int(tensor), int(value))
self.assertEqual(float(tensor), float(value))
if sys.version_info[0] < 3:
self.assertEqual(long(tensor), long(value))
for tensor in not_ok:
self.assertRaises(ValueError, lambda: int(tensor))
self.assertRaises(ValueError, lambda: float(tensor))
if sys.version_info[0] < 3:
self.assertRaises(ValueError, lambda: long(tensor))
def test_offset_scalar_cast(self):
x = torch.Tensor([1, 2, 3])
y = x[2:]
self.assertEqual(int(y), 3)
# skip this test for now as it affects all tests
@unittest.skipIf(True, "flush_denormal not supported")
def test_set_flush_denormal(self):
tiny_float = 1e-42
tiny_double = 1e-320
float_tensor = torch.FloatTensor([1.0, tiny_float])
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16)
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
self.assertEqual(double_tensor[2], tiny_double, prec=0.0)
torch.set_flush_denormal(True)
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
# tiny_float is not converted to zero in double type
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero
torch.set_flush_denormal(False)
def test_show_config(self):
# We can't usefully test the output; just make sure this doesn't crash
torch.__config__.show()
def test_parallel_info(self):
torch.__config__.parallel_info()
@slowTest
def test_slow_test(self):
# Just a smoketest to make sure our slowTest decorator works.
pass
def test_is_nonzero(self):
self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([]).is_nonzero(), subname="empty")
self.assertExpectedRaises(RuntimeError, lambda: torch.tensor([0, 0]).is_nonzero(), subname="multiple")
self.assertFalse(torch.tensor(0).is_nonzero())
self.assertTrue(torch.tensor(1).is_nonzero())
self.assertFalse(torch.tensor([0]).is_nonzero())
self.assertTrue(torch.tensor([1]).is_nonzero())
self.assertFalse(torch.tensor([[0]]).is_nonzero())
self.assertTrue(torch.tensor([[1]]).is_nonzero())
def test_meshgrid(self):
a = torch.tensor(1)
b = torch.tensor([1, 2, 3])
c = torch.tensor([1, 2])
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c])
self.assertEqual(grid_a.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c.shape, torch.Size([1, 3, 2]))
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c)
self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2]))
expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64)
expected_grid_b = torch.tensor([[[1, 1],
[2, 2],
[3, 3]]])
expected_grid_c = torch.tensor([[[1, 2],
[1, 2],
[1, 2]]])
self.assertTrue(grid_a.equal(expected_grid_a))
self.assertTrue(grid_b.equal(expected_grid_b))
self.assertTrue(grid_c.equal(expected_grid_c))
self.assertTrue(grid_a2.equal(expected_grid_a))
self.assertTrue(grid_b2.equal(expected_grid_b))
self.assertTrue(grid_c2.equal(expected_grid_c))
# NB: we must not be built with CUDA; if we are built with CUDA but no CUDA
# is available, we get a different error.
@unittest.skipIf(torch.backends.cuda.is_built() or IS_SANDCASTLE, "CUDA is built, can't test CUDA not built error")
def test_cuda_not_built(self):
msg = "Torch not compiled with CUDA enabled"
self.assertRaisesRegex(AssertionError, msg, lambda: torch.cuda.current_device())
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1], device="cuda"))
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).cuda())
self.assertRaisesRegex(TypeError, msg, lambda: torch.cuda.FloatTensor())
self.assertRaisesRegex(TypeError, msg, lambda: torch.set_default_tensor_type(torch.cuda.FloatTensor))
self.assertRaisesRegex(AssertionError, msg, lambda: torch.tensor([1]).to(device="cuda"))
def test_cast_binary_op(self):
# Scalar
a = torch.tensor(2)
b = torch.tensor(3)
a_copy = a.clone()
b_copy = b.clone()
self.assertEqual(torch.tensor(6), a.float() * b)
self.assertEqual(a.type(), a_copy.type())
self.assertEqual(a.data.type(), a_copy.data.type())
self.assertEqual(b.type(), b_copy.type())
self.assertEqual(b.data.type(), b_copy.type())
def test_cartesian_prod(self):
a = torch.tensor([1])
b = torch.tensor([1, 2, 3])
c = torch.tensor([1, 2])
prod = torch.cartesian_prod(a, b, c)
expected = torch.tensor(list(product([a], b, c)))
self.assertEqual(expected, prod)
# test 0 size input
d = torch.empty(0, dtype=b.dtype)
prod = torch.cartesian_prod(a, b, c, d)
expected = torch.empty(0, 4, dtype=b.dtype)
self.assertEqual(expected, prod)
# test single input
prod = torch.cartesian_prod(b)
self.assertEqual(b, prod)
def test_combinations(self):
a = torch.tensor([1, 2, 3])
c = torch.combinations(a, r=1)
expected = torch.tensor(list(combinations(a, r=1)))
self.assertEqual(c, expected)
c = torch.combinations(a, r=1, with_replacement=True)
expected = torch.tensor(list(combinations_with_replacement(a, r=1)))
self.assertEqual(c, expected)
c = torch.combinations(a)
expected = torch.tensor(list(combinations(a, r=2)))
self.assertEqual(c, expected)
c = torch.combinations(a, with_replacement=True)
expected = torch.tensor(list(combinations_with_replacement(a, r=2)))
self.assertEqual(c, expected)
c = torch.combinations(a, r=3)
expected = torch.tensor(list(combinations(a, r=3)))
self.assertEqual(c, expected)
c = torch.combinations(a, r=4)
expected = torch.empty(0, 4, dtype=a.dtype)
self.assertEqual(c, expected)
c = torch.combinations(a, r=5)
expected = torch.empty(0, 5, dtype=a.dtype)
self.assertEqual(c, expected)
# test empty imput
a = torch.empty(0)
c1 = torch.combinations(a)
c2 = torch.combinations(a, with_replacement=True)
expected = torch.empty(0, 2, dtype=a.dtype)
self.assertEqual(c1, expected)
self.assertEqual(c2, expected)
def test_has_internal_overlap(self):
OVERLAP_NO = 0
OVERLAP_YES = 1
OVERLAP_TOO_HARD = 2
# Check for contiguous tensors
a = torch.randn(3, 3)
self.assertEqual(torch._debug_has_internal_overlap(a), OVERLAP_NO)
# Checks for zero strides
b = torch.randn(1, 3)
b_expanded = b.expand(4, 3)
self.assertEqual(torch._debug_has_internal_overlap(b_expanded), OVERLAP_YES)
def test_allow_tensor_metadata_change(self):
def do_test(t):
with self.assertRaisesRegex(
RuntimeError,
"set_sizes_contiguous is not allowed on a Tensor created from .data or .detach()"):
t.resize_((2, 1))
with self.assertRaisesRegex(
RuntimeError,
"set_storage is not allowed on a Tensor created from .data or .detach()"):
t.set_()
with self.assertRaisesRegex(
RuntimeError,
"set_storage_offset is not allowed on a Tensor created from .data or .detach()"):
t.set_(t.storage(), 0, t.size(), list(t.stride()))
do_test(torch.tensor([[1, 2]]).data)
do_test(torch.tensor([[1, 2]]).detach())
def test_c10_layer_norm(self):
# test that we can call c10 ops and they return a reasonable result
X = torch.rand(5, 5, dtype=torch.float)
weight = torch.rand(*X.size()[1:], dtype=torch.float)
bias = torch.rand(*X.size()[1:], dtype=torch.float)
epsilon = 1e-4
expected_norm = torch.nn.functional.layer_norm(
X, X.size()[1:], weight=weight, bias=bias, eps=epsilon)
actual_norm, actual_mean, actual_stdev = \
torch.ops._caffe2.LayerNorm(torch.tensor(X), torch.tensor(
weight), torch.tensor(bias), 1, epsilon, True)
torch.testing.assert_allclose(expected_norm, actual_norm)
def test_memory_format(self):
x = torch.randn(10, 3, 32, 32)
nhwc = x.contiguous(memory_format=torch.channels_last)
self.assertFalse(nhwc.is_contiguous())
self.assertTrue(nhwc.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(nhwc, x)
def test_memory_format_contiguous_returns_same_tensor_if_already_satisfies(self):
x = torch.randn(10, 32, 32, 3).permute(0, 3, 1, 2)
alias = x.contiguous(memory_format=torch.channels_last)
alias.fill_(7)
self.assertEqual(x, alias)
def test_memory_format_empty(self):
with self.assertRaises(RuntimeError):
x = torch.empty((3, 3), memory_format=torch.channels_last)
x = torch.empty((3, 3, 3, 3), memory_format=torch.channels_last)
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
def test_subclass_tensors(self):
# raise an error when trying to subclass FloatTensor
with self.assertRaisesRegex(TypeError, "type 'torch.FloatTensor' is not an acceptable base type"):
class Foo1(torch.FloatTensor):
pass
# but allow subclassing Tensor:
class Foo2(torch.Tensor):
def foo(self):
return 5
f = Foo2()
self.assertEqual(f.foo(), 5)
def test_ndim(self):
a = torch.randn(1, 2, 3)
self.assertEqual(3, a.ndim)
b = torch.randn(())
self.assertEqual(0, b.ndim)
c = torch.randn(1, 0)
self.assertEqual(2, c.ndim)
def test_T(self):
a = torch.randn(2, 3, 4)
t1 = a.T
t2 = a.permute(2, 1, 0)
self.assertEqual(t2, t1)
b = torch.randn(10)
self.assertEqual(b, b.T)
scalar = torch.tensor(5)
self.assertEqual(scalar, scalar.T)
def test_python_types(self):
a1 = torch.randn((1, 2), dtype=torch.float64)
a2 = torch.randn((1, 2), dtype=float)
self.assertEqual(a1.dtype, a2.dtype)
b1 = torch.arange(10, 20, dtype=torch.int64)
b2 = torch.arange(10, 20, dtype=int)
self.assertEqual(b1.dtype, b2.dtype)
c1 = torch.tensor([True, False], dtype=torch.bool)
c2 = torch.tensor([True, False], dtype=bool)
self.assertEqual(c1.dtype, c2.dtype)
def test_fill_diagonal(self):
a1 = torch.randn(7, 3)
a2 = a1.clone()
v = 1
for i in range(3):
a2[i][i] = v
a1.fill_diagonal_(v)
self.assertEqual(a1, a2)
b1 = torch.randn(7, 3)
b2 = b1.clone()
for i in range(3):
b2[i][i] = v
b2[i + 4][i] = v
b1.fill_diagonal_(v, wrap=True)
self.assertEqual(b1, b2)
c1 = torch.rand(3, 3, 3)
c2 = c1.clone()
for i in range(3):
c2[i][i][i] = v
c1.fill_diagonal_(v)
self.assertEqual(c1, c2)
# non-contiguous tensor
d1 = torch.rand(3, 3, 3)[:, 1, ...]
d2 = d1.clone()
for i in range(3):
d2[i][i] = v
d1.fill_diagonal_(v)
self.assertEqual(d1, d2)
e1 = torch.rand(7, 3, 3)[:, 1, ...]
e2 = e1.clone()
for i in range(3):
e2[i][i] = v
e2[i + 4][i] = v
e1.fill_diagonal_(v, wrap=True)
self.assertEqual(e1, e2)
# Functions to test negative dimension wrapping
METHOD = 1
INPLACE_METHOD = 2
FUNCTIONAL = 4
DIM_ARG = None
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
def neg_dim_test(self):
if isinstance(tensor_arg, list):
assert METHOD not in types and INPLACE_METHOD not in types
x = [torch.randn(arg) for arg in tensor_arg]
ndim = len(tensor_arg[-1])
else:
x = torch.randn(*tensor_arg)
ndim = len(tensor_arg)
ndim += extra_dim
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
for dims_val in combinations(range(ndim), n_dim_to_test):
arg = arg_constr()
arg_neg = copy.deepcopy(arg)
idx = 0
for i, v in enumerate(arg):
if v is DIM_ARG:
arg[i] = dims_val[idx]
arg_neg[i] = dims_val[idx] - ndim
idx += 1
if METHOD in types:
a = getattr(x, name)(*arg)
b = getattr(x, name)(*arg_neg)
self.assertEqual(a, b)
if INPLACE_METHOD in types:
a = x.clone()
getattr(a, name + '_')(*arg)
b = x.clone()
getattr(b, name + '_')(*arg_neg)
self.assertEqual(a, b)
if FUNCTIONAL in types:
a = getattr(torch, name)(x, *arg)
b = getattr(torch, name)(x, *arg_neg)
self.assertEqual(a, b)
return neg_dim_test
def idx_tensor(size, max_val):
return torch.LongTensor(*size).random_(0, max_val - 1)
def add_neg_dim_tests():
neg_dim_tests = [
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
]
for decl in neg_dim_tests:
if len(decl) == 4:
name, tensor_arg, arg_constr, types = decl
extra_dim = 0
elif len(decl) == 5:
name, tensor_arg, arg_constr, types, extra_dim = decl
test_name = 'test_' + name + '_neg_dim'
assert not hasattr(_TestTorchMixin, test_name), "Duplicated test name: " + test_name
setattr(_TestTorchMixin, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
# Device-generic tests. Instantiated below and not run directly.
class TestTorchDeviceType(TestCase):
def check_internal_mem_overlap(self, inplace_op, num_inputs,
dtype, device,
expected_failure=False):
if isinstance(inplace_op, str):
inplace_op = getattr(torch.Tensor, inplace_op)
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
inputs = [input] + [torch.randn_like(input)
for i in range(num_inputs - 1)]
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'single memory location'):
inplace_op(*inputs)
def unary_check_input_output_mem_overlap(self, data, sz, op,
expected_failure=False):
def _test(op, output, input):
output_exp = torch.empty_like(output)
op(input, out=output_exp)
self.assertEqual(op(input, out=output), output_exp, op.__name__)
# output is identical to input:
_test(op, output=data[0:sz], input=data[0:sz])
# output and input are independent:
_test(op, output=data[0:sz], input=data[sz:2 * sz])
# output partially overlaps with input:
if not expected_failure:
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
else:
with self.assertRaises(AssertionError):
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
_test(op, data[0:sz], data[1:sz + 1])
def binary_check_input_output_mem_overlap(self, op, device,
expected_failure=False):
sz = 3
data = torch.randn(2 * sz, device=device)
other = torch.randn(sz, device=device)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(other, input, out=out),
expected_failure=expected_failure)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(input, other, out=out),
expected_failure=expected_failure)
def ternary_check_input_output_mem_overlap(self, op, device,
expected_failure=False):
sz = 3
data = torch.randn(2 * sz, device=device)
other1 = torch.randn(sz, device=device)
other2 = torch.randn(sz, device=device)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(input, other1, other2, out=out),
expected_failure=expected_failure)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(other1, input, other2, out=out),
expected_failure=expected_failure)
self.unary_check_input_output_mem_overlap(
data, sz, lambda input, out: op(other1, other2, input, out=out),
expected_failure=expected_failure)
def _test_pow(self, base, exponent, np_exponent=None):
if np_exponent is None:
np_exponent = exponent
def to_np(value):
if isinstance(value, torch.Tensor):
return value.cpu().numpy()
return value
try:
expected = torch.from_numpy(
np.power(to_np(base), to_np(np_exponent)))
except ValueError as e:
err_msg = "Integers to negative integer powers are not allowed."
self.assertEqual(str(e), err_msg)
out = torch.empty_like(base)
test_cases = [
lambda: base.pow(exponent),
lambda: base.pow_(exponent),
lambda: torch.pow(base, exponent),
lambda: torch.pow(base, exponent, out=out)
]
for test_case in test_cases:
self.assertRaisesRegex(RuntimeError, err_msg, test_case)
else:
if isinstance(base, torch.Tensor):
actual = base.pow(exponent)
self.assertEqual(actual, expected, allow_inf=True)
actual = base.clone()
actual2 = actual.pow_(exponent)
self.assertEqual(actual, expected, allow_inf=True)
self.assertEqual(actual2, expected, allow_inf=True)
actual = torch.pow(base, exponent)
self.assertEqual(actual, expected, allow_inf=True)
actual2 = torch.pow(base, exponent, out=actual)
self.assertEqual(actual, expected, allow_inf=True)
self.assertEqual(actual2, expected, allow_inf=True)
def _select_broadcastable_dims(self, dims_full=None):
# select full dimensionality
if dims_full is None:
dims_full = []
ndims = random.randint(1, 4)
dims_full = [random.randint(1, 8) for _ in range(ndims)]
else:
ndims = len(dims_full)
# select actual dimensions for ops:
# larger: full ndims, individual sizes may be reduced
# smaller: possibly reduced ndims, sizes may be reduced
smaller_ndims = random.randint(1, ndims)
dims_small = []
dims_large = []
for i in range(ndims - 1, -1, -1):
j = random.randint(1, 3)
if j == 1: # no reduced singleton dimension
ds = dims_full[i]
dl = dims_full[i]
elif j == 2: # larger may have reduced singleton dimension
ds = dims_full[i]
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
elif j == 3: # smaller may have reduced singleton dimension
ds = 1
dl = dims_full[i]
dims_large = [dl] + dims_large
if len(dims_small) < smaller_ndims:
dims_small = [ds] + dims_small
return (dims_small, dims_large, dims_full)
@onlyCPU
@dtypes(torch.float)
def test_diag(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.diag(x)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.diag(x, out=res2)
self.assertEqual(res1, res2)
def test_diagonal(self, device):
x = torch.randn((100, 100), device=device)
result = torch.diagonal(x)
expected = torch.diag(x)
self.assertEqual(result, expected)
x = torch.randn((100, 100), device=device)
result = torch.diagonal(x, 17)
expected = torch.diag(x, 17)
self.assertEqual(result, expected)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
@onlyCPU
@dtypes(torch.float)
def test_diagonal_multidim(self, device, dtype):
x = torch.randn(10, 11, 12, 13, dtype=dtype, device=device)
xn = x.numpy()
for args in [(2, 2, 3),
(2,),
(-2, 1, 2),
(0, -2, -1)]:
result = torch.diagonal(x, *args)
expected = xn.diagonal(*args)
self.assertEqual(expected.shape, result.shape)
self.assertTrue(np.allclose(expected, result.numpy()))
# test non-continguous
xp = x.permute(1, 2, 3, 0)
result = torch.diagonal(xp, 0, -2, -1)
expected = xp.numpy().diagonal(0, -2, -1)
self.assertEqual(expected.shape, result.shape)
self.assertTrue(np.allclose(expected, result.numpy()))
@onlyCPU
@dtypes(torch.float)
def test_broadcast_tensors(self, device, dtype):
x0 = torch.randn(2, 1, 3, dtype=dtype, device=device)
x1 = torch.randn(3, dtype=dtype, device=device)
x2 = torch.randn(3, 1, dtype=dtype, device=device)
expected_size = (2, 3, 3)
y0, y1, y2 = torch.broadcast_tensors(x0, x1, x2)
self.assertTrue(y0.size() == expected_size)
self.assertTrue(y1.size() == expected_size)
self.assertTrue(y2.size() == expected_size)
def test_pow(self, device):
# [res] torch.pow([res,] x)
# pow has dedicated implementation for different exponents
for dtype in torch.testing.get_all_math_dtypes(device):
# This test won't work on torch.half because math.pow will generate a much more accurate result. We skip it
# for now.
if dtype == torch.half:
continue
m1 = torch.empty(0, dtype=dtype, device=device)
if m1.is_floating_point():
m1 = torch.rand(100, 100, dtype=dtype, device=device) + 0.5
else:
# math.pow will overflow and throw exceptions for large integers
range_high = 4 if dtype in (torch.int8, torch.uint8) else 10
m1 = torch.randint(1, range_high, (100, 100), dtype=dtype, device=device)
for num in [-2.8, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 3.3]:
if isinstance(num, int) and num < 0 and not m1.is_floating_point():
with self.assertRaisesRegex(RuntimeError,
r'Integers to negative integer powers are not allowed\.'):
torch.pow(m1[4], num)
else:
# base - tensor, exponent - number
# contiguous
res1 = torch.pow(m1[4], num)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[4][i], num)
self.assertEqual(res1, res2)
# non-contiguous
res1 = torch.pow(m1[:, 4], num)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[i, 4], num)
self.assertEqual(res1, res2)
# base - number, exponent - tensor
# contiguous
res1 = torch.pow(3, m1[4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[4, i])
self.assertEqual(res1, res2)
# non-contiguous
res1 = torch.pow(3, m1[:, 4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[i][4])
self.assertEqual(res1, res2)
# resize behavior for exp == 1
out = torch.zeros(1, dtype=dtype, device=device)
torch.pow(m1, 1, out=out)
self.assertEqual(out, m1)
def test_neg(self, device):
int_types = [torch.int, torch.short, torch.int8, torch.uint8]
float_types = [torch.float, torch.double, torch.long]
# Tests bool tensor negation raises the correct error
self.assertRaisesRegex(
RuntimeError,
r"Negation, the `\-` operator, on a bool tensor is not supported. "
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
lambda: - torch.tensor([False, True], device=device))
for dtype in float_types + int_types:
if dtype in float_types:
a = torch.randn(100, 90).type(dtype).to(device)
else:
a = torch.randint(-128, 128, (100, 90), dtype=dtype, device=device)
zeros = torch.Tensor().type(dtype).resize_as_(a).zero_().to(device)
if dtype == torch.uint8:
res_add = torch.add(zeros, a, alpha=255)
else:
res_add = torch.add(zeros, a, alpha=-1)
res_neg = a.clone()
res_neg.neg_()
self.assertEqual(res_neg, res_add)
# test out of place as well
res_neg_out_place = a.clone().neg()
self.assertEqual(res_neg_out_place, res_add)
# test via __neg__ operator
res_neg_op = -a.clone()
self.assertEqual(res_neg_op, res_add)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_inverse(self, device):
from common_utils import random_fullrank_matrix_distinct_singular_value
# no batches: 2-D tensors
matrix = random_fullrank_matrix_distinct_singular_value(5).to(device)
matrix_inverse = torch.inverse(matrix)
identity = torch.eye(5).to(device)
self.assertEqual(identity, torch.mm(matrix, matrix_inverse), 1e-8, 'inverse value')
self.assertEqual(identity, torch.mm(matrix_inverse, matrix), 1e-8, 'inverse value')
matrix_inverse_out = torch.empty(5, 5).to(device)
torch.inverse(matrix, out=matrix_inverse_out)
self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place')
# second call, now that matrix_inverse_out is transposed
torch.inverse(matrix, out=matrix_inverse_out)
self.assertEqual(matrix_inverse_out, matrix_inverse, 0, 'inverse value in-place')
# one batch
matrix = random_fullrank_matrix_distinct_singular_value(5, 1).to(device)
matrix_inverse = torch.inverse(matrix)
expected_inv = matrix.squeeze(0).inverse()
self.assertEqual(matrix_inverse, expected_inv.unsqueeze(0))
# four batches
matrices = random_fullrank_matrix_distinct_singular_value(5, 4).to(device)
expected_inv_list = []
for i in range(0, 4):
expected_inv_list.append(torch.inverse(matrices[i]))
expected_inv = torch.stack(expected_inv_list)
matrices_inverse = torch.inverse(matrices)
self.assertEqual(matrices_inverse, expected_inv)
# six batches (2 x 3)
matrices = random_fullrank_matrix_distinct_singular_value(5, 2, 3).to(device)
expected_inv_list = []
for mat in matrices.view(-1, 5, 5):
expected_inv_list.append(torch.inverse(mat))
expected_inv = torch.stack(expected_inv_list).view(2, 3, 5, 5)
matrices_inverse = torch.inverse(matrices)
self.assertEqual(matrices_inverse, expected_inv)
# incorrect input test
with self.assertRaisesRegex(RuntimeError, "must be batches of square matrices"):
torch.inverse(torch.randn(2, 3, 4, 3))
# correctness test
matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device)
matrices_inverse = torch.inverse(matrices)
self.assertEqual(torch.matmul(matrices, matrices_inverse), identity.expand_as(matrices))
self.assertEqual(torch.matmul(matrices_inverse, matrices), identity.expand_as(matrices))
# torch.inverse with out and batches
matrices = random_fullrank_matrix_distinct_singular_value(5, 3).to(device)
matrices_inverse = torch.empty(3, 5, 5).to(device)
torch.inverse(matrices, out=matrices_inverse)
self.assertEqual(torch.inverse(matrices), matrices_inverse)
# non-contiguous inputs
if not TEST_NUMPY:
return
from numpy.linalg import inv
matrices = random_fullrank_matrix_distinct_singular_value(3, 2).to(device).permute(0, 2, 1)
assert not matrices.is_contiguous()
matrices_inverse = torch.inverse(matrices)
expected_inv = torch.as_tensor(inv(matrices.cpu().numpy()))
self.assertEqual(matrices_inverse, expected_inv.to(device))
def test_bitwise_not(self, device):
res = 0xffff - torch.arange(127, dtype=torch.int8, device=device)
for dtype in (torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
if dtype == torch.bool:
a = torch.tensor([True, False], device=device)
expected_res = torch.tensor([False, True], device=device)
else:
a = torch.arange(127, dtype=dtype, device=device)
expected_res = res.type(dtype)
# new tensor
self.assertEqual(expected_res, a.bitwise_not())
# out
b = torch.empty(0, dtype=dtype, device=device)
torch.bitwise_not(a, out=b)
self.assertEqual(expected_res, b)
# in-place
a.bitwise_not_()
self.assertEqual(expected_res, a)
# test exceptions
for dtype in(torch.half, torch.float, torch.double):
a = torch.zeros(10, dtype=dtype, device=device)
# new tensor
with self.assertRaises(RuntimeError):
a.bitwise_not()
# out
b = torch.empty(0, dtype=dtype, device=device)
with self.assertRaises(RuntimeError):
torch.bitwise_not(a, out=b)
# in-place
with self.assertRaises(RuntimeError):
a.bitwise_not_()
def test_logical_not(self, device):
for dtype in torch.testing.get_all_dtypes():
a = torch.tensor([10, 1, 0], dtype=dtype, device=device)
if dtype == torch.bfloat16:
self.assertRaises(RuntimeError, lambda: a.logical_not())
continue
expected_res = torch.tensor([0, 0, 1], dtype=dtype, device=device)
# new tensor
self.assertEqual(expected_res.bool(), a.logical_not())
# out
for out_dtype in torch.testing.get_all_dtypes():
b = torch.empty(0, dtype=out_dtype, device=device)
if out_dtype == torch.bfloat16:
self.assertRaises(RuntimeError, lambda: torch.logical_not(a, out=b))
continue
torch.logical_not(a, out=b)
self.assertEqual(expected_res.bool(), b.bool())
# in-place
a.logical_not_()
self.assertEqual(expected_res, a)
def test_logical_xor(self, device):
for dtype in torch.testing.get_all_dtypes():
expected_res = torch.tensor([0, 0, 1, 1], dtype=dtype, device=device)
a = torch.tensor([10, 0, 1, 0], dtype=dtype, device=device)
for other_dtype in torch.testing.get_all_dtypes():
b = torch.tensor([1, 0, 0, 10], dtype=other_dtype, device=device)
# Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA.
if device != 'cpu' and torch.bfloat16 in (dtype, other_dtype):
with self.assertRaises(RuntimeError):
a.logical_xor(b)
continue
# TODO Remove this skipping after bfloat16 can be handled nicely with other dtypes.
# Skip only if either dtype or other_dtype is bfloat16.
if (dtype == torch.bfloat16) != (other_dtype == torch.bfloat16):
with self.assertRaises(RuntimeError):
a.logical_xor(b)
continue
# new tensor
self.assertEqual(expected_res.bool(), a.logical_xor(b))
# out
c = torch.empty(0, dtype=torch.bool, device=device)
torch.logical_xor(a, b, out=c)
self.assertEqual(expected_res.bool(), c.bool())
# in-place
b = torch.tensor([1, 0, 0, 10], dtype=dtype, device=device)
# Skip bfloat16 on CUDA. Remove this after bfloat16 is supported on CUDA.
if device != 'cpu' and dtype == torch.bfloat16:
with self.assertRaises(RuntimeError):
a.logical_xor_(b)
continue
a.logical_xor_(b)
self.assertEqual(expected_res, a)
def test_isinf(self, device):
t1 = torch.Tensor([1, inf, 2, -inf, nan]).to(device)
t2 = torch.ByteTensor([1, 2, 3]).to(device)
t3 = torch.CharTensor([1, 2, 3]).to(device)
t4 = torch.ShortTensor([1, 2, 3]).to(device)
t5 = torch.IntTensor([1, 2, 3]).to(device)
t6 = torch.LongTensor([1, 2, 3]).to(device)
self.assertEqual(torch.isinf(t1), torch.ByteTensor([0, 1, 0, 1, 0]).to(device))
self.assertEqual(torch.isinf(t2), torch.ByteTensor([0, 0, 0]).to(device))
self.assertEqual(torch.isinf(t3), torch.ByteTensor([0, 0, 0]).to(device))
self.assertEqual(torch.isinf(t4), torch.ByteTensor([0, 0, 0]).to(device))
self.assertEqual(torch.isinf(t5), torch.ByteTensor([0, 0, 0]).to(device))
self.assertEqual(torch.isinf(t6), torch.ByteTensor([0, 0, 0]).to(device))
def test_clamp(self, device):
m1 = torch.rand(100, device=device).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
out = m1.clone()
torch.clamp(m1, min=min_val, max=max_val, out=out)
self.assertEqual(out, res1)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
torch.clamp(m1, min=min_val, out=out)
self.assertEqual(out, res1)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
torch.clamp(m1, max=max_val, out=out)
self.assertEqual(out, res1)
# if the tensor contains nan case
test_tens = torch.tensor([nan], device=device)
res1 = test_tens.clone()
res1.clamp_(min_val, max_val)
res2 = test_tens.clone()
for i in iter_indices(res2):
res2[i] = max(min(res2[i], max_val), min_val)
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
out = test_tens.clone()
torch.clamp(test_tens, min=min_val, max=max_val, out=out)
self.assertEqual(torch.isnan(out), torch.isnan(res1))
res1 = torch.clamp(test_tens, min=min_val)
res2 = test_tens.clone()
for i in iter_indices(res2):
res2[i] = max(res2[i], min_val)
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
torch.clamp(test_tens, min=min_val, out=out)
self.assertEqual(torch.isnan(out), torch.isnan(res1))
res1 = torch.clamp(test_tens, max=max_val)
res2 = test_tens.clone()
for i in iter_indices(res2):
res2[i] = min(res2[i], max_val)
self.assertEqual(torch.isnan(res1), torch.isnan(res2))
torch.clamp(test_tens, max=max_val, out=out)
self.assertEqual(torch.isnan(out), torch.isnan(res1))
error_msg = 'At least one of \'min\' or \'max\' must not be None'
with self.assertRaisesRegex(RuntimeError, error_msg):
m1.clamp()
with self.assertRaisesRegex(RuntimeError, error_msg):
m1.clamp_()
def test_cat_empty_legacy(self, device):
# FIXME: this is legacy behavior and should be removed
# when we support empty tensors with arbitrary sizes
dtype = torch.float32
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
empty = torch.randn((0,), dtype=dtype, device=device)
res1 = torch.cat([x, empty], dim=1)
res2 = torch.cat([empty, x], dim=1)
self.assertEqual(res1, res2)
res1 = torch.cat([empty, empty], dim=1)
self.assertEqual(res1, empty)
with self.assertRaisesRegex(RuntimeError,
'non-empty list of Tensors'):
torch.cat([], dim=1)
def test_cat_empty(self, device):
dtype = torch.float32
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device)
res1 = torch.cat([x, empty], dim=1)
res2 = torch.cat([empty, x], dim=1)
self.assertEqual(res1, res2)
res1 = torch.cat([empty, empty], dim=1)
self.assertEqual(res1, empty)
# check non-legacy-behavior (sizes don't match)
empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device)
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
# check non-legacy-behavior (dimensions don't match)
empty = torch.randn((4, 0), dtype=dtype, device=device)
self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1))
self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1))
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_inverse_many_batches(self, device):
from common_utils import random_fullrank_matrix_distinct_singular_value
matrices = random_fullrank_matrix_distinct_singular_value(5, 256, 256).to(device)
matrices_inverse = torch.inverse(matrices)
self.assertEqual(torch.matmul(matrices_inverse, matrices),
torch.eye(5).to(device).expand_as(matrices))
matrices = random_fullrank_matrix_distinct_singular_value(3, 512, 512).to(device)
matrices_inverse = torch.inverse(matrices)
self.assertEqual(torch.matmul(matrices, matrices_inverse),
torch.eye(3).to(device).expand_as(matrices))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_pinverse(self, device, dtype):
from common_utils import random_fullrank_matrix_distinct_singular_value as fullrank
def run_test(M):
# Testing against definition for pseudo-inverses
MPI = torch.pinverse(M)
if M.numel() > 0:
self.assertEqual(M, M.matmul(MPI).matmul(M), 1e-8, 'pseudo-inverse condition 1')
self.assertEqual(MPI, MPI.matmul(M).matmul(MPI), 1e-8, 'pseudo-inverse condition 2')
self.assertEqual(M.matmul(MPI), (M.matmul(MPI)).transpose(-2, -1), 1e-8, 'pseudo-inverse condition 3')
self.assertEqual(MPI.matmul(M), (MPI.matmul(M)).transpose(-2, -1), 1e-8, 'pseudo-inverse condition 4')
else:
self.assertEqual(M.shape, MPI.shape[:-2] + (MPI.shape[-1], MPI.shape[-2]))
for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5), # square matrices
(3, 2), (5, 3, 2), (7, 5, 3, 2), # fat matrices
(2, 3), (5, 2, 3), (7, 5, 2, 3), # thin matrices
(0, 0), (0, 2), (2, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)]: # zero numel matrices
M = torch.randn(*sizes, dtype=dtype, device=device)
run_test(M)
# Test inverse and pseudo-inverse for invertible matrix
for sizes in [(5, 5), (3, 5, 5), (3, 7, 5, 5)]:
matsize = sizes[-1]
batchdims = sizes[:-2]
M = fullrank(matsize, *batchdims, dtype=dtype, device=device)
self.assertEqual(torch.eye(matsize, dtype=dtype, device=device).expand(sizes), M.pinverse().matmul(M),
1e-7, 'pseudo-inverse for invertible matrix')
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_matrix_rank(self, device):
a = torch.eye(10, device=device)
self.assertEqual(torch.matrix_rank(a).item(), 10)
self.assertEqual(torch.matrix_rank(a, True).item(), 10)
a[5, 5] = 0
self.assertEqual(torch.matrix_rank(a).item(), 9)
self.assertEqual(torch.matrix_rank(a, True).item(), 9)
a = torch.randn(24, 42, device=device)
self.assertEqual(torch.matrix_rank(a), torch.matrix_rank(a.t()))
aaT = torch.mm(a, a.t())
self.assertEqual(torch.matrix_rank(aaT), torch.matrix_rank(aaT, True))
aTa = torch.mm(a.t(), a)
self.assertEqual(torch.matrix_rank(aTa), torch.matrix_rank(aTa, True))
if TEST_NUMPY:
from numpy.linalg import matrix_rank
a = torch.randn(35, 75, device=device)
self.assertEqual(torch.matrix_rank(a).item(), matrix_rank(a.cpu().numpy()))
self.assertEqual(torch.matrix_rank(a, 0.01).item(), matrix_rank(a.cpu().numpy(), 0.01))
aaT = torch.mm(a, a.t())
self.assertEqual(torch.matrix_rank(aaT).item(), matrix_rank(aaT.cpu().numpy()))
self.assertEqual(torch.matrix_rank(aaT, 0.01).item(), matrix_rank(aaT.cpu().numpy(), 0.01))
if np.lib.NumpyVersion(np.__version__) >= '1.14.0':
self.assertEqual(torch.matrix_rank(aaT, True).item(), matrix_rank(aaT.cpu().numpy(), True))
self.assertEqual(torch.matrix_rank(aaT, 0.01, True).item(),
matrix_rank(aaT.cpu().numpy(), 0.01, True))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_matrix_power(self, device, dtype):
def run_test(M, sign=1):
if sign == -1:
M = M.inverse()
MP2 = torch.matrix_power(M, 2)
self.assertEqual(MP2, torch.matmul(M, M))
MP3 = torch.matrix_power(M, 3)
self.assertEqual(MP3, torch.matmul(MP2, M))
MP4 = torch.matrix_power(M, 4)
self.assertEqual(MP4, torch.matmul(MP2, MP2))
MP6 = torch.matrix_power(M, 6)
self.assertEqual(MP6, torch.matmul(MP3, MP3))
MP0 = torch.matrix_power(M, 0)
self.assertEqual(MP0, torch.eye(M.size(-2)).expand_as(M))
# Single matrix
M = torch.randn(5, 5, dtype=dtype, device=device)
run_test(M)
# Batch matrices
M = torch.randn(3, 3, 3, dtype=dtype, device=device)
run_test(M)
# Many batch matrices
M = torch.randn(2, 3, 3, 3, dtype=dtype, device=device)
run_test(M)
# This is for negative powers
from common_utils import random_fullrank_matrix_distinct_singular_value
M = random_fullrank_matrix_distinct_singular_value(5, dtype=dtype, device=device)
run_test(M, sign=-1)
M = random_fullrank_matrix_distinct_singular_value(3, 3, dtype=dtype, device=device)
run_test(M, sign=-1)
M = random_fullrank_matrix_distinct_singular_value(3, 2, 3, dtype=dtype, device=device)
run_test(M, sign=-1)
@dtypes(torch.double)
def test_chain_matmul(self, device, dtype):
def product(matrices):
for mat in matrices[1:]:
matrices[0] = matrices[0].mm(mat)
return matrices[0]
def run_test(p):
matrices = []
for (pi, pi_1) in zip(p[:-1], p[1:]):
matrices.append(torch.randn(pi, pi_1, dtype=dtype, device=device))
self.assertEqual(torch.chain_matmul(*matrices), product(matrices))
run_test([10, 20, 30, 5])
run_test([15, 5, 10, 20, 25])
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_det_logdet_slogdet(self, device, dtype):
def reference_slogdet(M):
if TEST_NUMPY:
sdet, logabsdet = np.linalg.slogdet(M.detach().cpu().numpy())
return M.new_tensor(sdet), M.new_tensor(logabsdet)
else:
# naive row reduction
M = M.clone()
l = M.size(0)
multiplier = 1
for i in range(l):
if M[i, 0].item() != 0:
if i != 0:
M[0], M[i] = M[i], M[0]
multiplier = -1
break
else:
return 0
for i in range(1, l):
row = M[i]
for j in range(i):
row -= row[j] / M[j, j] * M[j]
M[i] = row
sdet = M.diag().sign().prod()
logabsdet = M.diag().abs_().log_().sum().add_(math.log(multiplier))
return sdet, logabsdet
def test_single_det(M, target, desc):
target_sdet, target_logabsdet = target
det = M.det()
logdet = M.logdet()
sdet, logabsdet = M.slogdet()
# Test det
self.assertEqual(det, target_sdet * target_logabsdet.exp(), 1e-7, '{} (det)'.format(desc))
# Test slogdet
# Compare the overall value rather than individual parts because of
# precision issues when det is near zero.
self.assertEqual(sdet * logabsdet.exp(), target_sdet * target_logabsdet.exp(), 1e-7, '{} (slogdet)'.format(desc))
# Test logdet
# Compare logdet against our own pytorch slogdet because they should
# be consistent, while it may behave slightly differently with other
# slogdet implementations when det is near zero due to precision
# issues.
if sdet.item() < 0:
self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc))
else:
self.assertEqual(logdet.exp(), target_logabsdet.exp(), 1e-7, '{} (logdet non-negative case)'.format(desc))
eye = torch.eye(5, dtype=dtype, device=device)
test_single_det(eye, (torch.ones((), dtype=dtype, device=device), torch.zeros((), dtype=dtype, device=device)), 'identity')
def test(M):
assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5'
M = M.to(device)
ref_M_sdet, ref_M_logabsdet = reference_slogdet(M)
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'basic')
if ref_M_logabsdet.exp().item() >= 1e-6: # skip singular
M_inv = M.inverse()
test_single_det(M_inv, reference_slogdet(M_inv), 'inverse')
test_single_det(M, (ref_M_sdet, ref_M_logabsdet), 'transpose')
for x in [0, 2, 4]:
for scale in [-2, -0.1, 0, 10]:
if scale > 0:
target = ref_M_sdet, ref_M_logabsdet + math.log(scale)
elif scale == 0:
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
else:
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-scale)
# dim 0
M_clone = M.clone()
M_clone[:, x] *= scale
test_single_det(M_clone, target, 'scale a row')
# dim 1
M_clone = M.clone()
M_clone[x, :] *= scale
test_single_det(M_clone, target, 'scale a column')
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
assert x1 != x2, 'x1 and x2 needs to be different for this test'
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
# dim 0
M_clone = M.clone()
M_clone[:, x2] = M_clone[:, x1]
test_single_det(M_clone, target, 'two rows are same')
# dim 1
M_clone = M.clone()
M_clone[x2, :] = M_clone[x1, :]
test_single_det(M_clone, target, 'two columns are same')
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
det_scale = scale1 * scale2 * -1
if det_scale > 0:
target = ref_M_sdet, ref_M_logabsdet + math.log(det_scale)
elif det_scale == 0:
target = torch.zeros_like(ref_M_sdet), torch.full_like(ref_M_logabsdet, -inf)
else:
target = ref_M_sdet.neg(), ref_M_logabsdet + math.log(-det_scale)
# dim 0
M_clone = M.clone()
t = M_clone[:, x1] * scale1
M_clone[:, x1] += M_clone[:, x2] * scale2
M_clone[:, x2] = t
test_single_det(M_clone, target, 'exchanging rows')
# dim 1
M_clone = M.clone()
t = M_clone[x1, :] * scale1
M_clone[x1, :] += M_clone[x2, :] * scale2
M_clone[x2, :] = t
test_single_det(M_clone, target, 'exchanging columns')
def get_random_mat_scale(n):
# For matrices with values i.i.d. with 0 mean, unit variance, and
# subexponential tail, we have:
# E[log det(A^2)] \approx log((n-1)!)
#
# Notice:
# log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)]
#
# So:
# stddev[det(A)] >= sqrt( (n-1)! )
#
# We use this as an intuitive guideline to scale random generated
# matrices so our closeness tests can work more robustly:
# scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n))
#
# source: https://arxiv.org/pdf/1112.0752.pdf
# TODO: technically we need subexponential distn for this to hold,
# but we mostly use gaussian entries below. Consider switching
# to Chi-sq if this turns out not stable enough, since Chi-sq
# is easy enough to sample from.
return math.factorial(n - 1) ** (-1.0 / (2 * n))
for n in [5, 10, 25]:
scale = get_random_mat_scale(n)
test(torch.randn(n, n, dtype=dtype, device=device) * scale)
r = torch.randn(n, n, dtype=dtype, device=device) * scale
# symmetric psd
test(r.mm(r.t()))
# symmetric pd
r = torch.randn(n, n, dtype=dtype, device=device) * scale
test(r.mm(r.t()) + torch.eye(n, dtype=dtype, device=device) * 1e-6)
# symmetric
r = torch.randn(n, n, dtype=dtype, device=device) * scale
for i in range(n):
for j in range(i):
r[i, j] = r[j, i]
test(r)
# non-contiguous
test((torch.randn(n, n, n + 1, dtype=dtype, device=device) * scale)[:, 2, 1:])
# det = 0
r = torch.randn(n, n, dtype=dtype, device=device) * scale
u, s, v = r.svd()
if reference_slogdet(u)[0] < 0:
u = -u
if reference_slogdet(v)[0] < 0:
v = -v
s[0] *= -1
s[-1] = 0
test(u.mm(s.diag()).mm(v))
# Small values to test numerical stability. Note that we don't scale
# this matrix.
r = torch.randn(512, 512, dtype=dtype, device=device)
u, s, v = r.svd()
s.fill_(1. / (100 * s.numel()))
test(u.mm(s.diag()).mm(v))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_det_logdet_slogdet_batched(self, device, dtype):
from common_utils import (random_symmetric_matrix, random_symmetric_psd_matrix,
random_symmetric_pd_matrix, random_square_matrix_of_rank)
# mat_chars denotes matrix characteristics
# possible values are: sym, sym_psd, sym_pd, sing, non_sym
def run_test(matsize, batchdims, mat_chars):
num_matrices = reduce(lambda x, y: x * y, batchdims, 1)
list_of_matrices = []
for idx in range(num_matrices):
mat_type = idx % len(mat_chars)
if mat_chars[mat_type] == 'sym':
list_of_matrices.append(random_symmetric_matrix(matsize, dtype=dtype, device=device))
elif mat_chars[mat_type] == 'sym_psd':
list_of_matrices.append(random_symmetric_psd_matrix(matsize, dtype=dtype, device=device))
elif mat_chars[mat_type] == 'sym_pd':
list_of_matrices.append(random_symmetric_pd_matrix(matsize, dtype=dtype, device=device))
elif mat_chars[mat_type] == 'sing':
list_of_matrices.append(torch.ones(matsize, matsize, dtype=dtype, device=device))
elif mat_chars[mat_type] == 'non_sing':
list_of_matrices.append(random_square_matrix_of_rank(matsize, matsize, dtype=dtype, device=device))
full_tensor = torch.stack(list_of_matrices, dim=0).reshape(batchdims + (matsize, matsize))
# Scaling adapted from `get_random_mat_scale` in _test_det_logdet_slogdet
full_tensor *= (math.factorial(matsize - 1) ** (-1.0 / (2 * matsize)))
for fn in [torch.det, torch.logdet, torch.slogdet]:
expected_value = []
actual_value = fn(full_tensor)
for full_idx in product(*map(lambda x: list(range(x)), batchdims)):
expected_value.append(fn(full_tensor[full_idx]))
if fn == torch.slogdet:
sign_value = torch.stack([tup[0] for tup in expected_value], dim=0).reshape(batchdims)
expected_value = torch.stack([tup[1] for tup in expected_value], dim=0).reshape(batchdims)
self.assertEqual(sign_value, actual_value[0], allow_inf=True)
self.assertEqual(expected_value, actual_value[1], allow_inf=True)
else:
expected_value = torch.stack(expected_value, dim=0).reshape(batchdims)
self.assertEqual(actual_value, expected_value, allow_inf=True)
for matsize, batchdims in product([3, 5], [(3,), (5, 3)]):
run_test(matsize, batchdims, mat_chars=['sym_pd'])
run_test(matsize, batchdims, mat_chars=['sing'])
run_test(matsize, batchdims, mat_chars=['non_sing'])
run_test(matsize, batchdims, mat_chars=['sym', 'sym_pd', 'sym_psd'])
run_test(matsize, batchdims, mat_chars=['sing', 'non_sing'])
def solve_test_helper(self, A_dims, b_dims, device, dtype):
from common_utils import random_fullrank_matrix_distinct_singular_value
b = torch.randn(*b_dims, dtype=dtype, device=device)
A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device)
return b, A
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_solve(self, device, dtype):
for (k, n) in zip([2, 3, 5], [3, 5, 7]):
b, A = self.solve_test_helper((n,), (n, k), device, dtype)
x = torch.solve(b, A)[0]
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_solve_batched(self, device, dtype):
def solve_batch_helper(A_dims, b_dims):
b, A = self.solve_test_helper(A_dims, b_dims, device, dtype)
x_exp_list = []
for i in range(b_dims[0]):
x_exp_list.append(torch.solve(b[i], A[i])[0])
x_exp = torch.stack(x_exp_list) # Stacked output
x_act = torch.solve(b, A)[0] # Actual output
self.assertEqual(x_exp, x_act) # Equality check
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check
for batchsize in [1, 3, 4]:
solve_batch_helper((5, batchsize), (batchsize, 5, 10))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_solve_batched_non_contiguous(self, device, dtype):
from numpy.linalg import solve
from common_utils import random_fullrank_matrix_distinct_singular_value
A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype,
device=device).permute(1, 0, 2)
b = torch.randn(2, 2, 2, dtype=dtype, device=device).permute(2, 1, 0)
x, _ = torch.solve(b, A)
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device)
self.assertEqual(x.data, x_exp)
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_solve_batched_many_batches(self, device, dtype):
b, A = self.solve_test_helper((5, 256, 256), (5, 1), device, dtype)
x, _ = torch.solve(b, A)
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1)))
b, A = self.solve_test_helper((3,), (512, 512, 3, 1), device, dtype)
x, _ = torch.solve(b, A)
self.assertEqual(torch.matmul(A, x), b)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_solve_batched_broadcasting(self, device, dtype):
from numpy.linalg import solve
def run_test(A_dims, b_dims):
A_matrix_size = A_dims[-1]
A_batch_dims = A_dims[:-2]
b, A = self.solve_test_helper((A_matrix_size,) + A_batch_dims, b_dims, device, dtype)
x, _ = torch.solve(b, A)
x_exp = torch.Tensor(solve(A.cpu().numpy(), b.cpu().numpy())).to(dtype=dtype, device=device)
self.assertEqual(x, x_exp)
# test against numpy.linalg.solve
for upper in [True, False]:
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting
run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b
run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b
def cholesky_solve_test_helper(self, A_dims, b_dims, upper, device, dtype):
from common_utils import random_symmetric_pd_matrix
b = torch.randn(*b_dims, dtype=dtype, device=device)
A = random_symmetric_pd_matrix(*A_dims, dtype=dtype, device=device)
L = torch.cholesky(A, upper=upper)
return b, A, L
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_solve(self, device, dtype):
for (k, n), upper in product(zip([2, 3, 5], [3, 5, 7]), [True, False]):
b, A, L = self.cholesky_solve_test_helper((n,), (n, k), upper, device, dtype)
x = torch.cholesky_solve(b, L, upper=upper)
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_solve_batched(self, device, dtype):
def cholesky_solve_batch_helper(A_dims, b_dims, upper):
b, A, L = self.cholesky_solve_test_helper(A_dims, b_dims, upper, device, dtype)
x_exp_list = []
for i in range(b_dims[0]):
x_exp_list.append(torch.cholesky_solve(b[i], L[i], upper=upper))
x_exp = torch.stack(x_exp_list) # Stacked output
x_act = torch.cholesky_solve(b, L, upper=upper) # Actual output
self.assertEqual(x_act, x_exp) # Equality check
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 2e-12) # Correctness check
for upper, batchsize in product([True, False], [1, 3, 4]):
cholesky_solve_batch_helper((5, batchsize), (batchsize, 5, 10), upper)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_cholesky_solve_batched_non_contiguous(self, device, dtype):
from numpy.linalg import solve
from common_utils import random_symmetric_pd_matrix
for upper in [True, False]:
A = random_symmetric_pd_matrix(2, 2, dtype=dtype, device='cpu')
b = torch.randn(2, 2, 2, dtype=dtype, device='cpu')
x_exp = torch.Tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(dtype=dtype, device=device)
A = A.to(device).permute(0, 2, 1)
b = b.to(device).permute(2, 1, 0)
assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs"
L = torch.cholesky(A, upper)
x = torch.cholesky_solve(b, L, upper=upper)
self.assertEqual(x, x_exp)
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_solve_batched_many_batches(self, device, dtype):
for upper in [True, False]:
b, A, L = self.cholesky_solve_test_helper((5, 256, 256), (5, 10), upper, device, dtype)
x = torch.cholesky_solve(b, L, upper)
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 10)))
b, A, L = self.cholesky_solve_test_helper((5,), (512, 512, 5, 10), upper, device, dtype)
x = torch.cholesky_solve(b, L, upper)
self.assertEqual(torch.matmul(A, x), b)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_cholesky_solve_batched_broadcasting(self, device, dtype):
from numpy.linalg import solve
from common_utils import random_symmetric_pd_matrix
def run_test(A_dims, b_dims, upper):
A_matrix_size = A_dims[-1]
A_batch_dims = A_dims[:-2]
A = random_symmetric_pd_matrix(A_matrix_size, *A_batch_dims,
dtype=dtype, device='cpu')
b = torch.randn(*b_dims, dtype=dtype, device='cpu')
x_exp = torch.tensor(solve(A.numpy(), b.numpy()), dtype=dtype, device=device)
A, b = A.to(dtype=dtype, device=device), b.to(dtype=dtype, device=device)
L = torch.cholesky(A, upper)
x = torch.cholesky_solve(b, L, upper=upper)
self.assertEqual(x, x_exp)
# test against numpy.linalg.solve
for upper in [True, False]:
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), upper) # no broadcasting
run_test((2, 1, 3, 4, 4), (4, 6), upper) # broadcasting b
run_test((4, 4), (2, 1, 3, 4, 2), upper) # broadcasting A
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), upper) # broadcasting A & b
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_inverse(self, device, dtype):
from common_utils import random_symmetric_pd_matrix
a = random_symmetric_pd_matrix(5, dtype=dtype, device=device)
# compute inverse directly
inv0 = torch.inverse(a)
# default case
chol = torch.cholesky(a)
inv1 = torch.cholesky_inverse(chol, False)
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# upper Triangular Test
chol = torch.cholesky(a, True)
inv1 = torch.cholesky_inverse(chol, True)
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# lower Triangular Test
chol = torch.cholesky(a, False)
inv1 = torch.cholesky_inverse(chol, False)
self.assertLessEqual(inv0.dist(inv1), 1e-12)
@slowTest
@skipCUDAIf(True, "See issue #26789.")
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_batched_many_batches(self, device, dtype):
from common_utils import random_symmetric_pd_matrix
def cholesky_test_helper(n, batchsize, device, upper):
A = random_symmetric_pd_matrix(n, batchsize, dtype=dtype, device=device)
chol_fact = torch.cholesky(A, upper=upper)
if upper:
# Correctness check
self.assertEqual(A, chol_fact.transpose(-2, -1).matmul(chol_fact))
# Upper triangular check
self.assertEqual(chol_fact, chol_fact.triu())
else:
# Correctness check
self.assertEqual(A, chol_fact.matmul(chol_fact.transpose(-2, -1)))
# Lower triangular check
self.assertEqual(chol_fact, chol_fact.tril())
for upper, batchsize in product([True, False], [262144, 524288]):
cholesky_test_helper(2, batchsize, device, upper)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky_batched(self, device, dtype):
from common_utils import random_symmetric_pd_matrix
def cholesky_test_helper(n, batch_dims, upper):
A = random_symmetric_pd_matrix(n, *batch_dims, dtype=dtype, device=device)
cholesky_exp = torch.stack([m.cholesky(upper=upper) for m in A.reshape(-1, n, n)])
cholesky_exp = cholesky_exp.reshape_as(A)
self.assertEqual(cholesky_exp, torch.cholesky(A, upper=upper))
for upper, batchsize in product([True, False], [(3,), (3, 4), (2, 3, 4)]):
cholesky_test_helper(3, batchsize, upper)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_cholesky(self, device, dtype):
x = torch.rand(10, 10, dtype=dtype, device=device) + 1e-1
A = torch.mm(x, x.t())
# default Case
C = torch.cholesky(A)
B = torch.mm(C, C.t())
self.assertEqual(A, B, 1e-14)
# test Upper Triangular
U = torch.cholesky(A, True)
B = torch.mm(U.t(), U)
self.assertEqual(A, B, 1e-14, 'cholesky (upper) did not allow rebuilding the original matrix')
# test Lower Triangular
L = torch.cholesky(A, False)
B = torch.mm(L, L.t())
self.assertEqual(A, B, 1e-14, 'cholesky (lower) did not allow rebuilding the original matrix')
def test_view(self, device):
tensor = torch.rand(15, device=device)
template = torch.rand(3, 5, device=device)
empty = torch.empty(0, device=device)
target = template.size()
self.assertEqual(tensor.view_as(template).size(), target)
self.assertEqual(tensor.view(3, 5).size(), target)
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
self.assertEqual(tensor.view(-1, 5).size(), target)
self.assertEqual(tensor.view(3, -1).size(), target)
tensor_view = tensor.view(5, 3)
tensor_view.fill_(random.uniform(0, 1))
self.assertEqual(empty.view_as(empty), empty)
self.assertEqual(empty.view(0), empty)
self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1]))
self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty)
# test size inference with empty tensors
self.assertEqual(empty.view(-1).size(), torch.Size([0]))
self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0]))
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
empty.view(-1, 0)
with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"):
empty.view(3, 0, -1, 0)
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
# test view when tensor is not contiguous in every dimension, but only
# contiguous dimensions are touched.
tensor = torch.rand(4, 2, 5, 1, 6, 2, 9, 3, device=device).transpose(-1, 2).transpose(-2, 3)
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
contig_tensor = tensor.clone()
# [4, 2] => [8, 1]
# [3] => [3]
# [9] => [3, 3]
# [6, 2] => [4, 1, 3]
# [1, 5] => [5]
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# [4, 2] => [2, 4]
# [3] => [3]
# [9] => [1, 9]
# [6, 2] => [2, 2, 3]
# [1, 5] => [5, 1]
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# adding size 1 dims
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# invalid views
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
# crossing [4, 2], [3]
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
# crossing [6, 2], [1, 5]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
# crossing [9], [6, 2]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
# view with stride 0 dims
tensor = torch.empty(1, 1, device=device).expand(3, 4) # all dims are contiguous
contig_tensor = tensor.clone()
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
def test_flip(self, device):
data = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], device=device).view(2, 2, 2)
self.assertEqual(torch.tensor([5, 6, 7, 8, 1, 2, 3, 4]).view(2, 2, 2), data.flip(0))
self.assertEqual(torch.tensor([3, 4, 1, 2, 7, 8, 5, 6]).view(2, 2, 2), data.flip(1))
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(2))
self.assertEqual(torch.tensor([7, 8, 5, 6, 3, 4, 1, 2]).view(2, 2, 2), data.flip(0, 1))
self.assertEqual(torch.tensor([8, 7, 6, 5, 4, 3, 2, 1]).view(2, 2, 2), data.flip(0, 1, 2))
# check for wrap dim
self.assertEqual(torch.tensor([2, 1, 4, 3, 6, 5, 8, 7]).view(2, 2, 2), data.flip(-1))
# check for permute
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(0, 2))
self.assertEqual(torch.tensor([6, 5, 8, 7, 2, 1, 4, 3]).view(2, 2, 2), data.flip(2, 0))
# not allow flip on the same dim more than once
self.assertRaises(RuntimeError, lambda: data.flip(0, 1, 1))
# not allow empty list as input
self.assertRaises(TypeError, lambda: data.flip())
# not allow size of flip dim > total dims
self.assertRaises(IndexError, lambda: data.flip(0, 1, 2, 3))
# not allow dim > max dim
self.assertRaises(IndexError, lambda: data.flip(3))
# test for non-contiguous case
expanded_data = torch.arange(1, 4, device=device).view(3, 1).expand(3, 2)
transposed_data = torch.arange(1, 9, device=device).view(2, 2, 2).transpose(0, 1)
self.assertEqual(torch.tensor([3, 3, 2, 2, 1, 1]).view(3, 2), expanded_data.flip(0))
self.assertEqual(torch.tensor([8, 7, 4, 3, 6, 5, 2, 1]).view(2, 2, 2), transposed_data.flip(0, 1, 2))
# test for shape
data = torch.randn(2, 3, 4, device=device)
size = [2, 3, 4]
test_dims = []
for i in range(1, 3):
test_dims += combinations(range(len(size)), i)
for ds in test_dims:
self.assertEqual(size, list(data.flip(ds).size()))
# test rectangular case
data = torch.tensor([1, 2, 3, 4, 5, 6]).view(2, 3).to(device)
flip0_result = torch.tensor([[4, 5, 6], [1, 2, 3]]).to(device)
flip1_result = torch.tensor([[3, 2, 1], [6, 5, 4]]).to(device)
self.assertEqual(flip0_result, data.flip(0))
self.assertEqual(flip1_result, data.flip(1))
# test empty tensor, should just return an empty tensor of the same shape
data = torch.tensor([])
self.assertEqual(data, data.flip(0))
def test_rot90(self, device):
data = torch.arange(1, 5, device=device).view(2, 2)
self.assertEqual(torch.tensor([1, 2, 3, 4]).view(2, 2), data.rot90(0, [0, 1]))
self.assertEqual(torch.tensor([2, 4, 1, 3]).view(2, 2), data.rot90(1, [0, 1]))
self.assertEqual(torch.tensor([4, 3, 2, 1]).view(2, 2), data.rot90(2, [0, 1]))
self.assertEqual(torch.tensor([3, 1, 4, 2]).view(2, 2), data.rot90(3, [0, 1]))
# test for default args k=1, dims=[0, 1]
self.assertEqual(data.rot90(), data.rot90(1, [0, 1]))
# test for reversed order of dims
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(1, [1, 0]))
# test for modulo of k
self.assertEqual(data.rot90(5, [0, 1]), data.rot90(1, [0, 1]))
self.assertEqual(data.rot90(3, [0, 1]), data.rot90(-1, [0, 1]))
self.assertEqual(data.rot90(-5, [0, 1]), data.rot90(-1, [0, 1]))
# test for dims out-of-range error
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, -3]))
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 2]))
# test tensor with more than 2D
data = torch.arange(1, 9, device=device).view(2, 2, 2)
self.assertEqual(torch.tensor([2, 4, 1, 3, 6, 8, 5, 7]).view(2, 2, 2), data.rot90(1, [1, 2]))
self.assertEqual(data.rot90(1, [1, -1]), data.rot90(1, [1, 2]))
# test for errors
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 3]))
self.assertRaises(RuntimeError, lambda: data.rot90(1, [1, 1]))
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0, 1, 2]))
self.assertRaises(RuntimeError, lambda: data.rot90(1, [0]))
def test_signal_window_functions(self, device):
if not TEST_SCIPY:
raise unittest.SkipTest('Scipy not found')
def test(name):
torch_method = getattr(torch, name + '_window')
for size in [1, 2, 5, 10, 50, 100, 1024, 2048]:
for periodic in [True, False]:
res = torch_method(size, periodic=periodic, device=device)
ref = torch.from_numpy(signal.get_window(name, size, fftbins=periodic))
self.assertEqual(res, ref)
with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'):
torch_method(3, layout=torch.sparse_coo)
with self.assertRaisesRegex(RuntimeError, r'floating point'):
torch_method(3, dtype=torch.long)
self.assertTrue(torch_method(3, requires_grad=True).requires_grad)
self.assertFalse(torch_method(3).requires_grad)
for window in ['hann', 'hamming', 'bartlett', 'blackman']:
test(window)
def test_broadcast(self, device):
# all functions
fns = {
"dist", "atan2", "pow", "lerp", "add",
"sub", "mul", "div", "fmod", "remainder",
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
"map", "map2", "copy"
}
# functions with three tensor arguments
fns_3_args = {"addcdiv", "addcmul", "map2"}
for fn in fns:
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
full1d = torch.randn(*dims_full, device=device).flatten().float()
small = torch.randn(*dims_small, device=device).float()
large = torch.randn(*dims_large, device=device).float()
small_expanded = small.expand(*dims_full)
large_expanded = large.expand(*dims_full)
small2 = None
small2_expanded = None
if fn in fns_3_args:
# create another smaller tensor
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
small2 = torch.randn(*dims_small2, device=device).float()
small2_expanded = small2.expand(*dims_full)
if small.is_cuda and fn in ['map', 'map2']:
# map and map2 are not implementd on CUDA tensors
continue
if hasattr(large_expanded, fn):
# run through tensor versions of functions
# and verify fully expanded inputs give same results
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def tensorfn(myfn, t1, t2):
if fn == "lerp":
return myfn(t1, 0.5)
elif fn == "masked_select":
return myfn(t1 < 0)
elif fn == "masked_scatter":
return myfn(t1 < 0.5, full1d)
elif fn == "masked_fill":
return myfn(t1 < 0.5, 1.0)
elif fn in fns_3_args:
return myfn(1, t1, t2)
else:
return myfn(t1)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
method_expanded = getattr(expanded[first], fn)
method = getattr(first, fn)
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
r2 = tensorfn(method, second, third)
self.assertEqual(r1, r2)
# now for torch. versions of functions
if hasattr(torch, fn):
fntorch = getattr(torch, fn)
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def torchfn(t1, t2, t3):
if fn == "lerp":
return fntorch(t1, t2, 0.5)
elif fn == "masked_select":
return fntorch(t1, t2 < 0)
elif fn == "masked_scatter":
return fntorch(t1, t2 < 0.5, full1d)
elif fn == "masked_fill":
return fntorch(t1, t2 < 0.5, 1.0)
elif fn in fns_3_args:
return fntorch(t1, 1.0, t2, t3)
else:
return fntorch(t1, t2)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
r1 = torchfn(expanded[first], expanded[second], expanded[third])
r2 = torchfn(first, second, third)
self.assertEqual(r1, r2)
# now for in place functions
# in-place tensor is not broadcastable; test only guaranteed
# to work by broadcasting other argument(s)
if not hasattr(large_expanded, fn + "_"):
continue
# need to clone largeExpanded so we can reuse, since functions are in-place
large_expanded_clone = large_expanded.clone()
def tensorfn_inplace(t0, t1, t2=None):
t0_fn = getattr(t0, fn + "_")
if fn == "lerp":
return t0_fn(t1, 0.5)
elif fn == "masked_scatter":
return t0_fn(t1 < 0.5, full1d)
elif fn == "masked_fill":
return t0_fn(t1 < 0.5, 1.0)
elif fn == "map":
return t0_fn(t1, lambda x, y: x + y)
elif fn == "map2":
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
elif fn in fns_3_args:
return t0_fn(1.0, t1, t2)
else:
return t0_fn(t1)
# in-place pointwise operations don't actually work if the in-place
# tensor is 0-strided (numpy has the same issue)
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
self.assertEqual(r1, r2)
def broadcastable(t0, t1, t2=None):
try:
t1.expand_as(t0)
if t2 is not None:
t2.expand_as(t0)
except RuntimeError:
return False
return True
def _test_in_place_broadcastable(t0, t1, t2=None):
if not broadcastable(t0, t1, t2):
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
if not same_size:
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
else:
tensorfn_inplace(t0, t1, t2)
if fn not in fns_3_args:
_test_in_place_broadcastable(small, large_expanded)
_test_in_place_broadcastable(small, large)
else:
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
_test_in_place_broadcastable(small2, small, large)
def test_broadcast_fused_matmul(self, device):
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
for fn in fns:
batch_dim = random.randint(1, 8)
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
def dims_full_for_fn():
if fn == "baddbmm":
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addbmm":
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addmm":
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
elif fn == "addmv":
return ([n_dim], [n_dim, m_dim], [m_dim])
elif fn == "addr":
return ([n_dim, m_dim], [n_dim], [m_dim])
else:
raise AssertionError("unknown function")
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
t0_small = torch.randn(*t0_dims_small, device=device).float()
t1 = torch.randn(*t1_dims, device=device).float()
t2 = torch.randn(*t2_dims, device=device).float()
t0_full = t0_small.expand(*t0_dims_full).to(device)
fntorch = getattr(torch, fn)
r0 = fntorch(t0_small, t1, t2)
r1 = fntorch(t0_full, t1, t2)
self.assertEqual(r0, r1)
def test_broadcast_batched_matmul(self, device):
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
def verify_batched_matmul(full_lhs, one_dimensional):
if not one_dimensional:
lhs_dims = [n_dim, m_dim]
rhs_dims = [m_dim, p_dim]
result_dims = [n_dim, p_dim]
else:
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
result_dims = [n_dim] if full_lhs else [p_dim]
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
dim0_dims = rhs_dims if full_lhs else lhs_dims
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
small = torch.randn(*(small_dims), device=device).float()
dim0 = torch.randn(*(dim0_dims), device=device).float()
full = torch.randn(*(full_batch_dims + full_mat_dims), device=device).float()
if not one_dimensional:
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
else:
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
def maybe_squeeze_result(l, r, result):
if len(lhs_dims) == 1 and l.dim() != 1:
return result.squeeze(-2)
elif len(rhs_dims) == 1 and r.dim() != 1:
return result.squeeze(-1)
else:
return result
for lhs in lhsTensors:
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
lhs_expanded_matmul_fn = lhs_expanded.matmul
for rhs in rhsTensors:
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
for l in (lhs, lhs_expanded):
for r in (rhs, rhs_expanded):
l_matmul_fn = l.matmul
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
self.assertEqual(truth, result)
# test torch.matmul function as well
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
self.assertEqual(truth, torch_result)
# test torch.matmul with out
out = torch.zeros_like(torch_result)
torch.matmul(l, r, out=out)
self.assertEqual(truth, maybe_squeeze_result(l, r, out))
# compare to bmm
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
for indices in product((True, False), repeat=2):
verify_batched_matmul(*indices)
def test_contiguous(self, device):
x = torch.randn(1, 16, 5, 5, device=device)
self.assertTrue(x.is_contiguous())
stride = list(x.stride())
stride[0] = 20
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
x.set_(x.storage(), 0, x.size(), stride)
self.assertTrue(x.is_contiguous())
def test_index(self, device):
def consec(size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size)
reference = consec((3, 3, 3)).to(device)
# empty tensor indexing
self.assertEqual(reference[torch.LongTensor().to(device)], reference.new(0, 3, 3))
self.assertEqual(reference[0], consec((3, 3)), 0)
self.assertEqual(reference[1], consec((3, 3), 10), 0)
self.assertEqual(reference[2], consec((3, 3), 19), 0)
self.assertEqual(reference[0, 1], consec((3,), 4), 0)
self.assertEqual(reference[0:2], consec((2, 3, 3)), 0)
self.assertEqual(reference[2, 2, 2], 27, 0)
self.assertEqual(reference[:], consec((3, 3, 3)), 0)
# indexing with Ellipsis
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
[12, 15, 18],
[21, 24, 27]]), 0)
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0)
self.assertEqual(reference[..., 2], reference[:, :, 2], 0)
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0)
self.assertEqual(reference[0, 2, ...], reference[0, 2], 0)
self.assertEqual(reference[..., 2, 2, 2], 27, 0)
self.assertEqual(reference[2, ..., 2, 2], 27, 0)
self.assertEqual(reference[2, 2, ..., 2], 27, 0)
self.assertEqual(reference[2, 2, 2, ...], 27, 0)
self.assertEqual(reference[...], reference, 0)
reference_5d = consec((3, 3, 3, 3, 3)).to(device)
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0)
self.assertEqual(reference_5d[...], reference_5d, 0)
# LongTensor indexing
reference = consec((5, 5, 5)).to(device)
idx = torch.LongTensor([2, 4]).to(device)
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
# TODO: enable one indexing is implemented like in numpy
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
# None indexing
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
# indexing 0-length slice
self.assertEqual(torch.empty(0, 5, 5), reference[slice(0)])
self.assertEqual(torch.empty(0, 5), reference[slice(0), 2])
self.assertEqual(torch.empty(0, 5), reference[2, slice(0)])
self.assertEqual(torch.tensor([]), reference[2, 1:1, 2])
# indexing with step
reference = consec((10, 10, 10)).to(device)
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
self.assertEqual(reference[:, 2, 1:6:2],
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
tensor = torch.DoubleTensor(lst).to(device)
for _i in range(100):
idx1_start = random.randrange(10)
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
idx1_step = random.randrange(1, 8)
idx1 = slice(idx1_start, idx1_end, idx1_step)
if random.randrange(2) == 0:
idx2_start = random.randrange(10)
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
idx2_step = random.randrange(1, 8)
idx2 = slice(idx2_start, idx2_end, idx2_step)
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
tensor_indexed = tensor[idx1, idx2]
else:
lst_indexed = lst[idx1]
tensor_indexed = tensor[idx1]
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
self.assertRaises(ValueError, lambda: reference[1:9:0])
self.assertRaises(ValueError, lambda: reference[1:9:-1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
self.assertRaises(IndexError, lambda: reference[0.0])
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0])
def delitem():
del reference[0]
self.assertRaises(TypeError, delitem)
@dtypes(torch.half, torch.double)
def test_advancedindex(self, device, dtype):
# Tests for Integer Array Indexing, Part I - Purely integer array
# indexing
def consec(size, start=1):
# Creates the sequence in float since CPU half doesn't support the
# needed operations. Converts to dtype before returning.
numel = reduce(lambda x, y: x * y, size, 1)
sequence = torch.ones(numel, dtype=torch.float, device=device).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size).to(dtype=dtype)
# pick a random valid indexer type
def ri(indices):
choice = random.randint(0, 2)
if choice == 0:
return torch.LongTensor(indices).to(device)
elif choice == 1:
return list(indices)
else:
return tuple(indices)
def validate_indexing(x):
self.assertEqual(x[[0]], consec((1,)))
self.assertEqual(x[ri([0]), ], consec((1,)))
self.assertEqual(x[ri([3]), ], consec((1,), 4))
self.assertEqual(x[[2, 3, 4]], consec((3,), 3))
self.assertEqual(x[ri([2, 3, 4]), ], consec((3,), 3))
self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([1, 3, 5], dtype=dtype, device=device))
def validate_setting(x):
x[[0]] = -2
self.assertEqual(x[[0]], torch.tensor([-2], dtype=dtype, device=device))
x[[0]] = -1
self.assertEqual(x[ri([0]), ], torch.tensor([-1], dtype=dtype, device=device))
x[[2, 3, 4]] = 4
self.assertEqual(x[[2, 3, 4]], torch.tensor([4, 4, 4], dtype=dtype, device=device))
x[ri([2, 3, 4]), ] = 3
self.assertEqual(x[ri([2, 3, 4]), ], torch.tensor([3, 3, 3], dtype=dtype, device=device))
x[ri([0, 2, 4]), ] = torch.tensor([5, 4, 3], dtype=dtype, device=device)
self.assertEqual(x[ri([0, 2, 4]), ], torch.tensor([5, 4, 3], dtype=dtype, device=device))
# Only validates indexing and setting for halfs
if dtype == torch.half:
reference = consec((10,))
validate_indexing(reference)
validate_setting(reference)
return
# Case 1: Purely Integer Array Indexing
reference = consec((10,))
validate_indexing(reference)
# setting values
validate_setting(reference)
# Tensor with stride != 1
# strided is [1, 3, 5, 7]
reference = consec((10,))
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), storage_offset=0,
size=torch.Size([4]), stride=[2])
self.assertEqual(strided[[0]], torch.tensor([1], dtype=dtype, device=device))
self.assertEqual(strided[ri([0]), ], torch.tensor([1], dtype=dtype, device=device))
self.assertEqual(strided[ri([3]), ], torch.tensor([7], dtype=dtype, device=device))
self.assertEqual(strided[[1, 2]], torch.tensor([3, 5], dtype=dtype, device=device))
self.assertEqual(strided[ri([1, 2]), ], torch.tensor([3, 5], dtype=dtype, device=device))
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
torch.tensor([[5, 3], [1, 7]], dtype=dtype, device=device))
# stride is [4, 8]
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), storage_offset=4,
size=torch.Size([2]), stride=[4])
self.assertEqual(strided[[0]], torch.tensor([5], dtype=dtype, device=device))
self.assertEqual(strided[ri([0]), ], torch.tensor([5], dtype=dtype, device=device))
self.assertEqual(strided[ri([1]), ], torch.tensor([9], dtype=dtype, device=device))
self.assertEqual(strided[[0, 1]], torch.tensor([5, 9], dtype=dtype, device=device))
self.assertEqual(strided[ri([0, 1]), ], torch.tensor([5, 9], dtype=dtype, device=device))
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
torch.tensor([[5, 9], [9, 5]], dtype=dtype, device=device))
# reference is 1 2
# 3 4
# 5 6
reference = consec((3, 2))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.tensor([1, 3, 5], dtype=dtype, device=device))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.tensor([2, 4, 6], dtype=dtype, device=device))
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.tensor([1, 2], dtype=dtype, device=device))
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
torch.tensor([2, 4, 4, 2, 6], dtype=dtype, device=device))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.tensor([1, 2, 3, 3], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns], torch.tensor([[1, 1],
[3, 5]], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns], torch.tensor([[2, 1],
[4, 5]], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 2]])
columns = ri([[0, 1],
[1, 0]])
self.assertEqual(reference[rows, columns], torch.tensor([[1, 2],
[4, 5]], dtype=dtype, device=device))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])], torch.tensor([-1], dtype=dtype, device=device))
reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device)
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
torch.tensor([-1, 2, -4], dtype=dtype, device=device))
reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
self.assertEqual(reference[rows, columns],
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
# Verify still works with Transposed (i.e. non-contiguous) Tensors
reference = torch.tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]], dtype=dtype, device=device).t_()
# Transposed: [[0, 4, 8],
# [1, 5, 9],
# [2, 6, 10],
# [3, 7, 11]]
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
torch.tensor([0, 1, 2], dtype=dtype, device=device))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])],
torch.tensor([4, 5, 6], dtype=dtype, device=device))
self.assertEqual(reference[ri([0]), ri([0])],
torch.tensor([0], dtype=dtype, device=device))
self.assertEqual(reference[ri([2]), ri([1])],
torch.tensor([6], dtype=dtype, device=device))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]],
torch.tensor([0, 4], dtype=dtype, device=device))
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
torch.tensor([4, 5, 5, 4, 7], dtype=dtype, device=device))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.tensor([0, 4, 1, 1], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns],
torch.tensor([[0, 0], [1, 2]], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns],
torch.tensor([[4, 0], [5, 2]], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 3]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(reference[rows, columns],
torch.tensor([[0, 4], [5, 11]], dtype=dtype, device=device))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])],
torch.tensor([-1], dtype=dtype, device=device))
reference[ri([0, 1, 2]), ri([0])] = torch.tensor([-1, 2, -4], dtype=dtype, device=device)
self.assertEqual(reference[ri([0, 1, 2]), ri([0])],
torch.tensor([-1, 2, -4], dtype=dtype, device=device))
reference[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
self.assertEqual(reference[rows, columns],
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
# stride != 1
# strided is [[1 3 5 7],
# [9 11 13 15]]
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
stride=[8, 2])
self.assertEqual(strided[ri([0, 1]), ri([0])],
torch.tensor([1, 9], dtype=dtype, device=device))
self.assertEqual(strided[ri([0, 1]), ri([1])],
torch.tensor([3, 11], dtype=dtype, device=device))
self.assertEqual(strided[ri([0]), ri([0])],
torch.tensor([1], dtype=dtype, device=device))
self.assertEqual(strided[ri([1]), ri([3])],
torch.tensor([15], dtype=dtype, device=device))
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]],
torch.tensor([1, 7], dtype=dtype, device=device))
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
torch.tensor([9, 11, 11, 9, 15], dtype=dtype, device=device))
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.tensor([1, 3, 9, 9], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 1]])
columns = [0],
self.assertEqual(strided[rows, columns],
torch.tensor([[1, 1], [9, 9]], dtype=dtype, device=device))
rows = ri([[0, 1],
[1, 0]])
columns = ri([1, 2])
self.assertEqual(strided[rows, columns],
torch.tensor([[3, 13], [11, 5]], dtype=dtype, device=device))
rows = ri([[0, 0],
[1, 1]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(strided[rows, columns],
torch.tensor([[1, 3], [11, 13]], dtype=dtype, device=device))
# setting values
# strided is [[10, 11],
# [17, 18]]
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0]), ri([1])],
torch.tensor([11], dtype=dtype, device=device))
strided[ri([0]), ri([1])] = -1
self.assertEqual(strided[ri([0]), ri([1])],
torch.tensor([-1], dtype=dtype, device=device))
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0, 1]), ri([1, 0])],
torch.tensor([11, 17], dtype=dtype, device=device))
strided[ri([0, 1]), ri([1, 0])] = torch.tensor([-1, 2], dtype=dtype, device=device)
self.assertEqual(strided[ri([0, 1]), ri([1, 0])],
torch.tensor([-1, 2], dtype=dtype, device=device))
reference = torch.arange(0., 24, dtype=dtype, device=device).view(3, 8)
strided = torch.tensor((), dtype=dtype, device=device)
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
rows = ri([[0],
[1]])
columns = ri([[0, 1],
[0, 1]])
self.assertEqual(strided[rows, columns],
torch.tensor([[10, 11], [17, 18]], dtype=dtype, device=device))
strided[rows, columns] = torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device)
self.assertEqual(strided[rows, columns],
torch.tensor([[4, 6], [2, 3]], dtype=dtype, device=device))
# Tests using less than the number of dims, and ellipsis
# reference is 1 2
# 3 4
# 5 6
reference = consec((3, 2))
self.assertEqual(reference[ri([0, 2]), ],
torch.tensor([[1, 2], [5, 6]], dtype=dtype, device=device))
self.assertEqual(reference[ri([1]), ...],
torch.tensor([[3, 4]], dtype=dtype, device=device))
self.assertEqual(reference[..., ri([1])],
torch.tensor([[2], [4], [6]], dtype=dtype, device=device))
# verify too many indices fails
with self.assertRaises(IndexError):
reference[ri([1]), ri([0, 2]), ri([3])]
# test invalid index fails
reference = torch.empty(10, dtype=dtype, device=device)
# can't test cuda because it is a device assert
if not reference.is_cuda:
for err_idx in (10, -11):
with self.assertRaisesRegex(IndexError, r'out of'):
reference[err_idx]
with self.assertRaisesRegex(IndexError, r'out of'):
reference[torch.LongTensor([err_idx]).to(device)]
with self.assertRaisesRegex(IndexError, r'out of'):
reference[[err_idx]]
if TEST_NUMPY:
# we use numpy to compare against, to verify that our advanced
# indexing semantics are the same, and also for ease of test
# writing
def tensor_indices_to_np(tensor, indices):
# convert the Torch Tensor to a numpy array
tensor = tensor.to(device='cpu')
npt = tensor.numpy()
# convert indices
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
i for i in indices)
return npt, idxs
def get_numpy(tensor, indices):
npt, idxs = tensor_indices_to_np(tensor, indices)
# index and return as a Torch Tensor
return torch.tensor(npt[idxs], dtype=dtype, device=device)
def set_numpy(tensor, indices, value):
if not isinstance(value, int):
if self.device_type != 'cpu':
value = value.cpu()
value = value.numpy()
npt, idxs = tensor_indices_to_np(tensor, indices)
npt[idxs] = value
return npt
def assert_get_eq(tensor, indexer):
self.assertEqual(tensor[indexer], get_numpy(tensor, indexer))
def assert_set_eq(tensor, indexer, val):
pyt = tensor.clone()
numt = tensor.clone()
pyt[indexer] = val
numt = torch.tensor(set_numpy(numt, indexer, val), dtype=dtype, device=device)
self.assertEqual(pyt, numt)
def assert_backward_eq(tensor, indexer):
cpu = tensor.float().clone().detach().requires_grad_(True)
outcpu = cpu[indexer]
gOcpu = torch.rand_like(outcpu)
outcpu.backward(gOcpu)
dev = cpu.to(device).detach().requires_grad_(True)
outdev = dev[indexer]
outdev.backward(gOcpu.to(device))
self.assertEqual(cpu.grad, dev.grad)
def get_set_tensor(indexed, indexer):
set_size = indexed[indexer].size()
set_count = indexed[indexer].numel()
set_tensor = torch.randperm(set_count).view(set_size).double().to(device)
return set_tensor
# Tensor is 0 1 2 3 4
# 5 6 7 8 9
# 10 11 12 13 14
# 15 16 17 18 19
reference = torch.arange(0., 20, dtype=dtype, device=device).view(4, 5)
indices_to_test = [
# grab the second, fourth columns
[slice(None), [1, 3]],
# first, third rows,
[[0, 2], slice(None)],
# weird shape
[slice(None), [[0, 1],
[2, 3]]],
# negatives
[[-1], [0]],
[[0, 2], [-1]],
[slice(None), [-1]],
]
# only test dupes on gets
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
for indexer in get_indices_to_test:
assert_get_eq(reference, indexer)
if self.device_type != 'cpu':
assert_backward_eq(reference, indexer)
for indexer in indices_to_test:
assert_set_eq(reference, indexer, 44)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
reference = torch.arange(0., 160, dtype=dtype, device=device).view(4, 8, 5)
indices_to_test = [
[slice(None), slice(None), [0, 3, 4]],
[slice(None), [2, 4, 5, 7], slice(None)],
[[2, 3], slice(None), slice(None)],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0], [1, 2, 4]],
[slice(None), [0, 1, 3], [4]],
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[[0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4], slice(None)],
[[0, 1, 3], [4], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
[[[0, 1], [2, 3]], [[0]], slice(None)],
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
[[[2]], [[0, 3], [4, 1]], slice(None)],
# non-contiguous indexing subspace
[[0, 2, 3], slice(None), [1, 3, 4]],
# less dim, ellipsis
[[0, 2], ],
[[0, 2], slice(None)],
[[0, 2], Ellipsis],
[[0, 2], slice(None), Ellipsis],
[[0, 2], Ellipsis, slice(None)],
[[0, 2], [1, 3]],
[[0, 2], [1, 3], Ellipsis],
[Ellipsis, [1, 3], [2, 3]],
[Ellipsis, [2, 3, 4]],
[Ellipsis, slice(None), [2, 3, 4]],
[slice(None), Ellipsis, [2, 3, 4]],
# ellipsis counts for nothing
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), [0, 3, 4], Ellipsis],
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 212)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
if torch.cuda.is_available():
assert_backward_eq(reference, indexer)
reference = torch.arange(0., 1296, dtype=dtype, device=device).view(3, 9, 8, 6)
indices_to_test = [
[slice(None), slice(None), slice(None), [0, 3, 4]],
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
[slice(None), [2, 3], slice(None), slice(None)],
[[1, 2], slice(None), slice(None), slice(None)],
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), slice(None), [0], [1, 2, 4]],
[slice(None), slice(None), [0, 1, 3], [4]],
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
[slice(None), [0], [1, 2, 4], slice(None)],
[slice(None), [0, 1, 3], [4], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
[[0], [1, 2, 4], slice(None), slice(None)],
[[0, 1, 2], [4], slice(None), slice(None)],
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 5], [3], [4]],
[slice(None), [0], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1]],
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
[[0, 2, 1], [3], [4], slice(None)],
[[0], [4], [1, 3, 4], slice(None)],
[[1], [0, 2, 3], [1], slice(None)],
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
# less dim, ellipsis
[Ellipsis, [0, 3, 4]],
[Ellipsis, slice(None), [0, 3, 4]],
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4]],
[[0], [1, 2, 4], slice(None)],
[[0], [1, 2, 4], Ellipsis],
[[0], [1, 2, 4], Ellipsis, slice(None)],
[[1], ],
[[0, 2, 1], [3], [4]],
[[0, 2, 1], [3], [4], slice(None)],
[[0, 2, 1], [3], [4], Ellipsis],
[Ellipsis, [0, 2, 1], [3], [4]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
indices_to_test += [
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
if self.device_type != 'cpu':
assert_backward_eq(reference, indexer)
def test_advancedindex_big(self, device):
reference = torch.arange(0, 123344, dtype=torch.int, device=device)
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
torch.LongTensor([0, 123, 44488, 68807, 123343]))
@dtypes(torch.double)
def test_kthvalue(self, device, dtype):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.tensor([], dtype=dtype, device=device)
res1ind = torch.tensor([], dtype=torch.long, device=device)
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0)
self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0)
# simple test case (with NaN)
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
res2val, res2ind = torch.sort(x)
for k in ks:
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_lu_solve_batched_non_contiguous(self, device, dtype):
from numpy.linalg import solve
from common_utils import random_fullrank_matrix_distinct_singular_value
A = random_fullrank_matrix_distinct_singular_value(2, 2, dtype=dtype, device='cpu')
b = torch.randn(2, 2, 2, dtype=dtype, device='cpu')
x_exp = torch.as_tensor(solve(A.permute(0, 2, 1).numpy(), b.permute(2, 1, 0).numpy())).to(device)
A = A.to(device).permute(0, 2, 1)
b = b.to(device).permute(2, 1, 0)
assert not A.is_contiguous() and not b.is_contiguous(), "contiguous inputs"
LU_data, LU_pivots = torch.lu(A)
x = torch.lu_solve(b, LU_data, LU_pivots)
self.assertEqual(x, x_exp)
def lu_solve_test_helper(self, A_dims, b_dims, pivot, device, dtype):
from common_utils import random_fullrank_matrix_distinct_singular_value
b = torch.randn(*b_dims, dtype=dtype, device=device)
A = random_fullrank_matrix_distinct_singular_value(*A_dims, dtype=dtype, device=device)
LU_data, LU_pivots, info = torch.lu(A, get_infos=True, pivot=pivot)
self.assertEqual(info, torch.zeros_like(info))
return b, A, LU_data, LU_pivots
@skipCPUIfNoLapack
@skipCUDAIfNoMagma
@dtypes(torch.double)
def test_lu_solve(self, device, dtype):
def sub_test(pivot):
for k, n in zip([2, 3, 5], [3, 5, 7]):
b, A, LU_data, LU_pivots = self.lu_solve_test_helper((n,), (n, k), pivot, device, dtype)
x = torch.lu_solve(b, LU_data, LU_pivots)
self.assertLessEqual(b.dist(A.mm(x)), 1e-12)
sub_test(True)
if self.device_type == 'cuda':
sub_test(False)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_lu_solve_batched(self, device, dtype):
def sub_test(pivot):
def lu_solve_batch_test_helper(A_dims, b_dims, pivot):
b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, pivot, device, dtype)
x_exp_list = []
for i in range(b_dims[0]):
x_exp_list.append(torch.lu_solve(b[i], LU_data[i], LU_pivots[i]))
x_exp = torch.stack(x_exp_list) # Stacked output
x_act = torch.lu_solve(b, LU_data, LU_pivots) # Actual output
self.assertEqual(x_exp, x_act) # Equality check
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 1e-12) # Correctness check
for batchsize in [1, 3, 4]:
lu_solve_batch_test_helper((5, batchsize), (batchsize, 5, 10), pivot)
# Tests tensors with 0 elements
b = torch.randn(3, 0, 3, dtype=dtype, device=device)
A = torch.randn(3, 0, 0, dtype=dtype, device=device)
LU_data, LU_pivots = torch.lu(A)
self.assertEqual(torch.empty_like(b), b.lu_solve(LU_data, LU_pivots))
sub_test(True)
if self.device_type == 'cuda':
sub_test(False)
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_lu_solve_batched_many_batches(self, device, dtype):
def run_test(A_dims, b_dims):
b, A, LU_data, LU_pivots = self.lu_solve_test_helper(A_dims, b_dims, True, device, dtype)
x = torch.lu_solve(b, LU_data, LU_pivots)
b_ = torch.matmul(A, x)
self.assertEqual(b_, b.expand_as(b_))
run_test((5, 65536), (65536, 5, 10))
run_test((5, 262144), (262144, 5, 10))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_lu_solve_batched_broadcasting(self, device, dtype):
from numpy.linalg import solve
from common_utils import random_fullrank_matrix_distinct_singular_value
def run_test(A_dims, b_dims, pivot=True):
A_matrix_size = A_dims[-1]
A_batch_dims = A_dims[:-2]
A = random_fullrank_matrix_distinct_singular_value(A_matrix_size, *A_batch_dims, dtype=dtype)
b = torch.randn(*b_dims, dtype=dtype)
x_exp = torch.as_tensor(solve(A.numpy(), b.numpy())).to(dtype=dtype, device=device)
A, b = A.to(device), b.to(device)
LU_data, LU_pivots = torch.lu(A, pivot=pivot)
x = torch.lu_solve(b, LU_data, LU_pivots)
self.assertEqual(x, x_exp)
# test against numpy.linalg.solve
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6)) # no broadcasting
run_test((2, 1, 3, 4, 4), (4, 6)) # broadcasting b
run_test((4, 4), (2, 1, 3, 4, 2)) # broadcasting A
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5)) # broadcasting A & b
def test_dim_reduction(self, device):
example = [[-1, 2, 1], [5, 3, 6]]
types = [torch.double,
torch.float,
torch.int64,
torch.int32,
torch.int16]
# This won't test for 256bit instructions, since we usually
# only work on 1 cacheline (1024bit) at a time and these
# examples aren't big enough to trigger that.
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.sum().item(), 16)
self.assertEqual(x.sum(0), torch.FloatTensor([4, 5, 7]))
self.assertEqual(x.sum(1), torch.FloatTensor([2, 14]))
y = torch.tensor(example, device=device, dtype=dtype)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0), y)
# Mean not supported for Int types
for dtype in types[:2]:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.mean().item(), 16.0 / 6)
self.assertEqual(x.mean(0), torch.FloatTensor([2.0, 2.5, 7.0 / 2]))
self.assertEqual(x.mean(1), torch.FloatTensor([2.0 / 3, 14.0 / 3]))
self.assertEqual(x.mean(), x.mean((0, 1)))
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.prod().item(), -180)
self.assertEqual(x.prod(0), torch.FloatTensor([-5, 6, 6]))
self.assertEqual(x.prod(1), torch.FloatTensor([-2, 90]))
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.max().item(), 6)
self.assertEqual(x.max(0), (torch.FloatTensor([5, 3, 6]), torch.FloatTensor([1, 1, 1])))
self.assertEqual(x.max(1), (torch.FloatTensor([2, 6]), torch.FloatTensor([1, 2])))
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.min().item(), -1)
self.assertEqual(x.min(0), (torch.FloatTensor([-1, 2, 1]), torch.FloatTensor([0, 0, 0])))
self.assertEqual(x.min(1), (torch.FloatTensor([-1, 3]), torch.FloatTensor([0, 1])))
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmax().item(), 5)
self.assertEqual(x.argmax(dim=None).item(), 5)
self.assertEqual(x.argmax(dim=0), torch.FloatTensor([1, 1, 1]))
self.assertEqual(x.argmax(dim=1), torch.FloatTensor([1, 2]))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.FloatTensor([[1, 1, 1]]))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].argmax().item(), 2)
for dtype in types:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmin().item(), 0)
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.argmin(dim=0), torch.FloatTensor([0, 0, 0]))
self.assertEqual(x.argmin(dim=1), torch.FloatTensor([0, 1]))
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.FloatTensor([[0], [1]]))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].argmin().item(), 0)
dim_red_fns = [
"mean", "median", "mode", "norm", "prod",
"std", "sum", "var", "max", "min"]
def normfn_attr(t, dim, keepdim=False, out=None):
attr = torch.norm
return attr(t, 2, dim, keepdim, out=out)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False, out=None):
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
return ans if not istuple(ans) else ans[0]
def fn_tuple(x, dim, keepdim=False, out=None):
return fn_attr(x, dim, keepdim=keepdim, out=out)
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = torch.randn(3, 4, 5, device=device)
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = torch.randn(1, device=device)
dim = 0
self.assertEqual(fn(x, dim).shape, ())
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = torch.randn(dims, device=device)
test_multidim(x, singleton_dim)
# check reducing with output kwargs
if fn_name in ['median', 'mode', 'max', 'min']:
y = torch.randn(5, 3, device=device)
values = torch.randn(5, 3, device=device)
indices = torch.zeros(5, 3, device=device).long() - 1
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
self.assertEqual(values[:, 1], values_expected,
'{} values with out= kwarg'.format(fn_name))
self.assertEqual(indices[:, 1], indices_expected,
'{} indices with out= kwarg'.format(fn_name))
continue
x = torch.randn(5, 3, device=device)
y = torch.randn(5, 3, device=device)
fn(y, 1, keepdim=False, out=x[:, 1])
expected = fn(y, 1, keepdim=False)
self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name))
def test_remainder_overflow(self, device):
# Check Integer Overflows
x = torch.tensor(23500, dtype=torch.int64, device=device)
q = 392486996410368
self.assertEqual(x % q, x)
self.assertEqual(-x % q, q - x)
self.assertEqual(x % -q, x - q)
self.assertEqual(-x % -q, -x)
def test_rpow(self, device):
m = torch.randn(10, 10, device=device)
self.assertEqual(torch.pow(2, m), 2**m)
# test with scalar
m = torch.randn(1, device=device).squeeze()
assert m.dim() == 0, "m is intentionally a scalar"
self.assertEqual(torch.pow(2, m), 2**m)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_symeig(self, device, dtype):
from common_utils import random_symmetric_matrix
def run_test(dims, eigenvectors, upper):
x = random_symmetric_matrix(*dims, dtype=dtype, device=device)
oute = torch.empty(dims[1:] + dims[:1], dtype=dtype, device=device)
outv = torch.empty(dims[1:] + dims[:1] * 2, dtype=dtype, device=device)
torch.symeig(x, eigenvectors=eigenvectors, upper=upper, out=(oute, outv))
if eigenvectors:
x_recon = torch.matmul(torch.matmul(outv, torch.diag_embed(oute)), outv.transpose(-2, -1))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using V @ diag(e) @ V.T')
else:
eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper)
self.assertEqual(eigvals, oute, 'Eigenvalues mismatch')
self.assertEqual(torch.zeros_like(outv), outv, 'Eigenvector matrix not zero')
rese, resv = x.symeig(eigenvectors=eigenvectors, upper=upper)
self.assertEqual(rese, oute, "outputs of symeig and symeig with out don't match")
self.assertEqual(resv, outv, "outputs of symeig and symeig with out don't match")
# test non-contiguous
x = random_symmetric_matrix(*dims, dtype=dtype, device=device)
n_dim = len(dims) + 1
# Reverse the batch dimensions and the matrix dimensions and then concat them
x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2))
assert not x.is_contiguous(), "x is intentionally non-contiguous"
rese, resv = torch.symeig(x, eigenvectors=eigenvectors, upper=upper)
if eigenvectors:
x_recon = torch.matmul(torch.matmul(resv, torch.diag_embed(rese)), resv.transpose(-2, -1))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using V @ diag(e) @ V.T')
else:
eigvals, _ = torch.symeig(x, eigenvectors=True, upper=upper)
self.assertEqual(eigvals, rese, 'Eigenvalues mismatch')
self.assertEqual(torch.zeros_like(resv), resv, 'Eigenvector matrix not zero')
batch_dims_set = [(), (3,), (3, 5), (5, 3, 5)]
for batch_dims, eigenvectors, upper in product(batch_dims_set, (True, False), (True, False)):
run_test((5,) + batch_dims, eigenvectors, upper)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_svd(self, device, dtype):
def run_test(dims, some, compute_uv):
x = torch.randn(*dims, dtype=dtype, device=device)
outu = torch.tensor((), dtype=dtype, device=device)
outs = torch.tensor((), dtype=dtype, device=device)
outv = torch.tensor((), dtype=dtype, device=device)
torch.svd(x, some=some, compute_uv=compute_uv, out=(outu, outs, outv))
if compute_uv:
if some:
x_recon = torch.matmul(outu, torch.matmul(outs.diag_embed(), outv.transpose(-2, -1)))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T')
else:
narrow_u = outu[..., :min(*dims[-2:])]
narrow_v = outv[..., :min(*dims[-2:])]
x_recon = torch.matmul(narrow_u, torch.matmul(outs.diag_embed(), narrow_v.transpose(-2, -1)))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T')
else:
_, singvals, _ = torch.svd(x, compute_uv=True)
self.assertEqual(singvals, outs, 'Singular values mismatch')
self.assertEqual(outu, torch.zeros_like(outu), 'U not zero')
self.assertEqual(outv, torch.zeros_like(outv), 'V not zero')
resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv)
self.assertEqual(resu, outu, 'outputs of svd and svd with out differ')
self.assertEqual(ress, outs, 'outputs of svd and svd with out differ')
self.assertEqual(resv, outv, 'outputs of svd and svd with out differ')
# test non-contiguous
x = torch.randn(*dims, dtype=dtype, device=device)
n_dim = len(dims)
# Reverse the batch dimensions and the matrix dimensions and then concat them
x = x.permute(tuple(range(n_dim - 3, -1, -1)) + (n_dim - 1, n_dim - 2))
assert not x.is_contiguous(), "x is intentionally non-contiguous"
resu, ress, resv = torch.svd(x, some=some, compute_uv=compute_uv)
if compute_uv:
if some:
x_recon = torch.matmul(resu, torch.matmul(ress.diag_embed(), resv.transpose(-2, -1)))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T')
else:
narrow_u = resu[..., :min(*dims[-2:])]
narrow_v = resv[..., :min(*dims[-2:])]
x_recon = torch.matmul(narrow_u, torch.matmul(ress.diag_embed(), narrow_v.transpose(-2, -1)))
self.assertEqual(x, x_recon, 1e-8, 'Incorrect reconstruction using U @ diag(S) @ V.T')
else:
_, singvals, _ = torch.svd(x, compute_uv=True)
self.assertEqual(singvals, ress, 'Singular values mismatch')
self.assertEqual(resu, torch.zeros_like(resu), 'U not zero')
self.assertEqual(resv, torch.zeros_like(resv), 'V not zero')
shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices
(7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices
(3, 7), (5, 3, 7), (7, 5, 3, 7)] # thin matrices
for dims, some, compute_uv in product(shapes, [True, False], [True, False]):
run_test(dims, some, compute_uv)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_svd_no_singularvectors(self, device):
for size in [(5, 5), (5, 20), (20, 5)]:
a = torch.randn(*size, device=device)
u, s_expect, v = torch.svd(a)
u, s_actual, v = torch.svd(a, compute_uv=False)
self.assertEqual(s_expect, s_actual, "Singular values don't match")
def test_lerp(self, device):
start_end_shapes = [(), (5,), (5, 5), (5, 5, 5)]
for shapes in product(start_end_shapes, start_end_shapes):
start = torch.randn(shapes[0], device=device)
end = torch.randn(shapes[1], device=device)
# Tensor weights
for weight in [torch.randn(shapes[0], device=device), random.random()]:
actual = torch.lerp(start, end, weight)
actual_method = start.lerp(end, weight)
self.assertEqual(actual, actual_method)
actual_out = torch.Tensor().to(device)
torch.lerp(start, end, weight, out=actual_out)
self.assertEqual(actual, actual_out)
expected = start + weight * (end - start)
self.assertEqual(expected, actual)
def test_diagflat(self, device):
dtype = torch.float32
# Basic sanity test
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x)
self.assertEqual(result, expected)
# Test offset
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x, 17)
expected = torch.diag(x, 17)
self.assertEqual(result, expected)
# Test where input has more than one dimension
x = torch.randn((2, 3, 4), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
# Noncontig input
x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0)
self.assertFalse(x.is_contiguous())
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_norm(self, device):
# full reduction
x = torch.randn(25, device=device)
xn = x.cpu().numpy()
for p in [0, 1, 2, 3, 4, inf, -inf]:
res = x.norm(p).item()
expected = np.linalg.norm(xn, p)
self.assertEqual(res, expected, "full reduction failed for {}-norm".format(p))
# one dimension
x = torch.randn(25, 25, device=device)
xn = x.cpu().numpy()
for p in [0, 1, 2, 3, 4, inf, -inf]:
res = x.norm(p, 1).cpu().numpy()
expected = np.linalg.norm(xn, p, 1)
self.assertEqual(res.shape, expected.shape)
self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p))
# matrix norm
for p in ['fro', 'nuc']:
res = x.norm(p).cpu().numpy()
expected = np.linalg.norm(xn, p)
self.assertEqual(res.shape, expected.shape)
self.assertTrue(np.allclose(res, expected), "dim reduction failed for {}-norm".format(p))
# larger tensor sanity check
self.assertEqual(2 * torch.norm(torch.ones(10000)), torch.norm(torch.ones(40000)))
@skipCUDAIfNoMagma
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_nuclear_norm_axes_small_brute_force(self, device):
def check_single_nuclear_norm(x, axes):
if self.device_type != 'cpu' and randrange(100) < 95:
return # too many cpu <==> device copies
a = np.array(x.cpu(), copy=False)
expected = np.linalg.norm(a, "nuc", axis=axes)
ans = torch.norm(x, "nuc", dim=axes)
self.assertTrue(ans.is_contiguous())
self.assertEqual(ans.shape, expected.shape)
self.assertTrue(np.allclose(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True))
out = torch.zeros(expected.shape, dtype=x.dtype, device=x.device)
ans = torch.norm(x, "nuc", dim=axes, out=out)
self.assertIs(ans, out)
self.assertTrue(ans.is_contiguous())
self.assertEqual(ans.shape, expected.shape)
self.assertTrue(np.allclose(ans.cpu(), expected, rtol=1e-02, atol=1e-03, equal_nan=True))
for n in range(1, 3):
for m in range(1, 3):
for axes in permutations([0, 1], 2):
# 2d, inner dimensions C
x = torch.randn(n, m, device=device)
check_single_nuclear_norm(x, axes)
# 2d, inner dimensions Fortran
x = torch.randn(m, n, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 2d, inner dimensions non-contiguous
x = torch.randn(n, 2 * m, device=device)[:, ::2]
check_single_nuclear_norm(x, axes)
# 2d, all dimensions non-contiguous
x = torch.randn(7 * n, 2 * m, device=device)[::7, ::2]
check_single_nuclear_norm(x, axes)
for o in range(1, 3):
for axes in permutations([0, 1, 2], 2):
# 3d, inner dimensions C
x = torch.randn(o, n, m, device=device)
check_single_nuclear_norm(x, axes)
# 3d, inner dimensions Fortran
x = torch.randn(o, m, n, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 3d, inner dimensions non-contiguous
x = torch.randn(o, n, 2 * m, device=device)[:, :, ::2]
check_single_nuclear_norm(x, axes)
# 3d, all dimensions non-contiguous
x = torch.randn(7 * o, 5 * n, 2 * m, device=device)[::7, ::5, ::2]
check_single_nuclear_norm(x, axes)
for r in range(1, 3):
for axes in permutations([0, 1, 2, 3], 2):
# 4d, inner dimensions C
x = torch.randn(r, o, n, m, device=device)
check_single_nuclear_norm(x, axes)
# 4d, inner dimensions Fortran
x = torch.randn(r, o, n, m, device=device).transpose(-1, -2)
check_single_nuclear_norm(x, axes)
# 4d, inner dimensions non-contiguous
x = torch.randn(r, o, n, 2 * m, device=device)[:, :, :, ::2]
check_single_nuclear_norm(x, axes)
# 4d, all dimensions non-contiguous
x = torch.randn(7 * r, 5 * o, 11 * n, 2 * m, device=device)[::7, ::5, ::11, ::2]
check_single_nuclear_norm(x, axes)
@skipCUDAIfNoMagma
def test_nuclear_norm_exceptions(self, device):
for lst in [], [1], [1, 2]:
for axes in (), (0,), (0, 1):
x = torch.tensor(lst, dtype=torch.double, device=device)
self.assertRaises(RuntimeError, torch.norm, x, "nuc", axes)
x = torch.tensor([[0, 1, 2], [3, 4, 5]], dtype=torch.double, device=device)
self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 0))
self.assertRaisesRegex(RuntimeError, "duplicate or invalid", torch.norm, x, "nuc", (0, 2))
def test_dist(self, device):
def run_test(x, y):
for p in [0, 1, 2, 3, 4, inf, -inf]:
dist_xy = torch.dist(x, y, p)
dist_xy_norm = torch.norm(x - y, p)
self.assertEqual(dist_xy, dist_xy_norm)
run_test(torch.randn(5, device=device), torch.randn(5, device=device))
x = torch.zeros(3, device=device)
y = torch.zeros(3, device=device)
y[1] = 1.
run_test(x, y)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_geqrf(self, device):
a = torch.randn(5, 5, device=device)
b, c = torch.geqrf(a)
b_placeholder, c_placeholder = torch.empty_like(b), torch.empty_like(c)
torch.geqrf(a, out=(b_placeholder, c_placeholder))
self.assertEqual(b, b_placeholder)
self.assertEqual(c, c_placeholder)
def triangular_solve_test_helper(self, A_dims, b_dims, upper, unitriangular,
device, dtype):
triangle_function = torch.triu if upper else torch.tril
b = torch.randn(*b_dims, dtype=dtype, device=device)
A = torch.randn(*A_dims, dtype=dtype, device=device)
A_triangular = triangle_function(A)
if unitriangular:
A_triangular.diagonal(dim1=-2, dim2=-1).fill_(1.)
return b, A_triangular
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_triangular_solve(self, device, dtype):
for (k, n), (upper, unitriangular, transpose) in product(zip([2, 3, 5], [3, 5, 7]),
product([True, False], repeat=3)):
b, A = self.triangular_solve_test_helper((n, n), (n, k), upper,
unitriangular, device, dtype)
x = torch.triangular_solve(b, A, upper=upper, unitriangular=unitriangular, transpose=transpose)[0]
if transpose:
self.assertLessEqual(b.dist(A.t().mm(x)), 4e-12)
else:
self.assertLessEqual(b.dist(A.mm(x)), 4e-12)
@skipCPUIfNoLapack
@skipCUDAIfNoMagma
@dtypes(torch.double)
def test_triangular_solve_batched(self, device, dtype):
def triangular_solve_batch_helper(A_dims, b_dims, upper, unitriangular, transpose):
b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper,
unitriangular, device, dtype)
x_exp_list = []
for i in range(b_dims[0]):
x_exp_list.append(torch.triangular_solve(b[i], A[i], upper=upper,
unitriangular=unitriangular,
transpose=transpose)[0])
x_exp = torch.stack(x_exp_list) # Stacked output
x_act = torch.triangular_solve(b, A, upper=upper,
unitriangular=unitriangular,
transpose=transpose)[0] # Actual output
self.assertEqual(x_act, x_exp) # Equality check
if transpose:
self.assertLessEqual(b.dist(torch.matmul(A.transpose(-2, -1), x_act)), 3e-12) # Correctness check
else:
self.assertLessEqual(b.dist(torch.matmul(A, x_act)), 3e-12) # Correctness check
for (upper, unitriangular, transpose), batchsize in product(product([True, False], repeat=3), [1, 3, 4]):
triangular_solve_batch_helper((batchsize, 5, 5), (batchsize, 5, 10),
upper, unitriangular, transpose)
@slowTest
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_triangular_solve_batched_many_batches(self, device, dtype):
for upper, transpose, unitriangular in product([True, False], repeat=3):
b, A = self.triangular_solve_test_helper((256, 256, 5, 5), (5, 1),
upper, unitriangular, device, dtype)
x, _ = torch.triangular_solve(b, A,
upper=upper, transpose=transpose, unitriangular=unitriangular)
if transpose:
A = A.transpose(-2, -1)
self.assertEqual(torch.matmul(A, x), b.expand(A.shape[:-2] + (5, 1)))
b, A = self.triangular_solve_test_helper((3, 3), (512, 512, 3, 1),
upper, unitriangular, device, dtype)
x, _ = torch.triangular_solve(b, A, upper=upper, transpose=transpose,
unitriangular=unitriangular)
if transpose:
A = A.transpose(-2, -1)
self.assertEqual(torch.matmul(A, x), b)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.double)
def test_triangular_solve_batched_broadcasting(self, device, dtype):
from scipy.linalg import solve_triangular as tri_solve
def scipy_tri_solve_batched(A, B, upper, trans, diag):
batch_dims_A, batch_dims_B = A.shape[:-2], B.shape[:-2]
single_dim_A, single_dim_B = A.shape[-2:], B.shape[-2:]
expand_dims = tuple(torch._C._infer_size(torch.Size(batch_dims_A),
torch.Size(batch_dims_B)))
expand_A = np.broadcast_to(A, expand_dims + single_dim_A)
expand_B = np.broadcast_to(B, expand_dims + single_dim_B)
flat_A = expand_A.reshape((-1,) + single_dim_A)
flat_B = expand_B.reshape((-1,) + single_dim_B)
flat_X = np.vstack([tri_solve(a, b, lower=(not upper), trans=int(trans), unit_diagonal=diag)
for a, b in zip(flat_A, flat_B)])
return flat_X.reshape(expand_B.shape)
def run_test(A_dims, b_dims, device, upper, transpose, unitriangular):
b, A = self.triangular_solve_test_helper(A_dims, b_dims, upper,
unitriangular, device, dtype)
x_exp = torch.as_tensor(scipy_tri_solve_batched(A.cpu().numpy(), b.cpu().numpy(),
upper, transpose, unitriangular))
x = torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular)[0]
self.assertEqual(x, x_exp.to(device))
for upper, transpose, unitriangular in product([True, False], repeat=3):
# test against scipy.linalg.solve_triangular
run_test((2, 1, 3, 4, 4), (2, 1, 3, 4, 6), device, upper, transpose, unitriangular) # no broadcasting
run_test((2, 1, 3, 4, 4), (4, 6), device, upper, transpose, unitriangular) # broadcasting b
run_test((4, 4), (2, 1, 3, 4, 2), device, upper, transpose, unitriangular) # broadcasting A
run_test((1, 3, 1, 4, 4), (2, 1, 3, 4, 5), device, upper, transpose, unitriangular) # broadcasting A & b
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_lstsq(self, device, dtype):
def _test_underdetermined(a, b, expectedNorm):
# underdetermined systems are only supported on CPU
if self.device_type != 'cpu':
return
m = a.size()[0]
n = a.size()[1]
assert(m <= n)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.lstsq(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
ta = torch.tensor((), dtype=dtype, device=device)
tb = torch.tensor((), dtype=dtype, device=device)
res2 = torch.lstsq(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
res3 = torch.lstsq(b, a, out=(b, a))[0]
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
def _test_overdetermined(a, b, expectedNorm):
m = a.size()[0]
n = a.size()[1]
assert(m > n)
def check_norm(a, b, expected_norm, gels_result):
# Checks |ax - b| and the residual info from the result
# The first n rows is the least square solution.
# Rows n to m-1 contain residual information.
x = gels_result[:n]
resid_info = gels_result[n:]
resid_norm = (torch.mm(a, x) - b).norm()
self.assertEqual(resid_norm, expectedNorm, 1e-8)
self.assertEqual(resid_info.norm(), resid_norm, 1e-8)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.lstsq(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res1)
ta = torch.tensor((), dtype=dtype, device=device)
tb = torch.tensor((), dtype=dtype, device=device)
res2 = torch.lstsq(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res2)
res3 = torch.lstsq(b, a, out=(b, a))[0]
check_norm(a_copy, b_copy, expectedNorm, res3)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
# basic test
expectedNorm = 0
a = torch.tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t()
b = torch.tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t()
_test_underdetermined(a, b, expectedNorm)
# test overdetermined
expectedNorm = 17.390200628863
a = torch.tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70)), dtype=dtype, device=device).t()
b = torch.tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52)), dtype=dtype, device=device).t()
_test_overdetermined(a, b, expectedNorm)
# test underdetermined
expectedNorm = 0
a = torch.tensor(((1.44, -9.96, -7.55),
(-7.84, -0.28, 3.24),
(-4.39, -3.24, 6.27),
(4.53, 3.83, -6.64)), dtype=dtype, device=device).t()
b = torch.tensor(((8.58, 8.26, 8.48),
(9.35, -4.43, -0.70)), dtype=dtype, device=device).t()
_test_underdetermined(a, b, expectedNorm)
# test reuse
expectedNorm = 0
a = torch.tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06)), dtype=dtype, device=device).t()
b = torch.tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26)), dtype=dtype, device=device).t()
ta = torch.tensor((), dtype=dtype, device=device)
tb = torch.tensor((), dtype=dtype, device=device)
torch.lstsq(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.lstsq(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.lstsq(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_qr(self, device):
def run_test(tensor_dims, some):
A = torch.randn(*tensor_dims, device=device)
Q, R = torch.qr(A, some=some)
# Check0: Q[-2:] = (m, n_columns), R[-2:] = (n_columns, n)
m, n = tensor_dims[-2:]
n_columns = m if (not some) and m > n else min(m, n)
self.assertEqual(Q.size(-2), m)
self.assertEqual(R.size(-1), n)
self.assertEqual(Q.size(-1), n_columns)
# Check1: A = QR
self.assertEqual(A, torch.matmul(Q, R))
# Check2: A = QR (with out)
Q_out, R_out = torch.Tensor().to(device), torch.Tensor().to(device)
torch.qr(A, some=some, out=(Q_out, R_out))
self.assertEqual(A, torch.matmul(Q_out, R_out))
# Check3: Q == Q_out, R == R_out
self.assertEqual(Q, Q_out)
self.assertEqual(R, R_out)
# Check4: Q^{T}Q = I, triu(R) = R
self.assertEqual(torch.matmul(Q.transpose(-2, -1), Q),
torch.eye(n_columns, device=device).expand(Q.shape[:-2] + (n_columns, n_columns)))
self.assertEqual(R.triu(), R)
tensor_dims_list = [(3, 5), (5, 5), (5, 3), # Single matrix
(7, 3, 5), (7, 5, 5), (7, 5, 3), # 3-dim Tensors
(7, 5, 3, 5), (7, 5, 5, 5), (7, 5, 5, 3)] # 4-dim Tensors
for tensor_dims, some in product(tensor_dims_list, [True, False]):
run_test(tensor_dims, some)
def test_randperm(self, device):
if device == 'cpu':
rng_device = None
else:
rng_device = [device]
# Test core functionality. On CUDA, for small n, randperm is offloaded to CPU instead. For large n, randperm is
# executed on GPU.
for n in (100, 50000, 100000):
# Ensure both integer and floating-point numbers are tested. Half follows an execution path that is
# different from others on CUDA.
for dtype in (torch.long, torch.half, torch.float):
if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here.
continue
with torch.random.fork_rng(devices=rng_device):
res1 = torch.randperm(n, dtype=dtype, device=device)
res2 = torch.empty(0, dtype=dtype, device=device)
torch.randperm(n, out=res2, dtype=dtype, device=device)
self.assertEqual(res1, res2, 0)
# Default type is long
for n in (100, 10000):
self.assertEqual(torch.randperm(n, device=device).dtype, torch.long)
# randperm of 0 elements is an empty tensor
res1 = torch.randperm(0)
res2 = torch.tensor(5, dtype=dtype, device=device)
torch.randperm(0, out=res2)
self.assertEqual(res1.numel(), 0)
self.assertEqual(res2.numel(), 0)
# Test exceptions when n is too large for a floating point type
for dtype, small_n, large_n in ((torch.half, 2**11 + 1, 2**11 + 2),
(torch.float, 2**24 + 1, 2**24 + 2),
(torch.double, 2**25, # 2**53 + 1 is too large to run
2**53 + 2)):
res = torch.empty(0, dtype=dtype, device=device)
torch.randperm(small_n, out=res) # No exception expected
self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device))
# Test non-contiguous tensors
for n in (4, 5, 6, 10, 20):
non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t()
self.assertFalse(non_contiguous_tensor.is_contiguous())
with torch.random.fork_rng(devices=rng_device):
res = torch.randperm(n, dtype=torch.long, device=device)
torch.randperm(n, out=non_contiguous_tensor)
self.assertEqual(non_contiguous_tensor, res)
def test_random_neg_values(self, device):
signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor',
'torch.IntTensor', 'torch.ShortTensor']
for tname in signed_types:
res = torch.rand(SIZE, SIZE).type(tname).to(device)
res.random_(-10, -1)
self.assertLessEqual(res.max().item(), 9)
self.assertGreaterEqual(res.min().item(), -10)
@slowTest
def test_triu_tril(self, device):
def gen_mask(shape, diagonal, device, upper):
mask = torch.zeros(*shape[-2:]).byte()
for i in range(shape[-2]):
for j in range(shape[-1]):
cond = j - i < diagonal if upper else j - i > diagonal
if cond:
mask[i, j] = 1
return mask.expand(*shape).to(device)
torch_functions = {True: torch.triu, False: torch.tril}
if TEST_NUMPY:
numpy_functions = {True: np.triu, False: np.tril}
# TODO: remove this when bool and half are supported for torch.where
def bool_half_compat_where(pred, true_tensor, false_tensor, dtype):
if dtype == torch.bool or dtype == torch.half:
return torch.where(pred.byte(), true_tensor.byte(), false_tensor.byte()).to(dtype=dtype)
else:
return torch.where(pred, true_tensor, false_tensor)
def run_test(shape, device, diagonal, dtype):
x = torch.empty(*shape, device=device, dtype=dtype).fill_(2)
for upper in [True, False]:
# normal test with mask
torch_tri_func = torch_functions[upper]
res1 = torch_tri_func(x, diagonal=diagonal)
res2 = torch.empty(0, device=device, dtype=dtype)
torch_tri_func(x, diagonal=diagonal, out=res2)
exp_mask = gen_mask(shape, diagonal, device, upper)
expected = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x, dtype)
self.assertEqual(res1, res2, 0)
self.assertEqual(expected, res1, 0)
# non-contiguous and expanded tensors test
if 0 not in shape:
for s in range(-len(shape), -1):
# non-contiguous tensors
x_nc = x.clone().transpose(s, s + 1)
exp_mask = gen_mask(x_nc.size(), diagonal, device, upper)
if 1 not in shape:
assert not x_nc.is_contiguous(), "x is intentionally non-contiguous"
exp_nc = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x_nc, dtype)
self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, 0)
x_nc_is_contiguous = x_nc.is_contiguous()
if upper:
self.assertEqual(x_nc.triu_(diagonal), exp_nc, 0)
else:
self.assertEqual(x_nc.tril_(diagonal), exp_nc, 0)
self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous,
"contiguity of x_nc should not be changed")
# expanded tensors
expanded_size = (x.size(0),) + x.size()
x_expanded = x.clone().expand(*expanded_size)
if x.size(0) != 1:
assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride"
output = torch_tri_func(x_expanded, diagonal)
self.assertEqual(output, expected.expand(expanded_size), 0)
if x.size(0) != 1:
self.assertTrue(0 in x_expanded.stride(),
"geometry of x_expanded should be the same")
if upper:
self.assertEqual(output, x_expanded.triu_(diagonal), 0)
else:
self.assertEqual(output, x_expanded.tril_(diagonal), 0)
if not TEST_NUMPY:
continue
# numpy test
numpy_tri_func = numpy_functions[upper]
self.assertEqual(numpy_tri_func(x.to('cpu').numpy(), diagonal), res1.cpu().numpy())
diagonals = [-2, -1, 0, 1, 2]
shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices
(7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices
(3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices
(3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices
(3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices
(1, 3), (5, 1, 3), (7, 5, 1, 3), # very thin matrices
(1, 3, 3, 3), (3, 1, 3, 3, 3)] # unsqueezed batch dimensions
dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.bfloat16]
for s, d, dtype in product(shapes, diagonals, dtypes):
run_test(s, device, d, dtype)
@skipCUDANonDefaultStreamIf(True)
def test_multinomial_alias(self, device):
# Get probs vector to use in setup
def get_probs(length, is_contiguous):
probs = torch.softmax(torch.randn(length), 0)
if not is_contiguous:
probs = torch.softmax(torch.randn(length, 2), 0)[:, 1]
assert not (is_contiguous ^ probs.is_contiguous()), "contiguity requirement not met"
return probs.to(device)
for is_contiguous in [True, False]:
probs = get_probs(4, is_contiguous)
alias_table, prob_table = torch._multinomial_alias_setup(probs)
for n_samples in [-1, 1, 10]:
if n_samples > 0:
samples = torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
self.assertEqual(prob_table.size(), torch.Size([4]), "size mismatch: probability table")
self.assertEqual(alias_table.size(), torch.Size([4]), "size mismatch: alias table")
self.assertEqual(samples.size(), torch.Size([n_samples]), "wrong number of samples")
else:
with self.assertRaisesRegex(RuntimeError, "cannot sample <= 0 samples"):
torch._multinomial_alias_draw(prob_table, alias_table, n_samples)
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
probs = probs.view(2, 2)
torch._multinomial_alias_setup(probs)
with self.assertRaisesRegex(RuntimeError, "expected 1-D"):
a_t, p_t = torch._multinomial_alias_setup(probs)
torch._multinomial_alias_draw(p_t.view(2, 2), a_t.view(2, 2))
MAX_SAMPLES = 200000
for probs in [get_probs(4, True),
torch.tensor([0.8, 0.2], device=device),
torch.tensor([0.7, 0.2, 0.1], device=device)]:
# Check how different the alias distribution and the original distribution are
alias_dist = torch.zeros_like(probs)
alias_table, prob_table = torch._multinomial_alias_setup(probs)
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
alias_dist = torch.unique(alias_samples, return_counts=True)[1].to(dtype=probs.dtype) / MAX_SAMPLES
self.assertTrue(torch.allclose(alias_dist, probs, rtol=0.02, atol=0.0),
"Actual: {}\nExpected: {}".format(alias_dist, probs))
for probs in [torch.tensor([0.2501, 0.25, 0.2499, 0.25], device=device),
torch.tensor([0.8, 0.199, 0.001], device=device),
torch.tensor([0.25001, 0.25, 0.24999, 0.25], device=device),
torch.tensor([0.33, 0.34, 0.33], device=device),
torch.tensor([0.8, 0.1999, 0.0001], device=device)]:
# Check the difference between the original probabilities and the reconstructed
# probabilities from the alias and probability tables output by _multinomial_alias_setup
alias_table, prob_table = torch._multinomial_alias_setup(probs)
actual = torch.zeros_like(probs)
for i, vals in enumerate(zip(alias_table, prob_table)):
idx, p = vals
actual[i] += p
actual[idx] += 1. - p
actual = actual / len(probs)
self.assertEqual(actual, probs, 1e-6)
# Some special cases
test_cases = [torch.tensor([1.0, 0.0, 0.0], device=device), torch.tensor([0.0, 1.0], device=device)]
for probs in test_cases:
alias_table, prob_table = torch._multinomial_alias_setup(probs)
alias_samples = torch._multinomial_alias_draw(prob_table, alias_table, MAX_SAMPLES)
self.assertEqual(alias_samples.unique(), probs.nonzero().squeeze(-1))
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_lapack_empty(self, device):
# FIXME: these are just a selection of LAPACK functions -- we need a general strategy here.
# The LAPACK functions themselves generally do NOT work with zero sized dimensions, although
# numpy/sci often has a direct wrapper (e.g. lu_factor) and a wrapper that "does the right thing"
# (e.g. lu). We often name our functions identically to the lapack function, so it will take work
# to name / migrate-to better wrappers.
def fn(torchfn, *args):
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
for shape in args))
# inverse, pinverse
self.assertEqual((0, 0), fn(torch.inverse, (0, 0)).shape)
self.assertEqual((5, 0), fn(torch.pinverse, (0, 5)).shape)
self.assertEqual((0, 5), fn(torch.pinverse, (5, 0)).shape)
self.assertEqual((0, 0), fn(torch.pinverse, (0, 0)).shape)
# det, logdet, slogdet
self.assertEqual(torch.tensor(1., device=device), fn(torch.det, (0, 0)))
self.assertEqual(torch.tensor(0., device=device), fn(torch.logdet, (0, 0)))
self.assertEqual((torch.tensor(1., device=device), torch.tensor(0., device=device)),
fn(torch.slogdet, (0, 0)))
# eig, symeig
evalues, evectors = fn(torch.eig, (0, 0), True)
self.assertEqual([(0, 2), (0, 0)], [evalues.shape, evectors.shape])
evalues, evectors = fn(torch.symeig, (0, 0), True)
self.assertEqual([(0,), (0, 0)], [evalues.shape, evectors.shape])
# qr
q, r = fn(torch.qr, (3, 0), True)
self.assertEqual([(3, 0), (0, 0)], [q.shape, r.shape])
q, r = fn(torch.qr, (0, 3), True)
self.assertEqual([(0, 0), (0, 3)], [q.shape, r.shape])
q, r = fn(torch.qr, (3, 0), False)
self.assertEqual([(3, 3), (3, 0)], [q.shape, r.shape])
# lstsq
self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0, 0), torch.randn(0, 0)))
self.assertRaises(RuntimeError, lambda: torch.lstsq(torch.randn(0,), torch.randn(0, 0)))
def test_roll(self, device):
numbers = torch.arange(1, 9, device=device)
single_roll = numbers.roll(1, 0)
expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device)
self.assertEqual(single_roll, expected, "{} did not equal expected result".format(single_roll))
roll_backwards = numbers.roll(-2, 0)
expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device)
self.assertEqual(roll_backwards, expected, "{} did not equal expected result".format(roll_backwards))
data = numbers.view(2, 2, 2)
rolled = data.roll(1, 0)
expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2)
self.assertEqual(expected, rolled, "{} did not equal expected result: {}".format(rolled, expected))
data = data.view(2, 4)
# roll a loop until back where started
loop_rolled = data.roll(2, 0).roll(4, 1)
self.assertEqual(data, loop_rolled, "{} did not equal the original: {}".format(loop_rolled, data))
# multiple inverse loops
self.assertEqual(data, data.roll(-20, 0).roll(-40, 1))
self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0))
# test non-contiguous
# strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4))
strided = numbers.view(2, 4).transpose(0, 1)
self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor")
expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2)
rolled = strided.roll(1, 0)
self.assertEqual(expected, rolled,
"non contiguous tensor rolled to {} instead of {} ".format(rolled, expected))
# test roll with no dimension specified
expected = numbers.roll(1, 0).view(2, 4)
self.assertEqual(expected, data.roll(1), "roll with no dims should flatten and roll.")
self.assertEqual(expected, data.roll(1, dims=None), "roll with no dims should flatten and roll.")
# test roll over multiple dimensions
expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device)
double_rolled = data.roll(shifts=(2, -1), dims=(1, 0))
self.assertEqual(double_rolled, expected,
"should be able to roll over two dimensions, got {}".format(double_rolled))
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=()))
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1))
# shifts/dims should align
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,)))
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2)))
def test_nonzero_empty(self, device):
def assert_tuple_empty(tup, dim):
self.assertEqual(dim, len(tup))
for t in tup:
self.assertEqual(torch.Size([0]), t.shape)
x = torch.randn(0, 2, 0, 5, 0, device=device)
y = torch.nonzero(x)
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(0, y.numel())
self.assertEqual(torch.Size([0, 5]), y.shape)
assert_tuple_empty(z, 5)
x = torch.tensor(0.5, device=device)
y = torch.nonzero(x)
# nonzero with as_tuple returns a
# tuple of len 1 for a zero-dim tensor.
# This is done to match Numpy behavior.
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(1, len(z))
self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])
x = torch.zeros((), device=device)
y = torch.nonzero(x)
z = torch.nonzero(x, as_tuple=True)
self.assertEqual(torch.Size([0, 0]), y.shape)
self.assertEqual(1, len(z))
self.assertEqual(torch.empty(0, dtype=torch.long), z[0])
def test_normal(self, device):
q = torch.empty(100, 100, device=device).normal_()
self.assertEqual(q.mean(), 0, 0.2)
self.assertEqual(q.std(), 1, 0.2)
q.normal_(2, 3)
self.assertEqual(q.mean(), 2, 0.3)
self.assertEqual(q.std(), 3, 0.3)
q = torch.empty(100, 100, device=device)
q_row1 = q[0:1].clone()
q[99:100].normal_()
self.assertEqual(q[99:100].mean(), 0, 0.2)
self.assertEqual(q[99:100].std(), 1, 0.2)
self.assertEqual(q[0:1].clone(), q_row1)
mean = torch.empty(100, 100, device=device)
std = torch.empty(100, 100, device=device)
mean[:50] = 0
mean[50:] = 1
std[:, :50] = 4
std[:, 50:] = 1
r = torch.normal(mean)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 1, 0.2)
r = torch.normal(mean, 3)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 3, 0.2)
r = torch.normal(2, std)
self.assertEqual(r.mean(), 2, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
r = torch.normal(mean, std)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
r = torch.normal(2, 3, (100, 100))
self.assertEqual(r.mean(), 2, 0.2)
self.assertEqual(r.std(), 3, 0.2)
def test_empty_strided(self, device):
for shape in [(2, 3, 4), (0, 2, 0)]:
# some of these cases are pretty strange, just verifying that if as_strided
# allows them then empty_strided can as well.
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
empty_strided = torch.empty_strided(shape, strides, device=device)
# as_strided checks the storage size is big enough to support such a strided tensor;
# instead of repeating this calculation, we just use empty_strided which does the same
# calculation when setting the storage size.
as_strided = torch.empty(empty_strided.storage().size(),
device=device).as_strided(shape, strides)
self.assertEqual(empty_strided.shape, as_strided.shape)
self.assertEqual(empty_strided.stride(), as_strided.stride())
def test_sign(self, device):
for dtype in torch.testing.get_all_math_dtypes(device):
# Include NaN for floating point numbers
if dtype.is_floating_point:
dt_info = torch.finfo(dtype)
# Create tensor (with NaN checking)
a = torch.tensor([float('nan'), -12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
a_target = torch.tensor([0, -1, 0, 1, -1, 1], device=device, dtype=dtype)
else:
dt_info = torch.iinfo(dtype)
# If unsigned type, everything should be >= 0
if dt_info.min == 0:
a = torch.tensor([12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
a_target = torch.tensor([1, 0, 1, 0, 1], device=device, dtype=dtype)
else:
a = torch.tensor([-12, 0, 71, dt_info.min, dt_info.max], device=device, dtype=dtype)
a_target = torch.tensor([-1, 0, 1, -1, 1], device=device, dtype=dtype)
self.assertEqual(a.sign(), a_target, 'sign device={} dtype={}'.format(device, dtype))
self.assertEqual(torch.sign(a), a_target, 'sign device={} dtype={}'.format(device, dtype))
out = torch.empty_like(a)
torch.sign(a, out=out)
self.assertEqual(out, a_target, 'sign_out device={} dtype={}'.format(device, dtype))
a.sign_()
self.assertEqual(a, a_target, 'sign_ device={} dtype={}'.format(device, dtype))
# Include test for bool dtype
a_bool = torch.tensor([True, True, False, float('nan')], device=device).bool()
a_bool_target = torch.tensor([True, True, False, True], device=device).bool()
self.assertEqual(a_bool.sign(), a_bool_target, 'sign device={} dtype=bool'.format(device))
self.assertEqual(torch.sign(a_bool), a_bool_target, 'sign device={} dtype=bool'.format(device))
a_out = torch.empty_like(a_bool)
torch.sign(a_bool, out=a_out)
self.assertEqual(a_out, a_bool_target, 'sign_out device={} dtype=bool'.format(device))
a_bool.sign_()
self.assertEqual(a_bool, a_bool_target, 'sign_ device={} dtype=bool'.format(device))
def test_logical_any(self, device):
x = torch.zeros([2, 3, 400], dtype=torch.uint8, device=device)
self.assertEqual(
torch.tensor(0, dtype=torch.uint8, device=device),
x.any())
self.assertEqual(
torch.zeros([1, 3, 400], dtype=torch.uint8, device=device),
x.any(0, keepdim=True))
self.assertEqual(
torch.zeros([2, 1, 400], dtype=torch.uint8, device=device),
x.any(1, keepdim=True))
self.assertEqual(
torch.zeros([2, 3, 1], dtype=torch.uint8, device=device),
x.any(2, keepdim=True))
# set the last element to 0
x[-1][-1][-1] = 1
self.assertEqual(
torch.tensor(1, dtype=torch.uint8, device=device),
x.any())
y = torch.zeros([1, 3, 400], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 1
self.assertEqual(y, x.any(0, keepdim=True))
y = torch.zeros([2, 1, 400], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 1
self.assertEqual(y, x.any(1, keepdim=True))
y = torch.zeros([2, 3, 1], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 1
self.assertEqual(y, x.any(2, keepdim=True))
def test_logical_all(self, device):
x = torch.ones([2, 3, 400], dtype=torch.uint8, device=device)
self.assertEqual(
torch.tensor(1, dtype=torch.uint8, device=device),
x.all())
self.assertEqual(
torch.ones([1, 3, 400], dtype=torch.uint8, device=device),
x.all(0, keepdim=True))
self.assertEqual(
torch.ones([2, 1, 400], dtype=torch.uint8, device=device),
x.all(1, keepdim=True))
self.assertEqual(
torch.ones([2, 3, 1], dtype=torch.uint8, device=device),
x.all(2, keepdim=True))
# set the last element to 0
x[-1][-1][-1] = 0
self.assertEqual(
torch.tensor(0, dtype=torch.uint8, device=device),
x.all())
y = torch.ones([1, 3, 400], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 0
self.assertEqual(y, x.all(0, keepdim=True))
y = torch.ones([2, 1, 400], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 0
self.assertEqual(y, x.all(1, keepdim=True))
y = torch.ones([2, 3, 1], dtype=torch.uint8, device=device)
y[-1][-1][-1] = 0
self.assertEqual(y, x.all(2, keepdim=True))
def test_log_normal(self, device):
a = torch.tensor([10], dtype=torch.float, device=device).log_normal_()
self.assertEqual(a.dtype, torch.float)
self.assertEqual(a.size(), torch.Size([1]))
def test_geometric(self, device):
a = torch.tensor([10], dtype=torch.float, device=device).geometric_(0.5)
self.assertEqual(a.dtype, torch.float)
self.assertEqual(a.size(), torch.Size([1]))
def test_pairwise_distance_empty(self, device):
shape = (2, 0)
x = torch.randn(shape, device=device)
y = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(2, device=device), torch.pairwise_distance(x, y))
self.assertEqual(torch.zeros((2, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
shape = (0, 2)
x = torch.randn(shape, device=device)
y = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(0, device=device), torch.pairwise_distance(x, y))
self.assertEqual(torch.zeros((0, 1), device=device), torch.pairwise_distance(x, y, keepdim=True))
def test_pdist_empty(self, device):
shape = (0, 2)
x = torch.randn(shape, device=device)
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
shape = (1, 2)
x = torch.randn(shape, device=device)
self.assertEqual(torch.empty(0, device=device), torch.pdist(x))
shape = (3, 0)
x = torch.randn(shape, device=device)
self.assertEqual(torch.zeros(3, device=device), torch.pdist(x))
def test_cdist_empty(self, device):
x = torch.randn((0, 5), device=device)
y = torch.randn((4, 5), device=device)
self.assertEqual(torch.empty(0, 4, device=device), torch.cdist(x, y))
x = torch.randn((2, 5), device=device)
y = torch.randn((0, 5), device=device)
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
x = torch.randn((2, 0), device=device)
y = torch.randn((3, 0), device=device)
self.assertEqual(torch.zeros(2, 3, device=device), torch.cdist(x, y))
x = torch.randn((2, 0), device=device)
y = torch.randn((0, 0), device=device)
self.assertEqual(torch.empty(2, 0, device=device), torch.cdist(x, y))
def test_cdist_norm(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
for r2 in [4, 6, 7, 8]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
x = torch.randn(r1, m, device=device)
y = torch.randn(r2, m, device=device)
actual = torch.cdist(x, y, p=p)
expected = brute_cdist(x, y, p=p)
self.assertTrue(torch.allclose(expected, actual))
def test_cdist_norm_batch(self, device):
for r1 in [3, 4, 5, 6]:
for m in [2, 3, 4, 10]:
for r2 in [4, 6, 7, 8]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
x = torch.randn(2, 3, 6, r1, m, device=device)
y = torch.randn(2, 3, 6, r2, m, device=device)
actual = torch.cdist(x, y, p=p)
expected = brute_cdist(x, y, p=p)
self.assertTrue(torch.allclose(expected, actual))
def test_cdist_large(self, device):
x = torch.randn(1000, 10, device=device)
y = torch.randn(1000, 10, device=device)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertTrue(torch.allclose(expected, actual))
def test_cdist_large_batch(self, device):
x = torch.randn(4, 3, 1000, 10, device=device)
y = torch.randn(4, 3, 1000, 10, device=device)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertTrue(torch.allclose(expected, actual))
def test_cdist_non_contiguous(self, device):
x = torch.randn(5, 7, device=device).transpose(-1, -2)
y = torch.randn(5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
x = torch.randn(7, 5, device=device)
y = torch.randn(5, 3, device=device).t()
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertTrue(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
x = torch.randn(5, 7, device=device).t()
y = torch.randn(3, 5, device=device)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertTrue(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
def test_cdist_non_contiguous_batch(self, device):
x = torch.randn(4, 3, 2, 5, 7, device=device).transpose(-1, -2)
y = torch.randn(4, 3, 2, 5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
x = torch.randn(7, 2, 7, 5, device=device)
y = torch.randn(7, 2, 5, 3, device=device).transpose(-1, -2)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertTrue(x.is_contiguous())
self.assertFalse(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
x = torch.randn(4, 5, 7, device=device).transpose(-1, -2)
y = torch.randn(4, 3, 5, device=device)
actual = torch.cdist(x, y, p=2)
expected = brute_cdist(x, y, p=2)
self.assertFalse(x.is_contiguous())
self.assertTrue(y.is_contiguous())
self.assertTrue(torch.allclose(expected, actual))
def test_multinomial_constraints(self, device):
x = torch.empty(1, 2, 3, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "prob_dist must be 1 or 2 dim",
lambda: torch.multinomial(x, 2))
x = torch.empty(1, 2, dtype=torch.long, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial only supports floating-point dtypes for input",
lambda: torch.multinomial(x, 2))
x = torch.empty(1, 2, dtype=torch.double, device=device)
y = torch.empty(1, 2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial expects Long tensor out",
lambda: torch.multinomial(x, 2, out=y))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample <= 0 samples",
lambda: torch.multinomial(x, 0))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample <= 0 samples",
lambda: torch.multinomial(x, -1))
x = torch.empty(2, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "cannot sample n_sample > prob_dist",
lambda: torch.multinomial(x, 3, False))
x = torch.empty(16777217, dtype=torch.double, device=device)
self.assertRaisesRegex(
RuntimeError, "number of categories cannot exceed",
lambda: torch.multinomial(x, 3))
def test_add(self, device):
# [res] torch.add([res,] tensor1, tensor2)
m1 = torch.randn(100, 100, device=device)
v1 = torch.randn(100, device=device)
# contiguous
res1 = torch.add(m1[4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(1)):
res2[i] = m1[4, i] + v1[i]
self.assertEqual(res1, res2)
m1 = torch.randn(100, 100, device=device)
v1 = torch.randn(100, device=device)
# non-contiguous
res1 = torch.add(m1[:, 4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(0)):
res2[i] = m1[i, 4] + v1[i]
self.assertEqual(res1, res2)
# [res] torch.add([res,] tensor, value)
m1 = torch.randn(10, 10, device=device)
# contiguous
res1 = m1.clone()
res1[3].add_(2)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[3, i] = res2[3, i] + 2
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, device=device)
res1 = m1.clone()
res1[:, 3].add_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] + 2
self.assertEqual(res1, res2)
# inter-type
m1 = torch.randn(10, 10, device=device)
self.assertEqual(m1 + 3, m1 + torch.tensor(3))
self.assertEqual(3 + m1, torch.tensor(3) + m1)
one = torch.tensor(1, dtype=torch.uint8, device=device)
self.assertEqual(torch.add(one, 1), 2)
self.assertEqual(torch.add(one, 1).dtype, torch.uint8)
# contiguous + non-contiguous
m1 = torch.randn(10, 10, device=device)
m2 = torch.randn(10, 10, device=device).t()
res = m1 + m2
self.assertTrue(res.is_contiguous())
self.assertEqual(res, m1 + m2.contiguous())
# 1d + empty
m1 = torch.tensor([1.0], dtype=torch.float, device=device)
m2 = torch.tensor([], dtype=torch.float, device=device)
self.assertEqual(m1 + m2, [])
# bool
m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device)
m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device)
expected = torch.tensor([True, True, False, True, False, True], dtype=torch.bool, device=device)
self.assertEqual(m1 + m2, expected)
# fused multiply add
a = torch.zeros(2, 3, dtype=torch.bool, device=device)
res = torch.add(a, a, alpha=0)
expected = torch.zeros(2, 3, device=device).bool()
self.assertEqual(res, expected)
# bfloat16
m1 = torch.tensor([1., 2.], dtype=torch.bfloat16)
m2 = torch.tensor([3., 4.], dtype=torch.bfloat16)
self.assertEqual(m1 + m2, torch.tensor([4., 6.], dtype=torch.bfloat16))
def test_bool_sub(self, device):
m1 = torch.tensor([True, False, False, True, False, False], dtype=torch.bool, device=device)
m2 = torch.tensor([True, True, False, False, False, True], dtype=torch.bool, device=device)
self.assertRaisesRegex(RuntimeError,
r"Subtraction, the `\-` operator, with two bool tensors is not supported. "
r"Use the `\^` or `logical_xor\(\)` operator instead.",
lambda: m1 - m2)
self.assertRaisesRegex(RuntimeError,
r"Subtraction, the `\-` operator, with a bool tensor is not supported. "
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
lambda: 1 - m1)
self.assertRaisesRegex(RuntimeError,
r"Subtraction, the `\-` operator, with a bool tensor is not supported. "
r"If you are trying to invert a mask, use the `\~` or `logical_not\(\)` operator instead.",
lambda: m2 - 1)
def test_mul(self, device):
m1 = torch.randn(10, 10, device=device)
res1 = m1.clone()
res1[:, 3].mul_(2)
res2 = m1.clone()
for i in range(res1.size(0)):
res2[i, 3] = res2[i, 3] * 2
self.assertEqual(res1, res2)
a1 = torch.tensor([True, False, False, True], dtype=torch.bool, device=device)
a2 = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
self.assertEqual(a1 * a2, torch.tensor([True, False, False, False], dtype=torch.bool, device=device))
if device == 'cpu':
a1 = torch.tensor([0.1, 0.1], dtype=torch.bfloat16, device=device)
a2 = torch.tensor([1.1, 0.1], dtype=torch.bfloat16, device=device)
self.assertEqual(a1 * a2, torch.tensor([0.11, 0.01], dtype=torch.bfloat16, device=device), 0.01)
self.assertEqual(a1.mul(a2), a1 * a2)
def test_cumsum(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumsum(x, 1)
res2 = torch.Tensor().to(device)
torch.cumsum(x, 1, out=res2)
self.assertEqual(res1, res2)
a = torch.tensor([[True, False, True],
[False, False, False],
[True, True, True]], device=device)
b = a.byte()
aRes = torch.cumsum(a, 0)
bRes = torch.cumsum(b, 0)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
[1, 0, 1],
[2, 1, 2]]))
aRes = torch.cumsum(a, 1)
bRes = torch.cumsum(b, 1)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 1, 2],
[0, 0, 0],
[1, 2, 3]]))
def test_cumprod(self, device):
x = torch.rand(100, 100, device=device)
res1 = torch.cumprod(x, 1)
res2 = torch.Tensor().to(device)
torch.cumprod(x, 1, out=res2)
self.assertEqual(res1, res2)
a = torch.tensor([[True, False, True],
[False, False, False],
[True, True, True]], dtype=torch.bool, device=device)
b = a.byte()
aRes = torch.cumprod(a, 0)
bRes = torch.cumprod(b, 0)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 1],
[0, 0, 0],
[0, 0, 0]]))
aRes = torch.cumprod(a, 1)
bRes = torch.cumprod(b, 1)
self.assertEqual(aRes, bRes)
self.assertEqual(aRes, torch.tensor([[1, 0, 0],
[0, 0, 0],
[1, 1, 1]]))
def test_std_mean(self, device):
x = torch.rand(100, 50, 20, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_std_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
std2 = x.std(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_var_mean(self, device):
x = torch.rand(100, 300, 50, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_var_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
var2 = x.var(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_std_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_zeros_like(self, device):
expected = torch.zeros((100, 100,), device=device)
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
def test_histc(self, device):
# negative nbins throws
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
# without nbins
actual = torch.histc(
torch.tensor([2, 5], dtype=torch.float, device=device))
expected = torch.zeros(100, dtype=torch.float, device=device)
expected.data[0] = 1
expected.data[99] = 1
self.assertEqual(expected, actual)
# tensor with the same element
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
self.assertEqual(
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
actual)
# no element falls between [min, max]
actual = torch.histc(
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
self.assertEqual(
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
actual)
# element falls below min + integral bin size and
actual = torch.histc(
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
bins=5, min=1, max=5)
self.assertEqual(
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
actual)
# non-integral bin size
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
# double input
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
actual)
self.assertEqual(actual.dtype, torch.double)
# mixed input
actual = torch.histc(
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
self.assertEqual(actual.dtype, torch.float)
# scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar.
actual = torch.histc(
torch.tensor(0, dtype=torch.float, device=device),
bins=1, min=0, max=3)
self.assertEqual(
torch.tensor([1], dtype=torch.float, device=device),
actual)
# test against numpy.histogram()
def test_against_np(tensor, bins=100, min=0, max=0):
if min == 0 and max == 0:
min = tensor.min().item()
max = tensor.max().item()
nparr = tensor.cpu().numpy()
actual = torch.histc(tensor, bins=bins, min=min, max=max)
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
self.assertEqual(actual.cpu(), expected)
if TEST_NUMPY:
test_against_np(torch.tensor([1., 2, 1], device=device))
test_against_np(torch.randn(5000, device=device))
# Test bins arg
test_against_np(torch.randn(301, device=device), bins=10)
# Test truncated range
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
noncontig = torch.randn(100, 3, device=device)[:, 2]
test_against_np(noncontig)
multidim = torch.randn(3, 5, 7, 2, device=device)
test_against_np(multidim)
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
test_against_np(expanded)
def test_bool_tensor_comparison_ops(self, device):
a = torch.tensor([True, False, True, False, True, False], dtype=torch.bool, device=device)
b = torch.tensor([True, False, True, True, True, True], dtype=torch.bool, device=device)
self.assertEqual(a == b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device))
self.assertEqual(a != b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device))
self.assertEqual(a < b, torch.tensor([0, 0, 0, 1, 0, 1], dtype=torch.bool, device=device))
self.assertEqual(a > b, torch.tensor([0, 0, 0, 0, 0, 0], dtype=torch.bool, device=device))
self.assertEqual(a >= b, torch.tensor([1, 1, 1, 0, 1, 0], dtype=torch.bool, device=device))
self.assertEqual(a <= b, torch.tensor([1, 1, 1, 1, 1, 1], dtype=torch.bool, device=device))
self.assertEqual(a > False, torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device))
self.assertEqual(a == torch.tensor(True, dtype=torch.bool, device=device),
torch.tensor([1, 0, 1, 0, 1, 0], dtype=torch.bool, device=device))
self.assertEqual(a == torch.tensor(0, dtype=torch.bool, device=device),
torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool, device=device))
self.assertFalse(a.equal(b))
def test_bool_tensor_value_change(self, device):
x = torch.tensor([True, False], dtype=torch.bool, device=device)
x[0] = False
x[1] = True
self.assertEqual(x, torch.tensor([False, True], dtype=torch.bool, device=device))
def test_unfold_all_devices_and_dtypes(self, device):
for dt in torch.testing.get_all_dtypes():
if dt == torch.bfloat16:
self.assertRaises(RuntimeError, lambda: torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device))
continue
if dt == torch.half and device == 'cpu':
# fix once random is implemented for Half on CPU
self.assertRaises(RuntimeError, lambda: torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device))
else:
x = torch.randint(5, (0, 1, 3, 0), dtype=dt, device=device)
self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape)
def test_copy_all_dtypes_and_devices(self, device):
from copy import copy
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([1, 2, 3, 4], dtype=dt, device=device)
x_clone = x.clone()
if (self.device_type == 'cuda' and dt == torch.bfloat16):
self.assertRaises(RuntimeError, lambda: copy(x))
continue
y = copy(x)
y.fill_(1)
# copy is a shallow copy, only copies the tensor view,
# not the data
self.assertEqual(x, y)
def test_resize_all_dtypes_and_devices(self, device):
shape = (2, 2)
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
x.resize_(shape)
self.assertEqual(shape, x.shape)
def test_resize_as_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device)
x.resize_as_(y)
self.assertEqual(y.shape, x.shape)
def test_view_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device)
if (self.device_type == 'cuda' and dt == torch.bfloat16):
self.assertRaises(RuntimeError, lambda: x.view(6))
continue
self.assertEqual(x.view(6).shape, [6])
def test_fill_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor((1, 1), dtype=dt, device=device)
if (self.device_type == 'cuda' and dt == torch.bfloat16):
self.assertRaises(RuntimeError, lambda: x.fill_(1))
continue
x.fill_(1)
self.assertEqual(x, torch.tensor([1, 1], dtype=dt, device=device))
self.assertEqual(dt, x.dtype)
def test_clone_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor((1, 1), dtype=dt, device=device)
y = x.clone()
if (self.device_type == 'cuda' and dt == torch.bfloat16):
# `x - y` is used inside of the assertEqual
self.assertRaises(RuntimeError, lambda: x - y)
continue
self.assertEqual(x, y)
def test_cat_all_dtypes_and_devices(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device)
if (self.device_type == 'cuda' and dt == torch.bfloat16):
self.assertRaises(RuntimeError, lambda: torch.cat((x, x), 0))
continue
expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device)
self.assertEqual(torch.cat((x, x), 0), expected1)
expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device)
self.assertEqual(torch.cat((x, x), 1), expected2)
def test_tensor_factories_empty(self, device):
# ensure we can create empty tensors from each factory function
shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)]
for shape in shapes:
for dt in torch.testing.get_all_dtypes():
if (self.device_type == 'cuda' and dt == torch.bfloat16):
self.assertRaises(RuntimeError, lambda: torch.zeros(shape, device=device, dtype=dt).shape)
self.assertRaises(RuntimeError, lambda: torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertRaises(RuntimeError, lambda: torch.full(shape, 3, device=device, dtype=dt).shape)
self.assertRaises(RuntimeError, lambda: torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3))
self.assertRaises(RuntimeError, lambda: torch.ones(shape, device=device, dtype=dt).shape)
self.assertRaises(RuntimeError, lambda: torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertRaises(RuntimeError, lambda: torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
else:
self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape)
self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape)
if dt == torch.half and device == "cpu":
# update once random is implemented for half on CPU
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
else:
if dt == torch.bfloat16:
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt))
continue # Remove once random is supported for bfloat16 on cuda
self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape)
if dt != torch.double and dt != torch.float and dt != torch.half:
self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape)
if dt == torch.double or dt == torch.float:
self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual((0,), torch.arange(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape)
self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape)
self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape)
self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.randperm(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape)
self.assertEqual((0,), torch.hamming_window(0, device=device).shape)
self.assertEqual((0,), torch.hann_window(0, device=device).shape)
self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape)
self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape)
def test_eye(self, device):
for dtype in torch.testing.get_all_dtypes():
if dtype == torch.bfloat16:
continue
for n, m in product([3, 5, 7], repeat=2):
# Construct identity using diagonal and fill
res1 = torch.eye(n, m, device=device, dtype=dtype)
naive_eye = torch.zeros(n, m, dtype=dtype, device=device)
naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1)
self.assertEqual(naive_eye, res1)
# Check eye_out outputs
res2 = torch.empty(0, device=device, dtype=dtype)
torch.eye(n, m, out=res2)
self.assertEqual(res1, res2)
def test_addcmul(self, device):
def rand_tensor(size, dtype, device):
if dtype.is_floating_point:
return torch.rand(size=size, dtype=dtype, device=device)
if dtype == torch.uint8:
return torch.randint(1, 5, size=size, dtype=dtype, device=device)
else:
return torch.randint(-5, 5, size=size, dtype=dtype, device=device)
for dtype in torch.testing.get_all_math_dtypes(device):
a = rand_tensor((2, 2), dtype=dtype, device=device)
b = rand_tensor((2, 2), dtype=dtype, device=device)
c = rand_tensor((2, 2), dtype=dtype, device=device)
if dtype.is_floating_point:
alpha = 0.1
else:
alpha = 3
actual = torch.addcmul(a, alpha, b, c)
expected = a + alpha * b * c
self.assertTrue(torch.allclose(expected, actual))
def test_empty_tensor_props(self, device):
sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)]
for size in sizes:
x = torch.empty(tuple(size), device=device)
self.assertEqual(size, x.shape)
self.assertTrue(x.is_contiguous())
size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size)
y = torch.empty(tuple(size_ones_instead_of_zeros), device=device)
self.assertEqual(x.stride(), y.stride())
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_tensordot(self, device):
a = torch.arange(60., device=device).reshape(3, 4, 5)
b = torch.arange(24., device=device).reshape(4, 3, 2)
c = torch.tensordot(a, b, dims=([1, 0], [0, 1])).cpu()
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
axes=([1, 0], [0, 1])))
self.assertEqual(c, cn)
a = torch.randn(2, 3, 4, 5, device=device)
b = torch.randn(4, 5, 6, 7, device=device)
c = torch.tensordot(a, b, dims=2).cpu()
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(),
axes=2))
self.assertEqual(c, cn)
c = torch.tensordot(a, b).cpu()
cn = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy()))
self.assertEqual(c, cn)
def test_narrow_empty(self, device):
x = torch.randn(2, 3, 4, device=device)
for d in range(x.dim()):
y = x.narrow(d, x.size(d), 0)
sz = list(x.size())
sz[d] = 0
self.assertEqual(sz, y.size())
def test_linspace(self, device):
_from = random.random()
to = _from + random.random()
res1 = torch.linspace(_from, to, 137, device=device)
res2 = torch.tensor((), device=device)
torch.linspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device))
self.assertEqual(torch.linspace(0, 1, 1, device=device), torch.zeros(1, device=device), 0)
# Check linspace for generating with start > end.
self.assertEqual(torch.linspace(2, 0, 3, device=device), torch.tensor((2, 1, 0), device=device), 0)
# Check linspace for non-contiguous tensors.
x = torch.zeros(2, 3, device=device)
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device), 0)
def test_logical(self, device):
for dt in torch.testing.get_all_dtypes():
x = torch.tensor([1, 2, 3, 4], device=device, dtype=dt)
b = torch.tensor([2], device=device, dtype=dt)
if dt == torch.half and device == 'cpu':
self.assertRaises(RuntimeError, lambda: x.lt(2))
continue
if dt == torch.bool:
# torch.bool is a special case and is being tested later
# in this test
continue
if self.device_type == 'cuda' and dt == torch.bfloat16:
self.assertRaises(RuntimeError, lambda: x > b)
self.assertRaises(RuntimeError, lambda: x < b)
self.assertRaises(RuntimeError, lambda: x == b)
self.assertRaises(RuntimeError, lambda: x != b)
self.assertRaises(RuntimeError, lambda: x >= b)
self.assertRaises(RuntimeError, lambda: x <= b)
continue
self.assertEqual(x.lt(2), torch.tensor([True, False, False, False]))
self.assertEqual(x.le(2), torch.tensor([True, True, False, False]))
self.assertEqual(x.ge(2), torch.tensor([False, True, True, True]))
self.assertEqual(x.gt(2), torch.tensor([False, False, True, True]))
self.assertEqual(x.eq(2), torch.tensor([False, True, False, False]))
self.assertEqual(x.ne(2), torch.tensor([True, False, True, True]))
self.assertEqual(x.lt(b), torch.tensor([True, False, False, False]))
self.assertEqual(x.le(b), torch.tensor([True, True, False, False]))
self.assertEqual(x.ge(b), torch.tensor([False, True, True, True]))
self.assertEqual(x.gt(b), torch.tensor([False, False, True, True]))
self.assertEqual(x.eq(b), torch.tensor([False, True, False, False]))
self.assertEqual(x.ne(b), torch.tensor([True, False, True, True]))
# Bool Tensor
x = torch.tensor([True, False, True, False], device=device)
self.assertEqual(x.lt(True), torch.tensor([False, True, False, True]))
self.assertEqual(x.le(True), torch.tensor([True, True, True, True]))
self.assertEqual(x.ge(True), torch.tensor([True, False, True, False]))
self.assertEqual(x.gt(True), torch.tensor([False, False, False, False]))
self.assertEqual(x.eq(True), torch.tensor([True, False, True, False]))
self.assertEqual(x.ne(True), torch.tensor([False, True, False, True]))
def test_index_copy(self, device):
num_copy, num_dest = 3, 20
dest = torch.randn(num_dest, 4, 5, device=device)
src = torch.randn(num_copy, 4, 5, device=device)
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, 0)
dest = torch.randn(num_dest, device=device)
src = torch.randn(num_copy, device=device)
idx = torch.randperm(num_dest, device=device).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, 0)
# Bool tensor
dest = torch.zeros(2, 2, dtype=torch.bool, device=device)
src = torch.tensor([[True, True], [True, True]], device=device)
index = torch.tensor([0, 1], device=device)
dest.index_copy_(0, index, src)
self.assertEqual(dest, torch.tensor([[True, True], [True, True]], device=device))
# Error cases
a = torch.randn(3, 5)
c = torch.zeros(3)
self.assertRaises(IndexError, lambda: a.index_copy_(dim=1, index=torch.tensor([3]), source=c))
def test_index_fill(self, device):
for dt in torch.testing.get_all_dtypes():
if dt == torch.half or dt == torch.bfloat16:
continue
x = torch.tensor([[1, 2], [4, 5]], dtype=dt, device=device)
index = torch.tensor([0], device=device)
x.index_fill_(1, index, 0)
self.assertEqual(x, torch.tensor([[0, 2], [0, 5]], dtype=dt, device=device))
def test_index_select(self, device):
src = torch.randn(3, 4, 5, device=device)
# Index can be duplicated.
idx = torch.tensor([2, 1, 0, 1, 2], dtype=torch.long, device=device)
dest = torch.index_select(src, 0, idx)
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
# Check that 'out' is used correctly.
out = torch.randn(5 * 4 * 5, device=device)
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
out.fill_(0.123)
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
# Bool tensor
src = torch.tensor([False, True, False, False], device=device, dtype=torch.bool)
idx = torch.tensor([1], dtype=torch.long, device=device)
dest = torch.index_select(src, 0, idx)
self.assertEqual(torch.tensor([True]), dest)
def test_take_empty(self, device):
for input_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
for indices_shape in [(0,), (0, 1, 2, 0)]:
input = torch.empty(input_shape, device=device)
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
self.assertEqual(indices, torch.take(input, indices))
def test_put_empty(self, device):
for dst_shape in [(0,), (0, 1, 2, 0), (1, 2, 3)]:
for indices_shape in [(0,), (0, 1, 2, 0)]:
for accumulate in [False, True]:
dst = torch.randn(dst_shape, device=device)
indices = torch.empty(indices_shape, dtype=torch.int64, device=device)
src = torch.randn(indices_shape, device=device)
self.assertEqual(dst, dst.put_(indices, src, accumulate=accumulate))
def test_scatter_to_large_input(self, device):
input = torch.zeros(4, 4, device=device)
src = torch.ones(2, 2, device=device)
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
input.scatter_(0, index, src)
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]], device=device))
def test_scatter_add_to_large_input(self, device):
input = torch.zeros(4, 4, device=device)
src = torch.ones(2, 2, device=device)
index = torch.tensor([[1], [2]], device=device, dtype=torch.long)
input.scatter_add_(0, index, src)
self.assertEqual(input, torch.tensor([[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]], device=device))
def test_scatter_bool(self, device):
x = torch.tensor([[True, True, True], [True, True, True]], device=device)
res = torch.zeros(3, 3, dtype=torch.bool, device=device)
res = res.scatter_(0, torch.tensor([[0, 1, 2], [0, 1, 2]], device=device), x)
self.assertEqual(res, torch.tensor([[True, False, False],
[False, True, False],
[False, False, True]], device=device))
def test_scatter_add_bool(self, device):
x = torch.tensor([[True, True, True, True, True], [True, True, True, True, True]], device=device)
res = torch.zeros(3, 5, dtype=torch.bool, device=device)
res = res.scatter_add_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]], device=device), x)
self.assertEqual(res, torch.tensor([[True, True, True, True, True],
[False, True, False, True, False],
[True, False, True, False, True]], device=device))
def test_masked_scatter_bool_tensor(self, device):
src = torch.tensor([True, True, True], device=device)
dst = torch.tensor([False, False, False], device=device)
mask = torch.tensor([False, True, False], device=device)
dst.masked_scatter_(mask, src)
self.assertEqual(dst, torch.tensor([False, True, False], device=device))
mask = torch.tensor([True, False, True], device=device)
dst = dst.masked_scatter(mask, src)
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
def test_masked_select(self, device):
for dt in torch.testing.get_all_dtypes():
with warnings.catch_warnings(record=True) as w:
for maskType in [torch.uint8, torch.bool]:
num_src = 10
src = torch.tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=dt, device=device)
mask = torch.rand(num_src, device=device).clamp(0, 1).mul(2).floor().to(maskType)
if dt == torch.bfloat16 and self.device_type == 'cuda':
# remove once bfloat16 implemented on CUDA
self.assertRaises(RuntimeError, lambda: src.masked_select(mask))
continue
if dt == torch.half and self.device_type == 'cpu':
self.assertRaises(RuntimeError, lambda: src.masked_select(mask))
continue
dst = src.masked_select(mask)
dst2 = []
for i in range(num_src):
if mask[i]:
dst2 += [src[i]]
self.assertEqual(dst, torch.tensor(dst2), 0)
dst3 = torch.empty_like(src, device=device)
torch.masked_select(src, mask, out=dst3)
self.assertEqual(dst3, torch.Tensor(dst2), 0)
self.assertEqual(len(w), 1)
warn = 'masked_select received a mask with dtype torch.uint8,'
self.assertEqual(str(w[0].message)[0:53], str(warn))
def test_masked_fill_bool_tensor(self, device):
dst = torch.tensor([True, False, True], device=device)
mask = torch.tensor([False, True, False], device=device)
dst.masked_fill_(mask, True)
self.assertEqual(dst, torch.tensor([True, True, True], device=device))
dst = dst.masked_fill(mask, False)
self.assertEqual(dst, torch.tensor([True, False, True], device=device))
def test_tensor_shape_empty(self, device):
x = torch.randn((0, 1, 3, 0), device=device)
# flatten
self.assertEqual((0,), torch.flatten(x, 0, 3).shape)
self.assertEqual((0, 0), torch.flatten(x, 0, 2).shape)
self.assertEqual((0, 3, 0), torch.flatten(x, 1, 2).shape)
# squeeze, unsqueeze
self.assertEqual((0, 1, 1, 3, 0), torch.unsqueeze(x, 1).shape)
self.assertEqual((0, 3, 0), torch.squeeze(x, 1).shape)
self.assertEqual((0, 3, 0), torch.squeeze(x).shape)
# transpose, t
self.assertEqual((0, 0, 3, 1), torch.transpose(x, 1, 3).shape)
y = torch.randn((5, 0), device=device)
self.assertEqual((0, 5), y.t().shape)
# select
self.assertEqual((0, 1, 0), torch.select(x, 2, 2).shape)
# repeat, permute
self.assertEqual((9, 0, 5, 6, 0), x.repeat(9, 7, 5, 2, 3).shape)
self.assertEqual((3, 0, 0, 1), x.permute(2, 3, 0, 1).shape)
# diagonal, diagflat
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device)).shape)
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device)).shape)
# off the end offsets are valid
self.assertEqual((0,), torch.diagonal(torch.randn((5, 0), device=device), offset=1).shape)
self.assertEqual((0,), torch.diagonal(torch.randn((0, 5), device=device), offset=1).shape)
# check non-zero sized offsets off the end
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=45252).shape)
self.assertEqual((5, 6, 0), torch.diagonal(torch.randn((3, 4, 5, 6), device=device), offset=-45252).shape)
self.assertEqual((0, 0), torch.diagflat(torch.tensor([], device=device)).shape)
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([], device=device), offset=1))
self.assertEqual((0, 0), torch.diagflat(torch.tensor([[]], device=device)).shape)
self.assertEqual(torch.zeros(1, 1), torch.diagflat(torch.tensor([[]], device=device), offset=1))
# stack, split, chunk
self.assertEqual((4, 0, 1, 3, 0), torch.stack((x, x, x, x)).shape)
self.assertEqual([(0, 1, 3, 0)],
[z.shape for z in torch.chunk(x, 1, dim=0)])
self.assertEqual([(0, 1, 3, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=0)])
self.assertEqual([(0, 1, 1, 0), ] * 3, [z.shape for z in torch.chunk(x, 3, dim=2)])
# NOTE: split_with_sizes behaves differently than NumPy in that it
# takes sizes rather than offsets
self.assertEqual([(0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 2, 0)],
[z.shape for z in torch.split(x, (0, 1, 2), dim=2)])
self.assertRaises(RuntimeError, lambda: torch.split(x, 0, dim=1))
# This is strange because the split size is larger than the dim size, but consistent with
# how split handles that case generally (when no 0s are involved).
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 1, dim=0)])
self.assertEqual([(0, 1, 3, 0)], [z.shape for z in torch.split(x, 0, dim=0)])
# functions that operate over a dimension but don't reduce.
def test_dim_function_empty(self, device):
shape = (0, 1, 2, 0)
x = torch.randn(shape, device=device)
# size stride
self.assertEqual(0, x.size(3))
self.assertEqual(2, x.size(2))
self.assertEqual(2, x.stride(0))
self.assertEqual(1, x.stride(2))
self.assertEqual(x, torch.nn.functional.glu(x, 0))
self.assertEqual((0, 1, 1, 0), torch.nn.functional.glu(x, 2).shape)
# softmax, logsoftmax
self.assertEqual(x, torch.nn.functional.softmax(x, 0))
self.assertEqual(x, torch.nn.functional.softmax(x, 2))
self.assertEqual(x, torch.nn.functional.softmax(x, 3))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 0))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 2))
self.assertEqual(x, torch.nn.functional.log_softmax(x, 3))
# cumsum, cumprod
self.assertEqual(shape, torch.cumsum(x, 0).shape)
self.assertEqual(shape, torch.cumsum(x, 2).shape)
self.assertEqual(shape, torch.cumprod(x, 0).shape)
self.assertEqual(shape, torch.cumprod(x, 2).shape)
# flip
self.assertEqual(x, x.flip(0))
self.assertEqual(x, x.flip(2))
# roll
self.assertEqual(x, x.roll(0, 1).roll(0, -1))
self.assertEqual(x, x.roll(1, x.size(1)))
self.assertEqual(x, x.roll(1))
self.assertEqual(x, x.roll((1, 1), (3, 1)))
# unbind
self.assertEqual((), x.unbind(0))
self.assertEqual((torch.empty((0, 1, 0), device=device), torch.empty((0, 1, 0), device=device)),
x.unbind(2))
# cross
y = torch.randn((0, 1, 3, 0), device=device)
self.assertEqual(y.shape, torch.cross(y, y).shape)
# renorm
self.assertEqual(shape, torch.renorm(x, 1, 0, 5).shape)
self.assertEqual(shape, torch.renorm(x, 1, 2, 5).shape)
# sort
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=0)])
self.assertEqual([shape, shape], [z.shape for z in torch.sort(x, dim=2)])
# topk
self.assertEqual([shape, shape], [z.shape for z in torch.topk(x, 0, dim=0)])
self.assertEqual([(0, 1, 1, 0), (0, 1, 1, 0)], [z.shape for z in torch.topk(x, 1, dim=2)])
y = torch.randn((2, 3, 4), device=device)
self.assertEqual([(2, 3, 0), (2, 3, 0)], [z.shape for z in torch.topk(y, 0)])
# gather
self.assertEqual(shape, torch.gather(x, 0, torch.empty(shape, dtype=torch.int64, device=device)).shape)
self.assertEqual(shape, torch.gather(x, 2, torch.empty(shape, dtype=torch.int64, device=device)).shape)
larger_shape = torch.empty((0, 1, 3, 0), dtype=torch.int64, device=device)
self.assertEqual(larger_shape.shape, torch.gather(x, 2, larger_shape).shape)
smaller_shape = torch.empty((0, 1, 0, 0), dtype=torch.int64, device=device)
self.assertEqual(smaller_shape.shape, torch.gather(x, 2, smaller_shape).shape)
y = torch.randn((2, 3, 4), device=device)
self.assertEqual((0, 3, 4),
torch.gather(y, 0, torch.empty((0, 3, 4), dtype=torch.int64, device=device)).shape)
# scatter, scatter_add
for dim in [0, 2]:
y = torch.randn(shape, device=device)
y_src = torch.randn(shape, device=device)
ind = torch.empty(shape, dtype=torch.int64, device=device)
self.assertEqual(shape, y.scatter_(dim, ind, y_src).shape)
self.assertEqual(shape, y.scatter_add_(dim, ind, y_src).shape)
z = torch.randn((2, 3, 4), device=device)
z_src = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.scatter_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
self.assertEqual(z, z.scatter_add_(2, torch.empty((2, 3, 0), dtype=torch.int64, device=device), z_src))
# index_fill, index_copy, index_add
c = x.clone()
c_clone = c.clone()
ind_empty = torch.tensor([], dtype=torch.int64, device=device)
ind_01 = torch.tensor([0, 1], dtype=torch.int64, device=device)
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_fill_(2, ind_empty, -1))
self.assertEqual(c_clone, c.index_fill_(2, torch.tensor([0, 1], dtype=torch.int64, device=device), -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_copy_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
self.assertEqual(c_clone, c.index_copy_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(2, ind_empty, torch.empty((0, 1, 0, 0), device=device)))
self.assertEqual(c_clone, c.index_add_(2, ind_01, torch.empty((0, 1, 2, 0), device=device)))
c = torch.randn((0, 1, 2), device=device)
c_clone = c.clone()
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_fill_(0, ind_empty, -1))
self.assertEqual(c_clone, c.index_copy_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
self.assertEqual(c_clone, c.index_add_(0, ind_empty, torch.empty((0, 1, 2), device=device)))
# index fill/copy/add non-empty
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_fill_(0, ind_empty, -1))
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_copy_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
z = torch.randn((2, 3, 4), device=device)
self.assertEqual(z, z.index_add_(0, ind_empty, torch.empty((0, 3, 4), device=device)))
# index_select
self.assertEqual(x, x.index_select(0, ind_empty))
self.assertEqual((0, 1, 0, 0), x.index_select(2, ind_empty).shape)
self.assertEqual(x, x.index_select(2, ind_01))
z = torch.randn((2, 3, 4), device=device) # non-empty
self.assertEqual((0, 3, 4), z.index_select(0, ind_empty).shape)
c = torch.randn((0, 1, 2), device=device)
self.assertEqual(c, c.index_select(0, ind_empty))
c = torch.randn((0, 1, 2), device=device)
self.assertEqual(c, c.index_select(0, ind_empty))
def test_nonzero(self, device):
num_srcs = [
12, 12, 12, 12, 12, 125,
]
types = [
'torch.ByteTensor',
'torch.CharTensor',
'torch.ShortTensor',
'torch.IntTensor',
'torch.FloatTensor',
'torch.DoubleTensor',
'torch.LongTensor',
]
shapes = [
torch.Size((12,)),
torch.Size((12, 1)),
torch.Size((1, 12)),
torch.Size((6, 2)),
torch.Size((3, 2, 2)),
torch.Size((5, 5, 5)),
]
def is_lexicographically_sorted(inds):
"""Check sorted ascending with
i -> j -> k changing slowest to fastest"""
assert inds.size(1) == 3
if inds.size(0) > 1:
i0, j0, k0 = inds[:-1].t()
i1, j1, k1 = inds[+1:].t()
i_ok = (i1 >= i0)
j_ok = (j1 >= j0) | (i1 > i0)
k_ok = (k1 >= k0) | (j1 > j0) | (i1 > i0)
lex = torch.stack((i_ok, j_ok, k_ok), dim=1)
return lex
return torch.full_like(inds, 1)
def gen_nontrivial_input(num_src, dtype, device):
while True:
tensor = torch.rand(num_src).mul(2).floor().type(dtype).to(device)
if tensor.sum() > 0:
return tensor
for dtype in types:
for shape, num_src in zip(shapes, num_srcs):
tensor = gen_nontrivial_input(num_src, dtype, device)
tensor = tensor.clone().resize_(shape)
dst1 = torch.nonzero(tensor)
dst2 = tensor.nonzero()
dst3 = torch.LongTensor().to(device)
torch.nonzero(tensor, out=dst3)
self.assertRaisesRegex(
TypeError,
"received an invalid combination of arguments",
lambda: torch.nonzero(tensor, as_tuple=True, out=dst3))
if len(shape) == 1:
dst = []
for i in range(num_src):
if tensor[i] != 0:
dst += [i]
dst = torch.LongTensor(dst).to(device)
self.assertEqual(dst1.select(1, 0), dst, 0)
self.assertEqual(dst2.select(1, 0), dst, 0)
self.assertEqual(dst3.select(1, 0), dst, 0)
elif len(shape) == 2:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0)
elif len(shape) == 3:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0)
lex = is_lexicographically_sorted(dst1)
self.assertEqual(torch.ones_like(lex), lex)
if TEST_NUMPY:
tup1 = torch.nonzero(tensor, as_tuple=True)
tup2 = tensor.nonzero(as_tuple=True)
tup3 = torch.where(tensor)
np1 = tensor.cpu().numpy().nonzero()
for t in (tup1, tup2, tup3):
self.assertEqual(len(t), len(np1))
for i in range(len(t)):
self.assertEqual(t[i].cpu().numpy(), np1[i])
def test_nonzero_non_diff(self, device):
x = torch.randn(10, requires_grad=True)
nz = x.nonzero()
self.assertFalse(nz.requires_grad)
def test_pdist_norm(self, device):
def test_pdist_single(shape, device, p, dtype, trans):
x = torch.randn(shape, dtype=dtype, device=device)
if trans:
x.transpose_(-2, -1)
actual = torch.pdist(x, p=p)
expected = brute_pdist(x, p=p)
self.assertEqual(expected.shape, actual.shape)
self.assertTrue(torch.allclose(expected, actual))
for shape in [(4, 5), (3, 2), (2, 1)]:
for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]:
for trans in [False, True]:
for dtype in [torch.float32, torch.float64]:
test_pdist_single(shape, device, p, dtype, trans)
# do a simplified comparison with big inputs, see:
# https://github.com/pytorch/pytorch/issues/15511
for dtype in [torch.float32, torch.float64]:
test_pdist_single((1000, 2), device, 2, dtype, False)
def test_atan2(self, device):
def _test_atan2_with_size(size, device):
a = torch.rand(size=size, device=device, dtype=torch.double)
b = torch.rand(size=size, device=device, dtype=torch.double)
actual = a.atan2(b)
x = a.view(-1)
y = b.view(-1)
expected = torch.tensor([math.atan2(x[i].item(), y[i].item()) for i in range(x.numel())],
device=device, dtype=torch.double)
self.assertTrue(torch.allclose(expected, actual.view(-1), rtol=0, atol=0.02))
_test_atan2_with_size((2, 2), device)
_test_atan2_with_size((3, 3), device)
_test_atan2_with_size((5, 5), device)
def test_atan2_edgecases(self, device):
def _test_atan2(x, y, expected, device, dtype):
expected_tensor = torch.tensor([expected], dtype=dtype, device=device)
x_tensor = torch.tensor([x], dtype=dtype, device=device)
y_tensor = torch.tensor([y], dtype=dtype, device=device)
actual = torch.atan2(y_tensor, x_tensor)
self.assertTrue(torch.allclose(expected_tensor, actual, rtol=0, atol=0.02))
for dtype in [torch.float, torch.double]:
_test_atan2(0, 0, 0, device, dtype)
_test_atan2(0, 1, math.pi / 2, device, dtype)
_test_atan2(0, -1, math.pi / -2, device, dtype)
_test_atan2(-1, 0, math.pi, device, dtype)
_test_atan2(1, 0, 0, device, dtype)
_test_atan2(-1, -1, math.pi * -3 / 4 , device, dtype)
_test_atan2(1, 1, math.pi / 4 , device, dtype)
_test_atan2(1, -1, math.pi / -4 , device, dtype)
_test_atan2(-1, 1, math.pi * 3 / 4 , device, dtype)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_trapz(self, device):
def test_dx(sizes, dim, dx, device):
t = torch.randn(sizes, device=device)
actual = torch.trapz(t, dx=dx, dim=dim)
expected = np.trapz(t.cpu().numpy(), dx=dx, axis=dim)
self.assertEqual(expected.shape, actual.shape)
self.assertTrue(np.allclose(expected, actual.cpu().numpy()))
def test_x(sizes, dim, x, device):
t = torch.randn(sizes, device=device)
actual = torch.trapz(t, x=torch.tensor(x, device=device), dim=dim)
expected = np.trapz(t.cpu().numpy(), x=x, axis=dim)
self.assertEqual(expected.shape, actual.shape)
self.assertTrue(np.allclose(expected, actual.cpu().numpy()))
test_dx((2, 3, 4), 1, 1, device)
test_dx((10, 2), 0, 0.1, device)
test_dx((1, 10), 0, 2.3, device)
test_dx((0, 2), 0, 1.0, device)
test_dx((0, 2), 1, 1.0, device)
test_x((2, 3, 4), 1, [1.0, 2.0, 3.0], device)
test_x((10, 2), 0, [2.0, 3.0, 4.0, 7.0, 11.0, 14.0, 22.0, 26.0, 26.1, 30.3], device)
test_x((1, 10), 0, [1.0], device)
test_x((0, 2), 0, [], device)
test_x((0, 2), 1, [1.0, 2.0], device)
with self.assertRaisesRegex(
IndexError,
'Dimension out of range'):
test_x((2, 3), 2, [], device)
test_dx((2, 3), 2, 1.0, device)
with self.assertRaisesRegex(
RuntimeError,
'There must be one `x` value for each sample point'):
test_x((2, 3), 1, [1.0, 2.0], device)
test_x((2, 3), 1, [1.0, 2.0, 3.0, 4.0], device)
def test_reduction_empty(self, device):
fns_to_test = [
# name, function, identity
('max', torch.max, None),
('kthvalue', lambda *args, **kwargs: torch.kthvalue(*args, k=1, **kwargs), None),
('argmax', torch.argmax, None),
('min', torch.min, None),
('argmin', torch.argmin, None),
('mode', torch.mode, None),
('median', torch.median, None),
('prod', torch.prod, 1),
('sum', torch.sum, 0),
('norm', torch.norm, 0),
('mean', torch.mean, nan),
('var', torch.var, nan),
('std', torch.std, nan),
('logsumexp', torch.logsumexp, -inf),
]
shape = (2, 0, 4)
x = torch.randn(shape, device=device)
for fn in [torch.max, torch.min]:
ident_err = 'operation does not have an identity'
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x))
for item in fns_to_test:
name, fn, identity = item
if identity is None:
ident_err = 'does not have an identity'
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=2, keepdim=True))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1))
self.assertRaisesRegex(RuntimeError, ident_err, lambda: fn(x, dim=1, keepdim=True))
else:
self.assertEqual(torch.empty((2, 0), device=device), fn(x, dim=2))
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(x, dim=2, keepdim=True))
# assertEqual doesn't work with inf, -inf, nan and two tensors.
check = (torch.testing.assert_allclose if math.isnan(identity) or math.isinf(identity) else
self.assertEqual)
check(torch.full((2, 4), identity, device=device), fn(x, dim=1))
check(torch.full((2, 1, 4), identity, device=device), fn(x, dim=1, keepdim=True))
try:
check(torch.full((), identity, device=device), fn(x))
except TypeError as err:
# ignore if there is no allreduce.
self.assertTrue('dim' in str(err))
# any
xb = x.to(torch.uint8)
yb = x.to(torch.uint8)
self.assertEqual((2, 0), xb.any(2).shape)
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
self.assertEqual(torch.zeros((2, 4), device=device), xb.any(1))
self.assertEqual(torch.zeros((2, 1, 4), device=device), xb.any(1, keepdim=True))
self.assertEqual(torch.zeros((), device=device), xb.any())
# all
self.assertEqual((2, 0), xb.all(2).shape)
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
self.assertEqual(torch.ones((2, 4), device=device), xb.all(1))
self.assertEqual(torch.ones((2, 1, 4), device=device), xb.all(1, keepdim=True))
self.assertEqual(torch.ones((), device=device), xb.all())
def test_addcdiv(self, device):
def _test_addcdiv(a, alpha, b, c):
actual = torch.addcdiv(a, alpha, b, c)
# implementation of addcdiv downcasts alpha. arithmetic ops don't.
if not actual.dtype.is_floating_point:
alpha = int(alpha)
expected = a + (alpha * b) / c
self.assertTrue(torch.allclose(expected, actual, equal_nan=True))
def non_zero_rand(size, dtype, device):
if dtype.is_floating_point:
a = torch.rand(size=size, dtype=dtype, device=device)
elif dtype == torch.uint8:
a = torch.randint(1, 5, size=size, dtype=dtype, device=device)
else:
a = torch.randint(-5, 5, size=size, dtype=dtype, device=device)
return a + (a == 0).type(dtype)
for dtype in torch.testing.get_all_math_dtypes(device):
_test_addcdiv(
non_zero_rand((2, 2), dtype=dtype, device=device),
0.5,
non_zero_rand((2, 2), dtype=dtype, device=device),
non_zero_rand((2, 2), dtype=dtype, device=device))
# TODO: run on non-native device types
@dtypes(torch.double)
def test_unary_out_op_mem_overlap(self, device, dtype):
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
ints = torch.randint(-100, 100, (2 * sz,), device=device)
unary_mem_overlap_cases = [
("abs", doubles, True, True, 'cpu'),
("abs", doubles, False, True, 'cuda'),
("acos", doubles, True, True, 'cpu'),
("acos", doubles, False, True, 'cuda'),
("asin", doubles, True, True, 'cpu'),
("asin", doubles, False, True, 'cuda'),
("atan", doubles, True, True, 'cpu'),
("atan", doubles, False, True, 'cuda'),
("bitwise_not", ints, True, True, 'cpu'),
("bitwise_not", ints, True, True, 'cuda'),
("ceil", doubles, True, True, 'cpu'),
("ceil", doubles, True, True, 'cuda'),
("cos", doubles, True, True, 'cpu'),
("cos", doubles, False, True, 'cuda'),
("cosh", doubles, True, True, 'cpu'),
("cosh", doubles, False, True, 'cuda'),
("digamma", doubles, True, True, 'cpu'),
("erf", doubles, True, True, 'cpu'),
("erf", doubles, False, True, 'cuda'),
("erfc", doubles, True, True, 'cpu'),
("erfc", doubles, False, True, 'cuda'),
("erfinv", doubles, True, True, 'cpu'),
("erfinv", doubles, True, True, 'cuda'),
("exp", doubles, True, True, 'cpu'),
("exp", doubles, False, True, 'cuda'),
("expm1", doubles, True, True, 'cpu'),
("expm1", doubles, True, True, 'cuda'),
("floor", doubles, True, True, 'cpu'),
("floor", doubles, True, True, 'cuda'),
("frac", doubles, True, True, 'cpu'),
("frac", doubles, False, True, 'cuda'),
("log", positives, True, True, 'cpu'),
("log", positives, True, True, 'cuda'),
("log10", positives, True, True, 'cpu'),
("log10", positives, True, True, 'cuda'),
("log1p", positives, True, True, 'cpu'),
("log1p", positives, False, True, 'cuda'),
("log2", positives, True, True, 'cpu'),
("log2", positives, True, True, 'cuda'),
("neg", doubles, True, True, 'cpu'),
("neg", doubles, True, True, 'cuda'),
("reciprocal", doubles, True, True, 'cpu'),
("reciprocal", doubles, False, True, 'cuda'),
("round", doubles, True, True, 'cpu'),
("round", doubles, True, True, 'cuda'),
("rsqrt", positives, True, True, 'cpu'),
("rsqrt", positives, True, True, 'cuda'),
("sin", doubles, True, True, 'cpu'),
("sin", doubles, False, True, 'cuda'),
("sinh", doubles, True, True, 'cpu'),
("sinh", doubles, False, True, 'cuda'),
("sigmoid", doubles, True, True, 'cpu'),
("sigmoid", doubles, False, False, 'cuda'),
("sqrt", doubles, True, True, 'cpu'),
("sqrt", doubles, False, True, 'cuda'),
("tan", doubles, True, True, 'cpu'),
("tan", doubles, False, True, 'cuda'),
("tanh", doubles, True, True, 'cpu'),
("tanh", doubles, False, True, 'cuda'),
("trunc", doubles, True, True, 'cpu'),
("trunc", doubles, True, True, 'cuda')
]
for (fn, inputs, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in unary_mem_overlap_cases:
if dev != device:
continue
out_fn = getattr(torch, fn)
in_fn = getattr(torch.Tensor, fn + '_')
self.unary_check_input_output_mem_overlap(inputs, sz, out_fn,
expected_failure=not has_input_output_mem_overlap_check)
self.check_internal_mem_overlap(in_fn, 1, dtype, dev,
expected_failure=not has_internal_mem_overlap_check)
@dtypes(torch.double)
def test_binary_op_mem_overlap(self, device, dtype):
ops = [
("add", True, True, 'cpu'),
("add", True, True, 'cuda'),
("mul", True, True, 'cpu'),
("mul", True, True, 'cuda'),
("sub", True, True, 'cpu'),
("sub", True, True, 'cuda'),
("div", True, True, 'cpu'),
("div", True, True, 'cuda'),
("pow", True, True, 'cpu'),
("pow", True, True, 'cuda')
]
for (fn, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in ops:
if dev != device:
continue
out_op = getattr(torch, fn)
inplace_op = getattr(torch.Tensor, fn + '_')
self.check_internal_mem_overlap(
inplace_op, 2, dtype, device,
expected_failure=not has_internal_mem_overlap_check)
self.binary_check_input_output_mem_overlap(out_op, device,
expected_failure=not has_input_output_mem_overlap_check)
@dtypes(torch.double)
def test_ternary_op_mem_overlap(self, device, dtype):
ops = [
("addcmul", True, True, 'cpu'),
("addcmul", True, True, 'cuda'),
("addcdiv", True, True, 'cpu'),
("addcdiv", True, True, 'cuda'),
("lerp", True, True, 'cpu'),
("lerp", False, False, 'cuda')
]
for (fn, has_input_output_mem_overlap_check,
has_internal_mem_overlap_check, dev) in ops:
if dev != device:
continue
out_op = getattr(torch, fn)
inplace_op = getattr(torch.Tensor, fn + '_')
self.check_internal_mem_overlap(
inplace_op, 3, dtype, device,
expected_failure=not has_internal_mem_overlap_check)
self.ternary_check_input_output_mem_overlap(out_op, dev,
expected_failure=not has_input_output_mem_overlap_check)
@dtypes(torch.double)
def test_copy_mem_overlap(self, device, dtype):
self.check_internal_mem_overlap(
torch.Tensor.copy_, num_inputs=2, dtype=dtype, device=device)
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
self.unary_check_input_output_mem_overlap(
doubles, sz, lambda input, out: out.copy_(input))
@dtypes(torch.double)
def test_pow_scalar_overloads_mem_overlap(self, device, dtype):
sz = 3
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
self.check_internal_mem_overlap(
lambda t: t.pow_(42), 1, dtype, device)
self.unary_check_input_output_mem_overlap(
doubles, sz, lambda input, out: torch.pow(input, 42, out=out))
self.unary_check_input_output_mem_overlap(
doubles, sz, lambda input, out: torch.pow(42, input, out=out))
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_int_pow(self, device):
def _test_integral_pow(dt, range, dev):
tensor = torch.tensor((3, 3), dtype=dt, device=dev).random_(*range)
exps = [0, 1, 2, 4,
torch.tensor((3, 3), dtype=dt, device=dev).random_(0, 5)]
for exp in exps:
self._test_pow(tensor, exp)
_test_integral_pow(torch.int8, (-3, 4), device)
_test_integral_pow(torch.uint8, (0, 4), device)
_test_integral_pow(torch.int16, (-5, 5), device)
_test_integral_pow(torch.int64, (-10, 10), device)
_test_integral_pow(torch.int32, (-10, 10), device)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_int_tensor_pow_neg_ints(self, device):
ints = [torch.iinfo(torch.int32).min,
-3, -2, -1, 0, 1, 2, 3,
torch.iinfo(torch.int32).max]
neg_ints = [torch.iinfo(torch.int32).min, -3, -2, -1]
tensor = torch.tensor(ints, dtype=torch.int32, device=device)
for pow in neg_ints:
self._test_pow(tensor, pow)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_long_tensor_pow_floats(self, device):
ints = [0, 1, 23, 4567]
floats = [0.0, 1 / 3, 1 / 2, 1.0, 3 / 2, 2.0]
tensor = torch.tensor(ints, dtype=torch.int64, device=device)
for pow in floats:
self._test_pow(tensor, pow)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_float_scalar_pow_float_tensor(self, device):
floats = [2.0, -3 / 2, -1.0, -1 / 2, -1 / 3, 0.0,
1 / 3, 1 / 2, 1.0, 3 / 2, 2.0]
tensor = torch.tensor(floats, dtype=torch.float32, device=device)
for base in floats:
self._test_pow(base, tensor)
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_tensor_pow_tensor(self, dev):
def rotate(l, n):
return l[-n:] + l[:-n]
def test_tensor_pow_tensor(values, torch_type, numpy_type):
vals_tensor = torch.tensor(values, dtype=torch_type, device=dev)
for i in range(len(values)):
pows = rotate(values, i)
pows_tensor = torch.tensor(pows, dtype=torch_type, device=dev)
self._test_pow(vals_tensor, pows_tensor)
ints = [0, 1, 2, 3]
test_tensor_pow_tensor(ints, torch.int32, np.int32)
test_tensor_pow_tensor(ints, torch.int64, np.int64)
floats = [-3.0, -2.0, -1.0, -1 / 2, -1 / 3,
0.0,
1 / 3, 1 / 2, 1.0, 2.0, 3.0]
test_tensor_pow_tensor(floats, torch.float32, np.float32)
test_tensor_pow_tensor(floats, torch.float64, np.float64)
def test_var_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
# passes on ROCm w/ python 2.7, fails w/ python 3.6
@skipCUDAIfRocm
# stft -> rfft -> _fft -> _fft_with_size -> _fft_mkl
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
@dtypes(torch.double)
def test_stft(self, device, dtype):
if not TEST_LIBROSA:
raise unittest.SkipTest('librosa not found')
def librosa_stft(x, n_fft, hop_length, win_length, window, center):
if window is None:
window = np.ones(n_fft if win_length is None else win_length)
else:
window = window.cpu().numpy()
input_1d = x.dim() == 1
if input_1d:
x = x.view(1, -1)
result = []
for xi in x:
ri = librosa.stft(xi.cpu().numpy(), n_fft, hop_length, win_length, window, center=center)
result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1)))
result = torch.stack(result, 0)
if input_1d:
result = result[0]
return result
def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None,
center=True, expected_error=None):
x = torch.randn(*sizes, dtype=dtype, device=device)
if win_sizes is not None:
window = torch.randn(*win_sizes, dtype=dtype, device=device)
else:
window = None
if expected_error is None:
result = x.stft(n_fft, hop_length, win_length, window, center=center)
ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center)
self.assertEqual(result, ref_result, 7e-6, 'stft comparison against librosa')
else:
self.assertRaises(expected_error,
lambda: x.stft(n_fft, hop_length, win_length, window, center=center))
for center in [True, False]:
_test((10,), 7, center=center)
_test((10, 4000), 1024, center=center)
_test((10,), 7, 2, center=center)
_test((10, 4000), 1024, 512, center=center)
_test((10,), 7, 2, win_sizes=(7,), center=center)
_test((10, 4000), 1024, 512, win_sizes=(1024,), center=center)
# spectral oversample
_test((10,), 7, 2, win_length=5, center=center)
_test((10, 4000), 1024, 512, win_length=100, center=center)
_test((10, 4, 2), 1, 1, expected_error=RuntimeError)
_test((10,), 11, 1, center=False, expected_error=RuntimeError)
_test((10,), -1, 1, expected_error=RuntimeError)
_test((10,), 3, win_length=5, expected_error=RuntimeError)
_test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError)
_test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError)
@skipCUDAIfRocm
def test_blas_empty(self, device):
def fn(torchfn, *args):
return torchfn(*tuple(torch.randn(shape, device=device) if isinstance(shape, tuple) else shape
for shape in args))
# mm, addmm
self.assertEqual((0, 0), fn(torch.mm, (0, 0), (0, 0)).shape)
self.assertEqual((0, 5), fn(torch.mm, (0, 0), (0, 5)).shape)
self.assertEqual((5, 0), fn(torch.mm, (5, 0), (0, 0)).shape)
self.assertEqual((3, 0), fn(torch.mm, (3, 2), (2, 0)).shape)
self.assertEqual(torch.zeros((5, 6), device=device), fn(torch.mm, (5, 0), (0, 6)))
self.assertEqual((0, 0), fn(torch.addmm, (0, 0), (0, 0), (0, 0)).shape)
self.assertEqual((5, 6), fn(torch.addmm, (5, 6), (5, 0), (0, 6)).shape)
# mv, addmv
self.assertEqual((0,), fn(torch.mv, (0, 0), (0,)).shape)
self.assertEqual((0,), fn(torch.mv, (0, 2), (2,)).shape)
self.assertEqual(torch.zeros((3,), device=device), fn(torch.mv, (3, 0), (0,)))
self.assertEqual((0,), fn(torch.addmv, (0,), (0, 0), (0,)).shape)
self.assertEqual((3,), fn(torch.addmv, (3,), (3, 0), (0,)).shape)
# ger, addr
self.assertEqual((0, 0), fn(torch.ger, (0,), (0,)).shape)
self.assertEqual((5, 0), fn(torch.ger, (5,), (0,)).shape)
self.assertEqual((0, 4), fn(torch.ger, (0,), (4,)).shape)
self.assertEqual((0, 0), fn(torch.addr, (0, 0), (0,), (0,)).shape)
self.assertEqual((5, 0), fn(torch.addr, (5, 0), (5,), (0,)).shape)
self.assertEqual((0, 4), fn(torch.addr, (0, 4), (0,), (4,)).shape)
# bmm, baddbmm
self.assertEqual((0, 0, 0), fn(torch.bmm, (0, 0, 0), (0, 0, 0)).shape)
self.assertEqual((3, 0, 5), fn(torch.bmm, (3, 0, 0), (3, 0, 5)).shape)
self.assertEqual((0, 5, 6), fn(torch.bmm, (0, 5, 0), (0, 0, 6)).shape)
self.assertEqual(torch.zeros((3, 5, 6), device=device), fn(torch.bmm, (3, 5, 0), (3, 0, 6)))
self.assertEqual((0, 0, 0), fn(torch.baddbmm, (0, 0, 0), (0, 0, 0), (0, 0, 0)).shape)
self.assertEqual((3, 0, 5), fn(torch.baddbmm, (3, 0, 5), (3, 0, 0), (3, 0, 5)).shape)
self.assertEqual((0, 5, 6), fn(torch.baddbmm, (0, 5, 6), (0, 5, 0), (0, 0, 6)).shape)
self.assertEqual((3, 5, 6), fn(torch.baddbmm, (3, 5, 6), (3, 5, 0), (3, 0, 6)).shape)
# addbmm
self.assertEqual((0, 0), fn(torch.addbmm, (0, 0), (0, 0, 0), (0, 0, 0)).shape)
self.assertEqual((0, 5), fn(torch.addbmm, (0, 5), (3, 0, 0), (3, 0, 5)).shape)
self.assertEqual((5, 6), fn(torch.addbmm, (5, 6), (0, 5, 0), (0, 0, 6)).shape)
# matmul
self.assertEqual(torch.tensor(0., device=device), fn(torch.matmul, (0,), (0,)))
self.assertEqual((0, 0), fn(torch.matmul, (0, 0), (0, 0)).shape)
self.assertEqual((0, 0, 0), fn(torch.matmul, (0, 0, 0), (0, 0, 0)).shape)
self.assertEqual((5, 0, 0), fn(torch.matmul, (5, 0, 0), (5, 0, 0)).shape)
self.assertEqual(torch.zeros((5, 3, 4), device=device), fn(torch.matmul, (5, 3, 0), (5, 0, 4)))
# dot
self.assertEqual(torch.tensor(0., device=device), fn(torch.dot, (0,), (0,)))
if torch._C.has_lapack:
# lu
A_LU, pivots = fn(torch.lu, (0, 5, 5))
self.assertEqual([(0, 5, 5), (0, 5)], [A_LU.shape, pivots.shape])
A_LU, pivots = fn(torch.lu, (0, 0, 0))
self.assertEqual([(0, 0, 0), (0, 0)], [A_LU.shape, pivots.shape])
A_LU, pivots = fn(torch.lu, (2, 0, 0))
self.assertEqual([(2, 0, 0), (2, 0)], [A_LU.shape, pivots.shape])
@skipCUDAIfRocm
def test_blas_alpha_beta_empty(self, device):
# ensure beta is respected
value = 11
input = torch.full((2,), value, device=device)
mat = torch.ones((2, 0), device=device)
vec = torch.ones((0,), device=device)
out = torch.randn((2,), device=device)
alpha = 6
beta = 3
self.assertEqual(torch.full((2,), beta * value, device=device),
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta))
self.assertEqual(torch.full((2,), beta * value, device=device),
torch.addmv(input=input, mat=mat, vec=vec, alpha=alpha, beta=beta, out=out))
# torch.addmm
input = torch.full((2, 3), value, device=device)
mat2 = torch.ones((0, 3), device=device)
out = torch.randn((2, 3), device=device)
self.assertEqual(torch.full((2, 3), beta * value, device=device),
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta))
self.assertEqual(torch.full((2, 3), beta * value, device=device),
torch.addmm(input=input, mat1=mat, mat2=mat2, alpha=alpha, beta=beta, out=out))
@skipCUDAIfRocm
def test_unique_dim(self, device):
self.assertFalse(hasattr(torch, 'unique_dim'))
def run_test(device, dtype):
x = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
expected_unique_dim0 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim0 = torch.tensor([0, 0])
expected_counts_dim0 = torch.tensor([2])
expected_unique_dim1 = torch.tensor([[[0., 1.],
[1., 1.],
[2., 1.]],
[[0., 1.],
[1., 1.],
[2., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
expected_counts_dim1 = torch.tensor([2, 1, 1])
expected_unique_dim2 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim2 = torch.tensor([0, 1])
expected_counts_dim2 = torch.tensor([1, 1])
expected_unique_empty = torch.tensor([], dtype=dtype, device=device)
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
# dim0
x_unique = torch.unique(x, dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_counts_dim0, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
self.assertEqual(expected_counts_dim0, x_counts)
# dim1
x_unique = torch.unique(x, dim=1)
self.assertEqual(expected_unique_dim1, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=1)
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_counts_dim1, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
self.assertEqual(expected_counts_dim1, x_counts)
# dim2
x_unique = torch.unique(x, dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_counts_dim2, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
self.assertEqual(expected_counts_dim2, x_counts)
# test empty tensor
x_unique, x_inverse, x_counts = torch.unique(
x_empty,
return_inverse=True,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_empty, x_unique)
self.assertEqual(expected_inverse_empty, x_inverse)
self.assertEqual(expected_counts_empty, x_counts)
# test not a well formed tensor
# Checking for runtime error, as this is the expected behaviour
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty,
return_inverse=True,
return_counts=True,
dim=1)
# test along dim2
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty_another,
return_inverse=True,
return_counts=True,
dim=2)
# test consecutive version
y = torch.tensor(
[[0, 1],
[0, 1],
[0, 1],
[1, 2],
[1, 2],
[3, 4],
[0, 1],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_unique = torch.tensor(
[[0, 1],
[1, 2],
[3, 4],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=dtype, device=device)
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=dtype, device=device)
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
self.assertEqual(expected_y_inverse, y_inverse)
self.assertEqual(expected_y_counts, y_counts)
run_test(device, torch.float)
run_test(device, torch.double)
run_test(device, torch.long)
run_test(device, torch.uint8)
@deviceCountAtLeast(2)
@onlyCUDA
def test_reverse_binary_ops_multiple_device(self, devices):
self.assertEqual(2 + torch.tensor(3), 2 + torch.tensor(3).to(devices[1])) # __radd__
self.assertEqual(2 - torch.tensor(3), 2 - torch.tensor(3).to(devices[1])) # __rsub__
self.assertEqual(2 * torch.tensor(3), 2 * torch.tensor(3).to(devices[1])) # __rmul__
self.assertEqual(2 / torch.tensor(3), 2 / torch.tensor(3).to(devices[1])) # __rtruediv__
self.assertEqual(2 // torch.tensor(3), 2 // torch.tensor(3).to(devices[1])) # __rfloordiv__
self.assertEqual(
torch.tensor(2).to(devices[1]) + torch.tensor(3).to(devices[0]),
torch.tensor(2) + torch.tensor(3))
self.assertEqual(
torch.tensor(2).to(devices[1]) - torch.tensor(3).to(devices[0]),
torch.tensor(2) - torch.tensor(3))
self.assertEqual(
torch.tensor(2).to(devices[1]) * torch.tensor(3).to(devices[0]),
torch.tensor(2) * torch.tensor(3))
self.assertEqual(
torch.tensor(2).to(devices[1]) / torch.tensor(3).to(devices[0]),
torch.tensor(2) / torch.tensor(3))
self.assertEqual(
torch.tensor(2).to(devices[1]) // torch.tensor(3).to(devices[0]),
torch.tensor(2) // torch.tensor(3))
@onlyCUDA
def test_ceil_out_mismatch(self, device):
a = torch.randn(1)
b = torch.randn(1, device=device)
self.assertRaises(RuntimeError, lambda: torch.ceil(a, out=b))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_has_storage_numpy(self, device):
for dtype in [np.float32, np.float64, np.int64,
np.int32, np.int16, np.uint8]:
arr = np.array([1], dtype=dtype)
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage())
def test_all_any_empty(self, device):
x = torch.ByteTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
x = torch.BoolTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
@onlyCUDA
def test_multinomial_device_constrain(self, device):
x = torch.empty(0, device="cpu")
y = torch.empty(0, device=device)
self.assertRaisesRegex(
RuntimeError, "multinomial arguments must have the same device",
lambda: torch.multinomial(x, 2, out=y))
@deviceCountAtLeast(2)
@onlyCUDA
def test_multinomial_gpu_device_constrain(self, devices):
x = torch.empty(0, device=devices[0])
y = torch.empty(0, device=devices[1])
self.assertRaisesRegex(
RuntimeError, "multinomial arguments must have the same device",
lambda: torch.multinomial(x, 2, out=y))
@deviceCountAtLeast(2)
@onlyCUDA
def test_device_guard(self, devices):
# verify that all operators with `device_guard: False` behave properly with multiple devices.
# TODO: if we had operator introspection we could figure out this set of operators automatically...
x = torch.randn((1, 2, 3), device=devices[1])
y = torch.zeros((1, 3, 2), device=devices[1])
scalar = torch.tensor(5, device=devices[1])
# property ops
torch.cudnn_is_acceptable(x)
x.is_distributed()
x.is_floating_point()
x.is_complex()
x.is_same_size(y)
x.is_signed()
x.size(0)
x.stride(0)
x.numel()
x.is_set_to(y)
x.data_ptr()
scalar.is_nonzero()
# sparse property ops
y[0][1] = 5
y_sparse = y.to_sparse()
y_sparse.sparse_dim()
y_sparse._dimI()
y_sparse.dense_dim()
y_sparse._dimV()
y_sparse._nnz()
y_sparse.is_coalesced()
y_sparse._indices()
y_sparse._values()
y_sparse.indices()
y_sparse.values()
# in-place ops
def inplace():
return torch.randn((1, 2, 3), device=devices[1])
inplace().as_strided_(y.size(), y.stride())
inplace().resize_(y.size())
inplace().squeeze_()
inplace().squeeze_(0)
inplace().unsqueeze_(2)
inplace().transpose_(1, 2)
inplace().squeeze_().t_()
inplace().set_(x.storage())
inplace().set_(x.storage(), x.storage_offset(), x.size(), x.stride())
inplace().set_(x)
inplace().set_()
y_sparse._coalesced_(True)
# shape modification
x.as_strided(y.size(), y.stride())
x.expand((5, 2, 3))
x.expand_as(x)
x.sum_to_size((1,))
torch.broadcast_tensors(x , x)
x.reshape((1, 3, 2))
x.reshape_as(y)
x.squeeze()
x.squeeze(0)
x.squeeze().t()
x.transpose(1, 2)
x.unsqueeze(2)
x.view((1, 3, 2))
x.view_as(y)
# chunk, split, etc.
x.chunk(2, dim=1)
x.split(1, dim=2)
x.split_with_sizes([1, 2], dim=2)
x.unfold(dimension=2, size=1, step=1)
x.narrow(1, 1, 1)
x.select(1, 1)
torch.isnan(x)
torch.empty((1, 3, 2), out=y)
torch.empty_like(x)
torch.empty_like(x, dtype=torch.int64)
# to
x.to(x)
x.to(y)
x.to(x, copy=True)
@onlyCUDA
def test_tensor_factory_gpu_type_inference(self, device):
saved_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
torch.set_default_dtype(torch.float32)
self.assertIs(torch.float32, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
torch.set_default_dtype(torch.float64)
self.assertIs(torch.float64, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
torch.set_default_tensor_type(saved_type)
@onlyCUDA
def test_tensor_factory_gpu_type(self, device):
saved_type = torch.Tensor().type()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float32, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float64, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(saved_type)
@onlyCPU
def test_renorm_ps(self, device):
# full reduction
x = torch.randn(5, 5)
xn = x.numpy()
for p in [1, 2, 3, 4, inf]:
res = x.renorm(p, 1, 1)
expected = x / x.norm(p, 0, keepdim=True).clamp(min=1)
self.assertEqual(res.numpy(), expected.numpy(), "renorm failed for {}-norm".format(p))
@onlyCUDA
def test_topk_noncontiguous_gpu(self, device):
t = torch.randn(20, device=device)[::2]
top1, idx1 = t.topk(5)
top2, idx2 = t.contiguous().topk(5)
self.assertEqual(top1, top2)
self.assertEqual(idx1, idx2)
def test_is_signed(self, device):
self.assertEqual(torch.IntTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.ByteTensor(5).to(device).is_signed(), False)
self.assertEqual(torch.CharTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.FloatTensor(5).to(device).is_signed(), True)
self.assertEqual(torch.HalfTensor(10).to(device).is_signed(), True)
# Note - reports a leak of 512 bytes on CUDA device 1
@deviceCountAtLeast(2)
@skipCUDAMemoryLeakCheckIf(True)
@onlyCUDA
def test_tensor_set_errors_multigpu(self, devices):
f_cuda0 = torch.randn((2, 3), dtype=torch.float32, device=devices[0])
f_cuda1 = torch.randn((2, 3), dtype=torch.float32, device=devices[1])
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1.storage()))
self.assertRaises(RuntimeError,
lambda: f_cuda0.set_(f_cuda1.storage(), 0, f_cuda1.size(), f_cuda1.stride()))
self.assertRaises(RuntimeError, lambda: f_cuda0.set_(f_cuda1))
@onlyCUDA
def test_half_tensor(self, device):
x = torch.randn(5, 5).half()
self.assertEqual(x.to(device), x)
xc = x.to(device)
with tempfile.NamedTemporaryFile() as f:
torch.save(xc, f)
f.seek(0)
xc2 = torch.load(f)
self.assertIsInstance(xc2, type(xc))
self.assertEqual(xc.float(), xc2.float())
@onlyCUDA
@deviceCountAtLeast(1) # Note: Tests works with one but prefers more devices
def test_serialization(self, devices):
def _test_serialization(filecontext_lambda):
t0 = torch.cuda.FloatTensor(5).fill_(1)
with torch.cuda.device(devices[-1]):
tn = torch.cuda.FloatTensor(3).fill_(2)
torch.cuda.set_device(devices[0])
b = (t0, tn)
with filecontext_lambda() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self.assertEqual(b, c, 0)
u0, un = c
self.assertEqual(str(u0.device), devices[0])
self.assertEqual(str(un.device), devices[-1])
_test_serialization(tempfile.NamedTemporaryFile)
_test_serialization(BytesIOContext)
def test_memory_format_preserved_after_permute(self, device):
x = torch.randn(10, 3, 32, 32, device=device)
nhwc = x.contiguous(memory_format=torch.channels_last)
y = nhwc.permute(0, 1, 3, 2).permute(0, 1, 3, 2)
self.assertTrue(y.is_contiguous(memory_format=torch.channels_last))
def test_memory_format_empty_like(self, device):
x = torch.randn(10, 3, 32, 32, device=device)
nhwc = x.contiguous(memory_format=torch.channels_last)
like = torch.empty_like(nhwc, memory_format=torch.preserve_format)
self.assertFalse(like.is_contiguous())
self.assertTrue(like.is_contiguous(memory_format=torch.channels_last))
like_x = torch.empty_like(x, memory_format=torch.preserve_format)
self.assertTrue(like_x.is_contiguous())
self.assertFalse(like_x.is_contiguous(memory_format=torch.channels_last))
like = torch.empty_like(x, memory_format=torch.channels_last)
self.assertFalse(like.is_contiguous())
self.assertTrue(like.is_contiguous(memory_format=torch.channels_last))
like = torch.empty_like(nhwc, memory_format=torch.contiguous_format)
self.assertTrue(like.is_contiguous())
self.assertFalse(like.is_contiguous(memory_format=torch.channels_last))
like = torch.empty_like(nhwc)
self.assertTrue(like.is_contiguous())
self.assertFalse(like.is_contiguous(memory_format=torch.channels_last))
sparse = x.to_sparse()
with self.assertRaises(RuntimeError):
z = torch.empty_like(sparse, memory_format=torch.preserve_format)
def test_unique(self, device):
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], device=device)
expected_unique = torch.tensor([1, 2, 3, 5, 8], device=device)
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
x_unique = torch.unique(x)
self.assertEqual(
expected_unique.tolist(), sorted(x_unique.tolist()))
x_unique, x_inverse = x.unique(return_inverse=True)
self.assertEqual(
expected_unique.tolist(), sorted(x_unique.tolist()))
self.assertEqual(expected_inverse.numel(), x_inverse.numel())
x_unique = x.unique(sorted=True)
self.assertEqual(expected_unique, x_unique)
x_unique, x_counts = torch.unique(x, sorted=True, return_counts=True)
self.assertEqual(expected_counts, x_counts)
x_unique, x_inverse = torch.unique(
x, sorted=True, return_inverse=True)
self.assertEqual(expected_unique, x_unique)
self.assertEqual(expected_inverse, x_inverse)
x_unique, x_inverse, x_counts = torch.unique(
x, sorted=True, return_inverse=True, return_counts=True)
self.assertEqual(expected_unique, x_unique)
self.assertEqual(expected_inverse, x_inverse)
self.assertEqual(expected_counts, x_counts)
# Tests per-element unique on a higher rank tensor.
y = x.view(2, 2, 2)
y_unique, y_inverse = y.unique(sorted=True, return_inverse=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(y.size()), y_inverse)
y_unique, y_inverse, y_counts = torch.unique(
y, sorted=True, return_inverse=True, return_counts=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(y.size()), y_inverse)
self.assertEqual(expected_counts, y_counts)
# Tests unique on other types.
int_unique, int_inverse, int_counts = torch.unique(
torch.tensor([2, 1, 2], dtype=torch.int, device=device),
sorted=True,
return_inverse=True,
return_counts=True
)
self.assertEqual(torch.tensor([1, 2], dtype=torch.int, device=device), int_unique)
self.assertEqual(torch.tensor([1, 0, 1], dtype=torch.long, device=device), int_inverse)
self.assertEqual(torch.tensor([1, 2], dtype=torch.long, device=device), int_counts)
double_unique, double_inverse, double_counts = torch.unique(
torch.tensor([2., 1.5, 2.1, 2.], dtype=torch.double, device=device),
sorted=True,
return_inverse=True,
return_counts=True
)
self.assertEqual(torch.tensor([1.5, 2., 2.1], dtype=torch.double, device=device), double_unique)
self.assertEqual(torch.tensor([1, 0, 2, 1], dtype=torch.long, device=device), double_inverse)
self.assertEqual(torch.tensor([1, 2, 1], dtype=torch.long, device=device), double_counts)
byte_unique, byte_inverse, byte_counts = torch.unique(
torch.tensor([133, 7, 7, 7, 42, 128], dtype=torch.uint8, device=device),
sorted=True,
return_inverse=True,
return_counts=True
)
self.assertEqual(torch.tensor([7, 42, 128, 133], dtype=torch.uint8, device=device), byte_unique)
self.assertEqual(torch.tensor([3, 0, 0, 0, 1, 2], dtype=torch.long, device=device), byte_inverse)
self.assertEqual(torch.tensor([3, 1, 1, 1], dtype=torch.long, device=device), byte_counts)
# test consecutive version
z = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], device=device)
expected_z_unique = torch.tensor([1, 2, 5, 2, 3], device=device)
expected_z_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
expected_z_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
z_unique = torch.unique_consecutive(z)
self.assertEqual(z_unique, expected_z_unique)
z_unique, z_inverse = torch.unique_consecutive(z, return_inverse=True)
self.assertEqual(z_unique, expected_z_unique)
self.assertEqual(z_inverse, expected_z_inverse)
z_unique, z_counts = torch.unique_consecutive(z, return_counts=True)
self.assertEqual(z_unique, expected_z_unique)
self.assertEqual(z_counts, expected_z_counts)
z_unique, z_inverse, z_counts = torch.unique_consecutive(z, return_inverse=True, return_counts=True)
self.assertEqual(z_unique, expected_z_unique)
self.assertEqual(z_inverse, expected_z_inverse)
self.assertEqual(z_counts, expected_z_counts)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_erfinv(self, device, dtype):
# general testing. Narrow the range to avoid accuracy issues
input_values = torch.randn(4, 4, dtype=dtype, device=device).clamp(-0.3, 0.3)
self.assertEqual(input_values.erf().erfinv(), input_values)
# test inf
self.assertTrue(torch.equal(torch.tensor([-1, 1], dtype=dtype, device=device).erfinv(),
torch.tensor([-inf, inf], dtype=dtype, device=device)))
# test nan
self.assertEqual(torch.tensor([-2, 2], dtype=dtype, device=device).erfinv(),
torch.tensor([nan, nan], dtype=dtype, device=device))
if dtype == torch.double:
# double precision
a = torch.tensor([0.5, 0.8], dtype=torch.double, device=device).erfinv()
self.assertAlmostEqual(a[0].item(), 0.47693627620447, places=13)
self.assertAlmostEqual(a[1].item(), 0.90619380243682, places=13)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_ctor_with_numpy_array(self, device):
correct_dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.int8,
np.uint8,
np.bool,
]
incorrect_byteorder = '>' if sys.byteorder == 'little' else '<'
incorrect_dtypes = map(lambda t: incorrect_byteorder + t, ['d', 'f'])
for dtype in correct_dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
# Upcast
tensor = torch.DoubleTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
# Downcast (sometimes)
tensor = torch.FloatTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.HalfTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
def test_dlpack_conversion(self, device):
x = torch.randn(1, 2, 3, 4, device=device, dtype=torch.float)
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@onlyCUDA
def test_pin_memory_from_constructor(self, device):
def _get_like(t, **kwargs):
return [
torch.rand_like(t, **kwargs),
torch.randn_like(t, **kwargs),
torch.empty_like(t, **kwargs),
torch.full_like(t, 4, **kwargs),
torch.zeros_like(t, **kwargs),
torch.ones_like(t, **kwargs),
]
def _get_tensors(**kwargs):
return [
torch.tensor([10, 11], **kwargs),
torch.randn(3, 5, **kwargs),
torch.rand(3, **kwargs),
# torch.randint(3, 5, **kwargs), // unsupported
torch.zeros(3, **kwargs),
torch.randperm(3, **kwargs),
torch.empty(6, **kwargs),
torch.ones(6, **kwargs),
torch.eye(6, **kwargs),
torch.arange(3, 5, **kwargs)]
pinned_tensors = _get_tensors(pin_memory=True) + _get_like(torch.empty(5, dtype=torch.float64), pin_memory=True)
for x in pinned_tensors:
self.assertTrue(x.is_pinned())
tensors = _get_tensors() + _get_like(torch.empty(5, dtype=torch.float64, pin_memory=True))
for x in tensors:
self.assertFalse(x.is_pinned())
def test_storage_device(self, device):
x = torch.tensor([], device=device)
self.assertEqual(x.dtype, x.storage().dtype)
@deviceCountAtLeast(2)
@onlyCUDA
def test_storage_multigpu(self, devices):
for device in devices:
x = torch.tensor([], device=device)
self.assertEqual(x.dtype, x.storage().dtype)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
def test_lu(self, device):
from common_utils import random_fullrank_matrix_distinct_singular_value as fullrank
def run_test(device, pivot):
def run_subtest(matrix_size, batches, device, pivot):
a = fullrank(matrix_size, *batches).to(device)
a_LU_info, pivots_info, info_ = a.lu(pivot=pivot, get_infos=True)
self.assertEqual(a_LU_info.size(), torch.Size(batches + (matrix_size, matrix_size)))
self.assertEqual(pivots_info.size(), torch.Size(batches + (matrix_size,)))
self.assertEqual(info_.size(), torch.Size(batches))
self.assertEqual(info_.abs().sum(), 0)
a_LU, pivots = a.lu(pivot=pivot)
self.assertEqual(a_LU, a_LU_info)
self.assertEqual(pivots_info, pivots)
if self.device_type == 'cuda':
a_LU_info_nopiv, nopiv, info_nopiv = a.lu(pivot=False, get_infos=True)
self.assertEqual(nopiv, torch.arange(1, 1 + a.size(-1), device=device, dtype=torch.int32).expand(a.shape[:-1]))
self.assertEqual(info_, info_nopiv)
P, L, U = torch.lu_unpack(a_LU, pivots)
self.assertEqual(P.matmul(L.matmul(U)), a)
for ms, batch in product([3, 5, 7], [(), (2,), (3,), (3, 5)]):
run_subtest(ms, batch, device, pivot)
# Info should be positive for rank deficient matrices
a = torch.ones(5, 3, 3, device=device)
self.assertGreater(a.lu(pivot=pivot, get_infos=True)[2][0], 0)
run_test(device, True)
if self.device_type == 'cpu':
# Error checking, no pivoting variant on CPU
with self.assertRaisesRegex(RuntimeError, 'lu without pivoting is not implemented on the CPU'):
torch.lu(torch.empty(1, 2, 2), pivot=False)
else:
run_test(device, False)
@skipCPUIfNoLapack
@skipCUDAIfNoMagma
@dtypes(torch.double)
def test_lu_unpack(self, device, dtype):
def run_test(pivot):
for shape in ((3, 3), (5, 3, 3), (7, 3, 5, 5), (7, 5, 3, 3, 3)):
a = torch.randn(*shape, dtype=dtype, device=device)
a_lu, p = torch.lu(a, pivot=pivot)
p_ref, l_ref, u_ref = torch.lu_unpack(a_lu, p)
self.assertEqual(p_ref.matmul(l_ref.matmul(u_ref)), a)
run_test(True)
if self.device_type == 'cuda':
run_test(False)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_max_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.max(a, dim=1)[0] == inf).item())
self.assertTrue(torch.max(a).item() == inf)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_min_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.min(a, dim=1)[0] == (-inf)).item())
self.assertTrue(torch.min(a).item() == -inf)
def test_bincount(self, device):
# negative input throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([1, -1], device=device))
# n-d input, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
# floating input type throws
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
torch.bincount(torch.tensor([1., 0.3], device=device))
# minlength < 0 throws
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
torch.bincount(torch.tensor([1, 3], device=device),
torch.tensor([.2, .2], device=device),
minlength=-1)
# input and weights dim mismatch
with self.assertRaisesRegex(RuntimeError, 'same length'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([1., 0.3, 0.5], device=device))
# 1-d input with no elements and default minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
torch.zeros(0, dtype=torch.long, device=device))
# 1-d input with no elements and specified minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
torch.zeros(10, dtype=torch.long, device=device))
# test tensor method without weights
long_counts = torch.tensor(
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
self.assertEqual(
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
long_counts)
# test minlength functionality
int_counts = torch.bincount(
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
self.assertEqual(
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
int_counts)
# test weights
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([.1, .2, .3, .4, .5], device=device))
self.assertEqual(
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
self.assertEqual(
torch.tensor([1, 9, 0, 0, 5], device=device), byte_counts)
# test non-contiguous inputs and weights
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
for i in [0, 1]:
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
# inputs are non-contiguous but weights are contiguous
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
# inputs and weights are non-contiguous
self.assertEqual(inputs[:, 1].bincount(weights[:, 1]), torch.tensor([1, 9, 0, 0, 5]))
# weights are non-contiguous but inputs are contiguous
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5]))
# test bincount on non-contiguous slices
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
# test large number of bins - global memory use
big_exp = torch.zeros(10000000, device=device)
big_exp[-1] = 50.0
big_w = torch.tensor([.5] * 100, device=device)
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
self.assertEqual(big_exp, big_out)
# test large input size
big_exp = torch.zeros(2, device=device)
big_exp[1] = 1000000
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
self.assertEqual(big_exp, big_out)
@dtypes(torch.float)
def test_multinomial(self, device, dtype):
def make_prob_dist(shape, is_contiguous):
if is_contiguous:
return torch.zeros(shape, device=device, dtype=dtype).uniform_()
elif len(shape) == 1:
return torch.zeros((shape + [5]), device=device, dtype=dtype).uniform_()[:, 2]
else:
# num dim = 2
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
prob_dist = torch.zeros(new_shape, device=device, dtype=dtype).uniform_()
prob_dist = prob_dist.transpose(1, 4)
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
assert not prob_dist.is_contiguous() # sanity check
return prob_dist
for is_contiguous in (True, False):
# with replacement
n_row = 3
for n_col in range(4, 5 + 1):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = n_col * 3
sample_indices = torch.multinomial(prob_dist, n_sample, True)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
zero_prob_idx = zero_prob_indices[i]
if zero_prob_idx < 0:
continue
for j in range(n_sample):
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
"sampled an index with zero probability")
# without replacement
n_row = 3
for n_col in range(2, 10 + 1, 2):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = max(1, n_col - 2)
sample_indices = torch.multinomial(prob_dist, n_sample, False)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
row_samples = {}
zero_prob_idx = zero_prob_indices[i]
for j in range(n_sample):
sample_idx = sample_indices[i, j]
if zero_prob_idx >= 0:
self.assertNotEqual(sample_idx, zero_prob_idx,
"sampled an index with zero probability")
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
row_samples[sample_idx] = True
# vector
n_col = 4
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
zero_prob_idx = 1 # index that shouldn't be sampled
prob_dist[zero_prob_idx] = 0
n_sample = 20
sample_indices = torch.multinomial(prob_dist, n_sample, True)
for sample_index in sample_indices:
self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability")
s_dim = sample_indices.dim()
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
def test_var_unbiased(self, device):
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.FloatTensor([1.0, 2.0]).to(device)
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self, device):
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_mul_intertype_scalar(self, device, dtype):
x = torch.tensor(1.5, dtype=dtype, device=device)
y = torch.tensor(3, dtype=torch.int32, device=device)
self.assertEqual(x * y, 4.5)
self.assertEqual(y * x, 4.5)
with self.assertRaisesRegex(RuntimeError, "can't be cast to the desired output type"):
y *= x
x *= y
self.assertEqual(x, 4.5)
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink(self, device, dtype):
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
self.assertEqual(torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.3))
self.assertEqual(torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
data.hardshrink(0.5))
# test default lambd=0.5
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
# test non-contiguous case
self.assertEqual(torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
data.t().hardshrink(0.3))
@onlyCPU
@dtypes(torch.float, torch.double)
def test_hardshrink_edge_cases(self, device, dtype):
def h(values, l_expected):
for l, expected in l_expected.items():
values_tensor = torch.tensor([float(v) for v in values],
dtype=dtype, device=device)
expected_tensor = torch.tensor([float(v) for v in expected],
dtype=dtype, device=device)
self.assertEqual(expected_tensor == values_tensor.hardshrink(l),
torch.ones_like(values_tensor))
def test_helper(min, max):
h([0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
{0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]})
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
@onlyCPU
@slowTest
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
@dtypes(torch.double)
def test_einsum(self, device, dtype):
# test cases taken from https://gist.github.com/rockt/15ee013889d65342088e9260a377dc8f
x = torch.randn(5, dtype=dtype, device=device)
y = torch.randn(7, dtype=dtype, device=device)
A = torch.randn(3, 5, dtype=dtype, device=device)
B = torch.randn(2, 5, dtype=dtype, device=device)
C = torch.randn(2, 3, 5, dtype=dtype, device=device)
D = torch.randn(2, 5, 7, dtype=dtype, device=device)
E = torch.randn(7, 9, dtype=dtype, device=device)
F = torch.randn(2, 3, 5, 7, dtype=dtype, device=device)
G = torch.randn(7, 11, 13, dtype=dtype, device=device)
H = torch.randn(4, 4, dtype=dtype, device=device)
I = torch.randn(3, 4, 4, dtype=dtype, device=device)
l = torch.randn(5, 10, dtype=dtype, device=device)
r = torch.randn(5, 20, dtype=dtype, device=device)
w = torch.randn(30, 10, 20, dtype=dtype, device=device)
test_list = [
# -- Vector
("i->", x), # sum
("i,i->", x, x), # dot
("i,i->i", x, x), # vector element-wise mul
("i,j->ij", x, y), # outer
# -- Matrix
("ij->ji", A), # transpose
("ij->j", A), # row sum
("ij->i", A), # col sum
("ij,ij->ij", A, A), # matrix element-wise mul
("ij,j->i", A, x), # matrix vector multiplication
("ij,kj->ik", A, B), # matmul
("ij,ab->ijab", A, E), # matrix outer product
# -- Tensor
("aij,ajk->aik", C, D), # batch matmul
("ijk,jk->i", C, A), # tensor matrix contraction
("aij,jk->aik", D, E), # tensor matrix contraction
("abcd,dfg->abcfg", F, G), # tensor tensor contraction
("ijk,jk->ik", C, A), # tensor matrix contraction with double indices
("ijk,jk->ij", C, A), # tensor matrix contraction with double indices
("ijk,ik->j", C, B), # non contiguous
("ijk,ik->jk", C, B), # non contiguous with double indices
# -- Diagonal
("ii", H), # trace
("ii->i", H), # diagonal
# -- Ellipsis
("i...->...", H),
("ki,...k->i...", A.t(), B),
("k...,jk", A.t(), B),
("...ii->...i", I), # batch diagonal
# -- Other
("bn,anm,bm->ba", l, w, r), # as torch.bilinear
("... ii->...i ", I), # batch diagonal with spaces
]
for test in test_list:
actual = torch.einsum(test[0], test[1:])
expected = np.einsum(test[0], *[t.numpy() for t in test[1:]])
self.assertEqual(expected.shape, actual.shape, test[0])
self.assertTrue(np.allclose(expected, actual.numpy()), test[0])
# test vararg
actual2 = torch.einsum(test[0], *test[1:])
self.assertEqual(expected.shape, actual2.shape, test[0])
self.assertTrue(np.allclose(expected, actual2.numpy()), test[0])
def do_einsum(*args):
return torch.einsum(test[0], args)
# FIXME: following test cases fail gradcheck
if test[0] not in {"i,i->", "i,i->i", "ij,ij->ij"}:
gradcheck_inps = tuple(t.detach().requires_grad_() for t in test[1:])
self.assertTrue(torch.autograd.gradcheck(do_einsum, gradcheck_inps))
self.assertTrue(A._version == 0) # check that we do not use inplace ops
@onlyCPU
@dtypes(torch.bool, torch.double)
def test_sum_all(self, device, dtype):
def check_sum_all(tensor):
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
if dtype != torch.bool:
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
else:
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn):
nhwc = input_generator_fn(device)
# nhwc is not memory dense, but looks like channels last
nhwc = nhwc[:, :, ::2, ::2]
clone = transformation_fn(nhwc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=torch.channels_last))
self.assertFalse(nhwc.is_contiguous())
self.assertFalse(nhwc.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(nhwc, clone)
nhwc = input_generator_fn(device)
clone = transformation_fn(nhwc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(nhwc, clone)
nhwc = input_generator_fn(device)
clone = transformation_fn(nhwc)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(nhwc, clone)
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
def test_memory_format_to(self, device):
def input_generator_fn(device):
return torch.randn((10, 3, 32, 32), device=device, dtype=torch.float32).contiguous(memory_format=torch.channels_last)
def transformation_fn(tensor, **kwargs):
return tensor.to(dtype=torch.float64, **kwargs)
self._test_memory_format_transformations(device, input_generator_fn, transformation_fn)
def test_memory_format_type(self, device):
def input_generator_fn(device):
return torch.randn((10, 3, 32, 32), device=device, dtype=torch.float32).contiguous(memory_format=torch.channels_last)
def transformation_fn(tensor, **kwargs):
return tensor.type(torch.float64, **kwargs)
self._test_memory_format_transformations(device, input_generator_fn, transformation_fn)
def test_memory_format_clone(self, device):
def input_generator_fn(device):
return torch.randn((10, 3, 32, 32), device=device, dtype=torch.float32).contiguous(memory_format=torch.channels_last)
def transformation_fn(tensor, **kwargs):
return tensor.clone(**kwargs)
self._test_memory_format_transformations(device, input_generator_fn, transformation_fn)
@onlyCPU
@dtypes(torch.double)
def test_sum_out(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.sum(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
res1 = x.sum(2).sum(1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, (2, 1), out=res2)
self.assertEqual(res1, res2)
@onlyCPU
@skipCPUIfNoLapack
@dtypes(torch.double)
def test_eig(self, device, dtype):
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
(-6.49, 3.80, 0.00, 0.00, 0.00),
(-0.47, -6.39, 4.17, 0.00, 0.00),
(-7.20, 1.50, -1.51, 5.70, 0.00),
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous().to(dtype=dtype, device=device)
e = torch.eig(a)[0]
ee, vv = torch.eig(a, True)
te = torch.tensor((), dtype=dtype, device=device)
tv = torch.tensor((), dtype=dtype, device=device)
eee, vvv = torch.eig(a, True, out=(te, tv))
self.assertEqual(e, ee, 1e-12)
self.assertEqual(ee, eee, 1e-12)
self.assertEqual(ee, te, 1e-12)
self.assertEqual(vv, vvv, 1e-12)
self.assertEqual(vv, tv, 1e-12)
# test reuse
X = torch.randn(4, 4, dtype=dtype, device=device)
X = torch.mm(X.t(), X)
e = torch.zeros(4, 2, dtype=dtype, device=device)
v = torch.zeros(4, 4, dtype=dtype, device=device)
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
# test non-contiguous
X = torch.randn(4, 4, dtype=dtype, device=device)
X = torch.mm(X.t(), X)
e = torch.zeros(4, 2, 2, dtype=dtype, device=device)[:, 1]
v = torch.zeros(4, 2, 4, dtype=dtype, device=device)[:, 1]
self.assertFalse(v.is_contiguous(), 'V is contiguous')
self.assertFalse(e.is_contiguous(), 'E is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
@onlyCPU
@dtypes(torch.bfloat16, torch.float, torch.double)
def test_ger(self, device, dtype):
def run_test(v0, v1):
res0 = torch.ger(v0, v1)
res1 = torch.zeros(100, 100, dtype=dtype, device=device)
for i in range(100):
for j in range(100):
res1[i, j] = v0[i] * v1[j]
self.assertEqual(res0, res1)
v0 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
run_test(v0, v1)
# Tests 0-strided
v0 = torch.randn(1, dtype=torch.float, device=device).expand(100).to(dtype=dtype)
v1 = torch.randn(100, dtype=torch.float, device=device).to(dtype=dtype)
run_test(v0, v1)
@onlyCPU
@dtypes(torch.bfloat16, torch.float, torch.double)
def test_addr(self, device, dtype):
def run_test(m, v1, v2, m_transform=lambda x: x):
m = m_transform(m.clone())
ref = m.clone()
torch.addr(m, v1, v2, out=m)
for i in range(m.size(0)):
for j in range(m.size(1)):
ref[i, j] += v1[i] * v2[j]
self.assertEqual(m, ref)
for h, w in [(100, 110), (1, 20), (200, 2)]:
m = torch.randn(h, w, dtype=torch.float, device=device).to(dtype=dtype)
v1 = torch.randn(h, dtype=torch.float, device=device).to(dtype=dtype)
v2 = torch.randn(w, dtype=torch.float, device=device).to(dtype=dtype)
run_test(m, v1, v2)
# test transpose
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
# test 0 strided
v1 = torch.randn(1, dtype=torch.float, device=device).expand(h).to(dtype=dtype)
run_test(m, v1, v2)
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
@onlyCPU
@precisionOverride({torch.bfloat16: 1e-0, torch.float: 1e-4, torch.double: 1e-8})
@dtypes(torch.bfloat16, torch.float, torch.double)
def test_addmv(self, device, dtype):
t = torch.randn(10, device=device).to(dtype)
m = torch.randn(10, 100, device=device).to(dtype)
v = torch.randn(100, device=device).to(dtype)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10, dtype=dtype, device=device)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
# Test 0-strided
t = torch.randn(1, device=device).to(dtype).expand(10)
m = torch.randn(10, 1, device=device).to(dtype).expand(10, 100)
v = torch.randn(100, device=device).to(dtype)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10, dtype=dtype, device=device)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
@onlyCPU
def test_addmm(self, device):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
'torch.BFloat16Tensor': 1e-1,
}
for tname, prec in types.items():
M = torch.randn(10, 25, device=device).type(tname)
m1 = torch.randn(10, 50, device=device).type(tname)
m2 = torch.randn(50, 25, device=device).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25, device=device).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2, prec)
# Test 0-strided
for tname, prec in types.items():
M = torch.randn(10, 1, device=device).type(tname).expand(10, 25)
m1 = torch.randn(10, 1, device=device).type(tname).expand(10, 50)
m2 = torch.randn(50, 25, device=device).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25, device=device).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2, prec)
@onlyCPU
@dtypes(torch.float, torch.double)
def test_dot(self, device, dtype):
v1 = torch.randn(100, dtype=dtype, device=device)
v2 = torch.randn(100, dtype=dtype, device=device)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
out = torch.randn((), dtype=dtype, device=device)
torch.dot(v1, v2, out=out)
self.assertEqual(res1, out)
# Test 0-strided
v1 = torch.randn(1, dtype=dtype, device=device).expand(100)
v2 = torch.randn(100, dtype=dtype, device=device)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
out = torch.randn((), dtype=dtype, device=device)
torch.dot(v1, v2, out=out)
self.assertEqual(res1, out)
@onlyCPU
@slowTest
@dtypes(torch.float)
def test_exp_slow(self, device, dtype):
# Test for https://github.com/pytorch/pytorch/issues/17271
# This is pretty slow on my Macbook but it only takes a few
# seconds on a beefy Xeon server
a = torch.exp(torch.ones(2 ** 31, dtype=dtype, device=device))
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
self.assertEqual(a, b.expand(2 ** 31))
@onlyCPU
@dtypes(torch.float, torch.double)
def test_sigmoid(self, device, dtype):
# TODO: why not simulate math.sigmoid like with rsqrt?
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
precision_4dps = 0.0002
self.assertEqual(torch.tensor(inputValues, dtype=dtype, device=device).sigmoid(),
torch.tensor(expectedOutput, dtype=dtype, device=device), precision_4dps)
@onlyCPU
@dtypes(torch.float)
def test_diag_embed(self, device, dtype):
x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4)
result = torch.diag_embed(x)
expected = torch.stack([torch.diag(r) for r in x], 0)
self.assertEqual(result, expected)
result = torch.diag_embed(x, offset=1, dim1=0, dim2=2)
expected = torch.stack([torch.diag(r, 1) for r in x], 1)
self.assertEqual(result, expected)
@onlyCPU
@dtypes(*torch.testing.get_all_dtypes())
def test_sub(self, device, dtype):
m1 = torch.tensor([2.34, 4.44], dtype=dtype, device=device)
m2 = torch.tensor([1.23, 2.33], dtype=dtype, device=device)
if (dtype == torch.half or dtype == torch.bool):
self.assertRaises(RuntimeError, lambda: m1 - m2)
elif (dtype == torch.bfloat16):
# bfloat16 has a lower precision so we have to have a separate check for it
self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype), 0.01)
else:
self.assertEqual(m1 - m2, torch.tensor([1.11, 2.11], dtype=dtype))
@onlyCPU
@dtypes(torch.float)
def test_csub(self, device, dtype):
# with a tensor
a = torch.randn(100, 90, dtype=dtype, device=device)
b = a.clone().normal_()
res_add = torch.add(a, -1, b)
res_csub = a.clone()
res_csub.sub_(b)
self.assertEqual(res_add, res_csub)
# with a scalar
a = torch.randn(100, 100, dtype=dtype, device=device)
scalar = 123.5
res_add = torch.add(a, -scalar)
res_csub = a.clone()
res_csub.sub_(scalar)
self.assertEqual(res_add, res_csub)
@onlyCPU
@dtypes(*torch.testing.get_all_math_dtypes('cpu'))
def test_threshold(self, device, dtype):
if dtype != torch.uint8 and dtype != torch.float16:
# 100 is wide enough to use AVX2 instructions for all types
x = torch.randn(100, dtype=torch.float, device=device).sign().to(dtype=dtype)
y = torch.threshold(x, 0, 0)
self.assertTrue(y.le(0).any())
@onlyCPU
@dtypes(torch.float, torch.double)
def test_reciprocal(self, device, dtype):
a = torch.randn(100, 89, device=device, dtype=dtype)
res_div = 1 / a
res_reciprocal = a.clone()
res_reciprocal.reciprocal_()
self.assertEqual(res_reciprocal, res_div)
@onlyCPU
@dtypes(torch.bfloat16, torch.float)
def test_div(self, device, dtype):
m1 = torch.randn(10, 10, dtype=torch.float, device=device).to(dtype=dtype)
res1 = m1.clone()
res1[:, 3].div_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] / 2
self.assertEqual(res1, res2)
if dtype == torch.bfloat16:
a1 = torch.tensor([4.2, 6.2], dtype=dtype, device=device)
a2 = torch.tensor([2., 2.], dtype=dtype, device=device)
self.assertEqual(a1 / a2,
torch.tensor([2.1, 3.1], dtype=dtype, device=device),
0.01)
self.assertEqual(a1.div(a2), a1 / a2)
@onlyCPU
@dtypes(*torch.testing.get_all_math_dtypes('cpu'))
def test_floordiv(self, device, dtype):
if dtype is torch.float16:
return
x = torch.randn(100, device=device).mul(10).to(dtype)
y = x // 3
self.assertEqual(y.dtype, x.dtype)
z = torch.tensor([math.trunc(v.item() / 3.) for v in x], dtype=y.dtype, device=device)
self.assertEqual(y, z)
@onlyCPU
@dtypes(*torch.testing.get_all_math_dtypes('cpu'))
def test_rdiv(self, device, dtype):
if dtype is torch.float16:
return
x = torch.rand(100, device=device).add(1).mul(4).to(dtype)
y = 30 / x
if dtype.is_floating_point:
z = torch.tensor([30 / v.item() for v in x], dtype=dtype, device=device)
else:
z = torch.tensor([math.trunc(30. / v.item()) for v in x], dtype=dtype, device=device)
self.assertEqual(y, z)
@onlyCPU
@dtypes(torch.float)
def test_fmod(self, device, dtype):
m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device)
res1 = m1.clone()
q = 2.1
res1[:, 3].fmod_(q)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[i, 3] = math.fmod(res2[i, 3], q)
self.assertEqual(res1, res2)
@onlyCPU
@dtypes(torch.float, torch.long)
def test_remainder(self, device, dtype):
for use_item in [True, False]:
if dtype == torch.float:
m1 = torch.Tensor(10, 10).uniform_(-10., 10.).to(dtype=dtype, device=device)
res1 = m1.clone()
res2 = m1.clone()
qs = torch.arange(-5.1, 4.1, dtype=dtype, device=device)
# Check the case where the divisor is a simple float
for col_idx, q in enumerate(qs):
# Reference
for i in range(m1.size(0)):
res2[i, col_idx] = res2[i, col_idx] % q
# To test
res1[:, col_idx].remainder_(q if not use_item else q.item())
self.assertEqual(res1, res2)
# Check the case where the divisor is a tensor
res1 = m1.clone()
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
self.assertEqual(res1, res2)
elif dtype == torch.long:
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
long_res1 = long_m1.clone()
long_res2 = long_m1.clone()
long_qs = torch.arange(-5, 5, dtype=dtype, device=device)
long_qs[5] = 5 # Can't handle the divisor=0 case
for col_idx, long_q in enumerate(long_qs):
# Reference
for i in range(long_m1.size(0)):
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
# To test
long_res1[:, col_idx].remainder_(long_q if not use_item else long_q.item())
self.assertEqual(long_res1, long_res2)
# Divisor is a tensor case
long_res1 = long_m1.clone()
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
@onlyCPU
def test_mm(self, device):
def _test_mm(n, m, p, dtype, genf):
# helper function
def matrixmultiply(mat1, mat2):
n = mat1.size(0)
m = mat1.size(1)
p = mat2.size(1)
res = torch.zeros(n, p, dtype=dtype, device=device)
for i, j in iter_indices(res):
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
return res
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 1
mat1 = genf(n, m)
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 2
mat1 = genf(m, n).t()
mat2 = genf(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# test with zero stride
mat1 = genf(n, m)
mat2 = genf(m, 1).expand(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# contiguous case
mat1 = genf(n, m)
mat2 = genf(m, p)
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# explicitly exercise the _out variant in torch.mm().
# non contiguous case 3
mat1 = genf(m, n).t()
mat2 = genf(p, m).t()
res = genf(n, p)
torch.mm(mat1, mat2, out=res)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
for (n, m, p) in [(20, 10, 5), (15, 5, 10), (5, 18, 10)]:
_test_mm(n, m, p, torch.float32, lambda x, y: torch.randn(x, y, dtype=torch.float32, device=device))
_test_mm(n, m, p, torch.float64, lambda x, y: torch.randn(x, y, dtype=torch.float64, device=device))
_test_mm(n, m, p, torch.int32, lambda x, y: torch.randint(0, 100, (x, y), dtype=torch.int32, device=device))
_test_mm(n, m, p, torch.int64, lambda x, y: torch.randint(0, 100, (x, y), dtype=torch.int64, device=device))
_test_mm(n, m, p, torch.bfloat16, lambda x, y: torch.randn(x, y, dtype=torch.float32, device=device).bfloat16())
@onlyCPU
@dtypes(torch.float)
def test_bmm(self, device, dtype):
num_batches = 10
M, N, O = 23, 8, 12
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
res = torch.bmm(b1, b2)
for i in range(num_batches):
r = torch.mm(b1[i], b2[i])
self.assertEqual(r, res[i])
if torch.cuda.is_available():
# check that mixed arguments are rejected
self.assertRaises(RuntimeError, lambda: torch.bmm(b1, b2.cuda()))
self.assertRaises(RuntimeError, lambda: torch.bmm(b1.cuda(), b2))
@onlyCPU
@dtypes(torch.float)
def test_addbmm(self, device, dtype):
# num_batches = 10
# M, N, O = 12, 8, 5
num_batches = 2
M, N, O = 2, 3, 4
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
res = torch.bmm(b1, b2)
res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res[0]).zero_()
res2.addbmm_(b1, b2)
self.assertEqual(res2, res.sum(0, False))
res2.addbmm_(1, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2)
res2.addbmm_(1., .5, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2.5)
res3 = torch.addbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.addbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res.sum(0, False) * 3)
res5 = torch.addbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res.sum(0, False))
res6 = torch.addbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5))
@onlyCPU
@dtypes(torch.float)
def test_baddbmm(self, device, dtype):
num_batches = 10
M, N, O = 12, 8, 5
b1 = torch.randn(num_batches, M, N, dtype=dtype, device=device)
b2 = torch.randn(num_batches, N, O, dtype=dtype, device=device)
res = torch.bmm(b1, b2)
res2 = torch.tensor((), dtype=dtype, device=device).resize_as_(res).zero_()
res2.baddbmm_(b1, b2)
self.assertEqual(res2, res)
res2.baddbmm_(1, b1, b2)
self.assertEqual(res2, res * 2)
res2.baddbmm_(1, .5, b1, b2)
self.assertEqual(res2, res * 2.5)
res3 = torch.baddbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.baddbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res * 3)
res5 = torch.baddbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res)
res6 = torch.baddbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + res * .5)
def _test_cop(self, torchfn, mathfn, dtype, device):
def reference_implementation(res2):
for i, j in iter_indices(sm1):
idx1d = i * sm1.size(0) + j
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
return res2
# contiguous
m1 = torch.randn(10, 10, 10, dtype=dtype, device=device)
m2 = torch.randn(10, 10 * 10, dtype=dtype, device=device)
sm1 = m1[4]
sm2 = m2[4]
res1 = torchfn(sm1, sm2.view(10, 10))
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10, dtype=dtype, device=device)
m2 = torch.randn(10 * 10, 10 * 10, dtype=dtype, device=device)
sm1 = m1[:, 4]
sm2 = m2[:, 4]
# view as sm1.size()
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
res1 = torchfn(sm1, sm2)
# reference_implementation assumes 1-d sm2
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
@onlyCPU
@dtypes(torch.float)
def test_cdiv(self, device, dtype):
self._test_cop(torch.div, lambda x, y: x / y, dtype, device)
@onlyCPU
@dtypes(torch.float)
def test_cfmod(self, device, dtype):
self._test_cop(torch.fmod, math.fmod, dtype, device)
@onlyCPU
@dtypes(torch.float)
def test_cremainder(self, device, dtype):
self._test_cop(torch.remainder, lambda x, y: x % y, dtype, device)
@onlyCPU
@dtypes(torch.float)
def test_cmul(self, device, dtype):
self._test_cop(torch.mul, lambda x, y: x * y, dtype, device)
@onlyCPU
@dtypes(torch.float)
def test_cpow(self, device, dtype):
self._test_cop(torch.pow, lambda x, y: nan if x < 0 else math.pow(x, y), dtype, device)
@onlyCPU
@dtypes(torch.float)
def test_prod(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.prod(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
@onlyCPU
@dtypes(torch.float)
def test_cross(self, device, dtype):
x = torch.rand(100, 3, 100, dtype=dtype, device=device)
y = torch.rand(100, 3, 100, dtype=dtype, device=device)
res1 = torch.cross(x, y)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.cross(x, y, out=res2)
self.assertEqual(res1, res2)
@onlyCPU
@dtypes(torch.float)
def test_cross_with_and_without_dim(self, device, dtype):
x = torch.rand(100, 3, dtype=dtype, device=device)
y = torch.rand(100, 3, dtype=dtype, device=device)
res1 = torch.cross(x, y, dim=1)
res2 = torch.cross(x, y, dim=-1)
res3 = torch.cross(x, y)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
@onlyCPU
@dtypes(torch.float)
def test_random(self, device, dtype):
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
t = torch.FloatTensor(200).to(dtype=dtype, device=device)
lb = 1
ub = 4
t.fill_(-1)
t.random_(lb, ub)
self.assertEqual(t.min(), lb)
self.assertEqual(t.max(), ub - 1)
t.fill_(-1)
t.random_(ub)
self.assertEqual(t.min(), 0)
self.assertEqual(t.max(), ub - 1)
@onlyCPU
@dtypes(torch.half, torch.double, torch.int)
def test_cat(self, device, dtype):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
self.assertRaises(RuntimeError, lambda: torch.cat([]))
self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None]))
@onlyCPU
def test_cat_scalars(self, device):
x = torch.tensor(0, device=device)
y = torch.tensor(1, device=device)
with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'):
torch.cat([x, y])
@onlyCPU
def test_cat_bad_input_sizes(self, device):
x = torch.randn(2, 1, device=device)
y = torch.randn(2, 1, 1, device=device)
z = torch.randn(2, 1, 1, device=device)
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
x = torch.randn(2, 1, 2, device=device)
y = torch.randn(2, 1, 1, device=device)
z = torch.randn(2, 2, 1, device=device)
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
@slowTest
@onlyCPU
def test_cat_big(self, device):
SIZE1 = 6500
SIZE2 = 4500
concat_list = []
concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device))
concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device))
result = torch.cat(concat_list)
self.assertEqual(result.size(0), SIZE1 + SIZE2)
# Tests that compare a device's computation with the (gold-standard) CPU's.
class TestDevicePrecision(TestCase):
def test_linspace(self, device):
a = torch.linspace(0, 10, 10, device=device)
b = torch.linspace(0, 10, 10)
self.assertEqual(a, b)
@dtypes(torch.double)
def test_logspace(self, device, dtype):
a = torch.logspace(1, 10, 10, dtype=dtype, device=device)
b = torch.logspace(1, 10, 10, dtype=dtype, device='cpu')
self.assertEqual(a, b)
# Check non-default base=2
a = torch.logspace(1, 10, 10, 2, dtype=dtype, device=device)
b = torch.logspace(1, 10, 10, 2, dtype=dtype, device='cpu')
self.assertEqual(a, b)
# Note: ROCm fails when using float tensors
@dtypes(torch.double)
def test_polygamma(self, device, dtype):
cpu_tensor = torch.randn(10, 10, 10, dtype=dtype)
device_tensor = cpu_tensor.to(device)
zeros = torch.zeros(10, 10, 10, dtype=dtype)
for n in [0, 1]:
cpu_out = cpu_tensor.polygamma(n)
device_out = device_tensor.polygamma(n)
norm_errors = (device_out - cpu_out.to(device)) / device_out
self.assertEqual(norm_errors, zeros)
# Note: fails when using float tensors
@dtypes(torch.double)
def test_digamma(self, device, dtype):
cpu_tensor = torch.randn(10, 10, 10, dtype=dtype)
device_tensor = cpu_tensor.to(device)
zeros = torch.zeros(10, 10, 10, dtype=dtype)
cpu_out = cpu_tensor.digamma()
device_out = device_tensor.digamma()
norm_errors = (device_out - cpu_out.to(device)) / device_out
self.assertEqual(norm_errors, zeros)
# Tests pole behavior
cpu_tensor = torch.tensor([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, -1931.99999994, 0.000000111,
-0.000000111, 0, -1, -2, -931], dtype=dtype)
expected_errors = torch.tensor([0, 0, 0, 0, 0, 0, 0, nan, nan, nan, nan], dtype=dtype)
device_tensor = cpu_tensor.to(device)
cpu_out = cpu_tensor.digamma()
device_out = device_tensor.digamma()
norm_errors = (device_out - cpu_out.to(device)) / device_out
self.assertEqual(norm_errors, expected_errors)
def test_var(self, device):
cpu_tensor = torch.randn(2, 3, 3)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
self.assertEqual(device_tensor.var(1), cpu_tensor.var(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
self.assertEqual(device_tensor.std(), cpu_tensor.std())
self.assertEqual(device_tensor.std(1), cpu_tensor.std(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
cpu_tensor = torch.randn(100)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
def test_var_large_input(self, device):
# Large, not-nice input
cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67)
device_tensor = cpu_tensor.to(device)
self.assertEqual(cpu_tensor.var(2), device_tensor.var(2))
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_device_rounding(self, device, dtype):
# test half-to-even
a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8]
res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.]
a_tensor = torch.tensor(a, device=device).round()
res_tensor = torch.tensor(res, device='cpu')
self.assertEqual(a_tensor, res_tensor)
@dtypes(torch.int, torch.long, torch.float, torch.double)
def test_arange(self, device, dtype):
cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu')
device_tensor = torch.arange(0, 10, dtype=dtype, device=device)
self.assertEqual(cpu_tensor, device_tensor)
@skipCUDAIfRocm
@dtypes(torch.double)
def test_sum_noncontig(self, device, dtype):
x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2)
y = x.cpu()
self.assertEqual(x.sum().cpu(), y.sum())
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
def test_device_serialization(self, device):
x = torch.randn(4, 4, device=device)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
self.assertEqual(x_copy, x)
self.assertIs(type(x_copy), type(x))
self.assertEqual(x_copy.device, x.device)
@deviceCountAtLeast(2)
def test_multidevice_serialization(self, devices):
x = [torch.randn(4, 4, device=devices[0]),
torch.randn(4, 4, device=devices[1])]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, cp in zip(x, x_copy):
self.assertEqual(cp, original)
self.assertIs(type(cp), type(original))
self.assertEqual(cp.device, original.device)
@deviceCountAtLeast(1)
def test_copy_noncontig(self, devices):
def do_test(d0, d1):
x = torch.tensor([1.5, 2.5, 3.5, 4.5, 5.5, 6.5], device=d0)
y = torch.tensor([0, 0, 0, 0, 0, 0], device=d1)
self.assertNotEqual(x.dtype, y.dtype)
y[::2].copy_(x[::2])
self.assertEqual(y, [1, 0, 3, 0, 5, 0])
do_test('cpu', devices[0])
do_test(devices[0], 'cpu')
if len(devices) > 1:
do_test(devices[0], devices[1])
@dtypes(torch.float, torch.double)
def test_abs_zero(self, device, dtype):
# Both abs(0.0) and abs(-0.0) should result in 0.0
abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
for num in abs_zeros:
self.assertGreater(math.copysign(1.0, num), 0.0)
@deviceCountAtLeast(2)
def test_type_conversions_same_device(self, devices):
x = torch.randn(5, 5, device=devices[1])
self.assertEqual(x.int().device, torch.device(devices[1]))
self.assertEqual(x.type(torch.int).device, torch.device(devices[1]))
self.assertEqual(x.to(torch.int).device, torch.device(devices[1]))
def test_min_max_nan(self, device):
tests = [(lambda x: x.min(), 'min'),
(lambda x: x.max(), 'max'),
(lambda x: x.min(0)[0], 'min_dim'),
(lambda x: x.max(0)[0], 'max_dim')]
for f, name in tests:
a = torch.arange(25.0).view(5, 5)
a[2, 2] = nan
actual = f(a.to(device)).cpu()
expected = f(a).cpu()
self.assertEqual(torch.isnan(actual), torch.isnan(expected), 'nans for {}'.format(name))
self.assertEqual(actual[~torch.isnan(actual)],
expected[~torch.isnan(expected)], 'nans for {}'.format(name))
@dtypesIfCUDA(torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8)
@dtypes(torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8)
def test_from_sequence(self, device, dtype):
seq = [list(range(i * 4, i * 4 + 4)) for i in range(5)]
reference = torch.arange(0, 20).resize_(5, 4)
self.assertEqual(torch.tensor(seq, dtype=dtype, device=device), reference)
def test_cat(self, device):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim)
y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim)
z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
x = torch.randn(20, SIZE, SIZE, device=device)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randn(1, SIZE, SIZE, device=device)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
def test_sum_cpu_device_mismatch(self, device):
x = torch.randn(20, dtype=torch.float32, device=device)
y = torch.randn(1, dtype=torch.float32)
err_string = "output with device cpu doesn't match the desired device {0}".format(device)
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# tests half to float promotion
if self.device_type == 'cuda':
x = x.half()
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
@deviceCountAtLeast(1)
def test_advancedindex_mixed_cpu_devices(self, devices):
def test(x, ia, ib):
# test getitem
self.assertEqual(x[:, ia, None, ib, 0].cpu(),
x.cpu()[:, ia.cpu(), None, ib.cpu(), 0])
self.assertEqual(x[ia], x.cpu()[ia.cpu()])
# test setitem
x_clone1 = x.clone()
x_clone2 = x.clone()
first_shape = x[:, ia, None, ib, 0].shape
second_shape = x[ia].shape
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
x_clone2[ia] = torch.randn(second_shape).to(x_clone2)
cpu = torch.device('cpu')
for device in devices:
# Index cpu tensor with device tensor
x = torch.randn(3, 4, 4, 4, 3)
ia = torch.tensor([0, 2, 1]).to(device)
ib = torch.tensor([0, 2, 1]).to(device)
test(x, ia, ib)
# Index device tensor with cpu tensor
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(cpu)
test(x, ia, ib)
# Index cpu tensor with mixed cpu, device tensors
x = x.to(cpu)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
# Index device tensor with mixed cpu, device tensors
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(device)
test(x, ia, ib)
if len(devices) > 1:
other_device = devices[0]
if device == devices[0]:
other_device = devices[1]
# Index device tensor with mixed cpu, device tensors on different devices
x = x.to(device)
ia = ia.to(cpu)
ib = ib.to(other_device)
test(x, ia, ib)
def test_copy_broadcast(self, device):
x = torch.randn(10, 5)
y = torch.randn(5, device=device)
x.copy_(y)
self.assertEqual(x[3], y)
x = torch.randn(10, 5, device=device)
y = torch.randn(5)
x.copy_(y)
self.assertEqual(x[3], y)
def test_solve_methods_arg_device(self, device):
for b_device, A_device in product(['cpu', device], repeat=2):
if b_device == A_device:
continue
b = torch.randn(3, 1, device=b_device)
A = torch.randn(3, 3, device=A_device)
err_str = "Expected b and A to be on the same device"
with self.assertRaisesRegex(RuntimeError, err_str):
torch.solve(b, A)
with self.assertRaisesRegex(RuntimeError, err_str):
torch.cholesky_solve(b, A)
with self.assertRaisesRegex(RuntimeError, err_str):
torch.triangular_solve(b, A)
# b and A have to be modified to match accepted inputs sizes for lu_solve
b = b.unsqueeze(0)
A = A.unsqueeze(0)
with self.assertRaisesRegex(RuntimeError, err_str):
torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=A_device).int())
# This checks if a suitable error message is thrown
# when LU output and pivots are on the same device
with self.assertRaisesRegex(RuntimeError,
"Expected LU_pivots and LU_data to be on the same device"):
torch.lu_solve(b, A, torch.rand(A.shape[:-1], device=b_device).int())
@deviceCountAtLeast(2)
def test_zeros_like_multiple_device(self, devices):
expected = torch.zeros(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.zeros_like(x)
self.assertEqual(output, expected)
def test_ones_like(self, device):
expected = torch.ones(100, 100, device=device)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
@deviceCountAtLeast(2)
def test_ones_like_multiple_device(self, devices):
expected = torch.ones(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.ones_like(x)
self.assertEqual(output, expected)
# Below are fixtures and functions that generate tensor op comparison tests
# These tests run a single op on both a CPU and device tensor and compare the
# the results. In-place variants of the ops can also be run.
# Lists of dtypes to instantiate tensor op test variants.
_types = [
torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long,
torch.uint8
]
_float_types = [torch.half, torch.float, torch.double]
_float_types_no_half = [torch.float, torch.double]
_signed_types = [
torch.half, torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long
]
_signed_types_no_half = [
torch.float, torch.double,
torch.int8, torch.short, torch.int, torch.long
]
_unsigned_types = [torch.uint8]
# Helper values and functions for producing tensors and scalars to use in tensor op tests.
# Tensor dimension sizes (Small, Medium, Large, Giant)
_S = 5
_M = 50
_L = 1000
_G = 275000000
# Value to clamp divisors to since dividing by small numbers can be unstable
# on devices.
_div_min = 2**-8
# Returns floating or integral scalar corresponding to dtype
def _number(floating, integer, dtype):
if dtype in [torch.half, torch.float, torch.double]:
return floating
return integer
# Converts half dtype to float when device is cpu
def _convert_t(dtype, device):
if device == 'cpu' and dtype == torch.half:
return torch.float
return dtype
# Returns a tensor of the requested shape, dtype, and device
# Requesting a half CPU tensor returns a float CPU tensor with
# values representable by a half.
# Initialization uses randint for non-float types and randn for float types.
def _make_tensor(shape, dtype, device, fill_ones=False):
# Returns a tensor filled with ones
if fill_ones:
return torch.ones(*shape, dtype=_convert_t(dtype, device), device=device)
# Returns a tensor with random integer values
if dtype not in _float_types:
t = torch.randint(0, 10, shape, device=device)
return t.to(_convert_t(dtype, device))
# Populates the CPU tensor with floats representable as halfs
if dtype == torch.half and device == 'cpu':
return torch.randn(*shape, dtype=torch.float, device=device).half().float()
# Default: returns a tensor with random float values
return torch.randn(shape, dtype=dtype, device=device).to(dtype=dtype)
def _small_0d(dtype, device):
return _make_tensor((1,), dtype, device).squeeze()
def _small_2d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
t = _make_tensor((_S, _S), dtype, device, fill_ones=fill_ones)
if oneish:
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
if not has_zeros:
return t.clamp(min=(_number(_div_min, 1, dtype)))
return t
def _small_3d(dtype, device, has_zeros=True, fill_ones=False, oneish=False):
t = _make_tensor((_S, _S, _S), dtype, device, fill_ones=fill_ones)
if oneish:
return t.clamp(min=_number(.99, 1, dtype), max=1.01)
if not has_zeros:
return t.clamp(min=(_number(_div_min, 1, dtype)))
return t
def _small_3d_ones(dtype, device):
return _small_3d(dtype, device, fill_ones=True)
def _small_3d_unique(dtype, device):
return (torch.randperm(_S * _S * _S,
dtype=_convert_t(dtype, device), device=device) + 1).view(_S, _S, _S)
def _medium_1d(dtype, device):
return _make_tensor((_M,), dtype, device)
def _medium_2d(dtype, device):
return _make_tensor((_M, _M), dtype, device)
def _large_2d(dtype, device):
t = _make_tensor((_L, _L), dtype, device)
return t.normal_()
def _giant_1d(dtype, device):
return _make_tensor((_G), dtype, device)
# Helper method that returns a function which takes dtype and device and
# instantiates tensors of the given shape.
# Useful for tensor op tests with custom shapes.
def _new_t(shape):
def tmp(dtype, device):
return _make_tensor(shape, dtype, device)
return tmp
# TODO: random functions, cat, gather, scatter, index*, masked*,
# resize, resizeAs, storage_offset, storage, stride, unfold
# Each tests is defined in tensor_op_tests as a tuple of:
# - op name (string)
# - (sub)test name (string)
# - tensor constructor, takes dtype and device and constructs the tensor to run the op on
# - arg constructor, takes dtype and device and constructs op arguments
# - torch.half precision (=1e-5)
# - precision (=1e-5), precision to use for all other dtypes
# - make_inplace_variant (=True), if true the inplace version of the op (op_) is also tested
# - dtype_list (=_types), a list of torch dtypes to test the op(s) with
# - decorators (=[]), a list of decorators to apply to the test
tensor_op_tests = [
('add', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('add', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('sub', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('sub', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('mul', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-2),
('mul', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d)], 1e-2),
('mul', 'scalar', _small_0d, lambda t, d: [_small_0d(torch.int32, d)], 1e-2),
('div', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1),
('div', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-1),
('pow', '', _small_3d, lambda t, d: [_number(3.14, 3, t)], 1e-1, 1e-5, _float_types),
('pow', '1', _small_3d, lambda t, d: [_number(1., 1, t)], 1e-1),
('pow', '2', _small_3d, lambda t, d: [_number(2., 2, t)], 1e-1),
('pow', '3', _small_3d, lambda t, d: [_number(3., 3, t)], 1e-1),
('pow', '-1', _small_3d, lambda t, d: [_number(-1., -1, t)], 1e-1, 1e-5, _float_types),
('pow', '-2', _small_3d, lambda t, d: [_number(-2., -2, t)],
1e-1, 1e-5, _float_types_no_half, False, [skipCUDAIfRocm]),
('pow', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d).abs()],
1e-1, 1e-5, _float_types),
('addbmm', '', _small_2d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-4, _float_types),
('addbmm', 'scalar', _small_2d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-4, _float_types),
('addbmm', 'two_scalars', _small_2d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-1, 1e-4, _float_types),
('baddbmm', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-4, _float_types),
('baddbmm', 'scalar', _small_3d, lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-4, _float_types),
('baddbmm', 'two_scalars', _small_3d, lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)],
1e-2, 1e-4, _float_types),
('bmm', '', _small_3d, lambda t, d: [_small_3d(t, d)],
1e-5, 1e-5, _float_types_no_half, False),
('addcdiv', '', _small_2d,
lambda t, d: [_small_2d(t, d),
_small_2d(t, d, has_zeros=False)], 1, 1e-3),
('addcdiv', 'scalar', _small_2d,
lambda t, d: [_number(2.8, 1, t), _small_2d(t, d),
_small_2d(t, d, has_zeros=False)], 1, 1e-3),
('addcmul', '', _small_3d, lambda t, d: [_small_3d(t, d), _small_3d(t, d)], 1e-2, 1e-3),
('addcmul', 'scalar', _small_3d,
lambda t, d: [_number(0.4, 2, t), _small_3d(t, d), _small_3d(t, d)], 1e-2),
('addmm', '', _medium_2d, lambda t, d: [_medium_2d(t, d), _medium_2d(t, d)],
1e-1, 1e-4, _float_types),
('addmm', 'scalar', _medium_2d,
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)],
1e-1, 1e-4, _float_types),
('addmm', 'two_scalars', _medium_2d,
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_2d(t, d)],
1e-1, 1e-4, _float_types),
('addmv', '', _medium_1d, lambda t, d: [_medium_2d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('addmv', 'scalar', _medium_1d,
lambda t, d: [_number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('addmv', 'two_scalars', _medium_1d,
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_2d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('addr', '', _medium_2d, lambda t, d: [_medium_1d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('addr', 'scalar', _medium_2d,
lambda t, d: [_number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('addr', 'two_scalars', _medium_2d,
lambda t, d: [_number(0.5, 3, t), _number(0.4, 2, t), _medium_1d(t, d), _medium_1d(t, d)],
1e-2, 1e-4, _float_types),
('atan2', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-2, 1e-5, _float_types),
('fmod', 'value', _small_3d, lambda t, d: [3], 1e-3),
('fmod', 'tensor', _small_3d, lambda t, d: [_small_3d(t, d, has_zeros=False)], 1e-3),
('chunk', '', _medium_2d, lambda t, d: [4], 1e-5, 1e-5, _types, False),
('chunk', 'dim', _medium_2d, lambda t, d: [4, 1], 1e-5, 1e-5, _types, False),
('chunk', 'neg_dim', _medium_2d, lambda t, d: [4, -2], 1e-5, 1e-5, _types, False),
('clamp', 'neg', _medium_2d, lambda t, d: [-1, 5], 1e-5, 1e-5, _signed_types),
('clamp', 'pos', _medium_2d, lambda t, d: [1, 5], 1e-5, 1e-5, _unsigned_types),
('clone', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('cross', '', _new_t((_M, 3, _M)), lambda t, d: [_new_t((_M, 3, _M))(t, d)],
1e-2, 1e-5, _types, False),
('cumprod', '', _small_3d, lambda t, d: [1], 1e-2, 1e-4, _types, False),
('cumprod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-4, _types, False),
('cumsum', '', _small_3d, lambda t, d: [1], 1e-2, 1e-5, _types, False),
('cumsum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, _types, False),
('dim', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('dist', '', _small_2d, lambda t, d: [_small_2d(t, d)], 1e-2, 1e-5, _float_types, False),
('dist', '3_norm', _small_2d, lambda t, d: [_small_2d(t, d), 3], 1e-2, 1e-5, _float_types, False),
('dist', '2_5_norm', _small_2d, lambda t, d: [_small_2d(t, d), 2.5],
1e-2, 1e-5, _float_types, False),
('dot', '', _medium_1d, lambda t, d: [_medium_1d(t, d)],
1e-2, 1e-5, _float_types, False, [skipCUDAIfRocm]),
('element_size', '', _medium_1d, lambda t, d: [], 1e-5, 1e-5, _float_types_no_half, False),
('eq', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)],),
('eq', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)]),
('ne', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)],),
('ne', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)]),
('equal', 'equal', _small_3d_ones, lambda t, d: [_small_3d_ones(t, d)],
1e-5, 1e-5, _types, False),
('equal', '', _small_3d_ones, lambda t, d: [_small_3d(t, d)], 1e-5, 1e-5, _types, False),
('expand', '', _new_t((_M, 1, _M)), lambda t, d: [_M, 4, _M], 1e-5, 1e-5, _types, False),
('expand_as', '', _new_t((_M, 1, _M)), lambda t, d: [_new_t((_M, 4, _M))(t, d)],
1e-5, 1e-5, _types, False),
('fill_', '', _medium_2d, lambda t, d: [_number(3.14, 3, t)], 1e-3, 1e-5, _types, False),
('ge', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],),
('le', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],),
('gt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],),
('lt', '', _medium_2d, lambda t, d: [_medium_2d(t, d)],),
('is_contiguous', '', _medium_2d, lambda t, d: [], 1e-5, 1e-5, _types, False),
# TODO: can't check negative case - cross-device copy is contiguous
('is_same_size', 'negative', _medium_2d, lambda t, d: [_small_3d(t, d)],
1e-5, 1e-5, _types, False),
('is_same_size', 'positive', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, _types, False),
('is_set_to', '', _medium_2d, lambda t, d: [_medium_2d(t, d)], 1e-5, 1e-5, _types, False),
# TODO: positive case
('kthvalue', '', _small_3d_unique, lambda t, d: [3], 1e-5, 1e-5, _types, False),
('kthvalue', 'dim', _small_3d_unique, lambda t, d: [3, 1], 1e-5, 1e-5, _types, False),
('kthvalue', 'neg_dim', _small_3d_unique, lambda t, d: [3, -1], 1e-5, 1e-5, _types, False),
('lerp', '', _small_3d, lambda t, d: [_small_3d(t, d), 0.3],
1e-2, 1e-5, _float_types_no_half),
('max', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('max', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, _types, False),
('max', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, _types, False),
('max', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, _types, False),
('min', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('min', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, _types, False),
('min', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, _types, False),
('min', 'elementwise', _medium_2d, lambda t, d: [_medium_2d(t, d)],
1e-5, 1e-5, _types, False),
('mean', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types, False),
('mean', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, _float_types, False),
('mean', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, _float_types, False),
# Double here because the CPU result will be wrong otherwise
('mean', '64bit_indexing', _giant_1d, lambda t, d: [],
1e-3, 1e-5, [torch.double], False, [slowTest]),
('mode', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('mode', 'dim', _small_3d, lambda t, d: [1], 1e-5, 1e-5, _types, False),
('mode', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, _types, False),
('mvlgamma', '2d_p=1', lambda t, d: _small_2d(t, d).clamp(0.1, 10), lambda t, d: [1],
1e-5, 1e-5, _float_types_no_half),
('mvlgamma', '2d_p=2', lambda t, d: _small_2d(t, d).clamp(0.6, 10), lambda t, d: [2],
1e-5, 1e-5, _float_types_no_half),
('remainder', 'value', _small_3d, lambda t, d: [3], 1e-1, 1e-5, _signed_types),
('remainder', 'negative_value', _small_3d, lambda t, d: [-3], 1e-1, 1e-5, _signed_types),
('remainder', 'tensor', _small_3d,
lambda t, d: [_small_3d(t, d, has_zeros=False)],
1e-1, 1e-5, _signed_types),
('remainder', 'negative_tensor', _small_3d,
lambda t, d: [0 - _small_3d(t, d, has_zeros=False)],
1e-1, 1e-5, _signed_types),
('std', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types, False),
('std', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, _float_types, False),
('std', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, _float_types, False),
('var', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types, False),
('var', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, _float_types, False),
('var', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, _float_types, False),
('ndimension', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('nelement', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('numel', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('narrow', '', _small_3d, lambda t, d: [1, 3, 2], 1e-5, 1e-5, _types, False),
('narrow', 'neg_dim', _small_3d, lambda t, d: [-1, 3, 2], 1e-5, 1e-5, _types, False),
('nonzero', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('norm', '', _small_3d, lambda t, d: [], 1e-1, 1e-5, _float_types, False),
('norm', '3_norm', _small_3d, lambda t, d: [3], 1e-1, 1e-5, _float_types, False),
('norm', '3_norm_dim', _small_3d, lambda t, d: [3, 0], 1e-1, 1e-5, _float_types, False),
('norm', '3_norm_neg_dim', _small_3d, lambda t, d: [3, -2], 1e-1, 1e-5, _float_types, False),
('new_ones', '', _small_3d, lambda t, d: [1, 2, 3, 4, 5], 1e-5, 1e-5, _types, False),
('permute', '', _new_t((1, 2, 3, 4)), lambda t, d: [2, 1, 3, 0], 1e-5, 1e-5, _types, False),
('put_', '', _new_t((2, 5, 3)),
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d),
torch.LongTensor([[3], [4]]).to(dtype=_convert_t(t, d), device=d)],
1e-5, 1e-5, _types, False),
('put_', 'empty', _new_t((2, 3)),
lambda t, d: [torch.LongTensor([]).to(device=d), torch.LongTensor([]).to(dtype=_convert_t(t, d), device=d)],
1e-5, 1e-5, _types, False),
('put_', 'accumulate', _new_t((2, 2)),
lambda t, d: [torch.LongTensor([[1], [-3]]).to(device=d),
torch.LongTensor([[1], [2]]).to(dtype=_convert_t(t, d), device=d),
True],
1e-5, 1e-5, _types, False),
('prod', '', lambda t, d: _small_2d(t, d, oneish=True),
lambda t, d: [], 1e-2, 1e-5, _types, False),
('prod', 'dim', _small_3d, lambda t, d: [1], 1e-3, 1e-5, _types, False),
('prod', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-3, 1e-5, _types, False),
('sum', '', _small_2d, lambda t, d: [], 1e-2, 1e-5, _types, False),
('sum', 'dim', _small_3d, lambda t, d: [1], 1e-2, 1e-5, _types, False),
('sum', 'neg_dim', _small_3d, lambda t, d: [-1], 1e-2, 1e-5, _types, False),
('renorm', '2_norm', _small_3d, lambda t, d: [2, 1, 1], 1e-3, 1e-5, _float_types),
('renorm', '2_norm_neg_dim', _small_3d, lambda t, d: [2, -1, 1], 1e-3, 1e-5, _float_types),
('renorm', '1_5_norm', _small_3d, lambda t, d: [1.5, 1, 1], 1e-3, 1e-5, _float_types),
('repeat', '', _small_2d, lambda t, d: [2, 2, 2], 1e-5, 1e-5, _types, False),
('size', '', _new_t((1, 2, 3, 4)), lambda t, d: [], 1e-5, 1e-5, _types, False),
('size', 'dim', _new_t((1, 2, 3, 4)), lambda t, d: [1], 1e-5, 1e-5, _types, False),
('size', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-2], 1e-5, 1e-5, _types, False),
('sort', '', _small_3d_unique, lambda t, d: [], 1e-5, 1e-5, _types, False),
('sort', 'dim', _small_3d_unique, lambda t, d: [1], 1e-5, 1e-5, _types, False),
('sort', 'neg_dim', _small_3d_unique, lambda t, d: [-1], 1e-5, 1e-5, _types, False),
('sort', 'dim_descending', _small_3d_unique, lambda t, d: [1, True], 1e-5, 1e-5, _types, False),
('sort', 'neg_dim_descending', _small_3d_unique, lambda t, d: [-1, True], 1e-5, 1e-5, _types, False),
('split', '', _small_3d, lambda t, d: [2], 1e-5, 1e-5, _types, False),
('split', 'dim', _small_3d, lambda t, d: [2, 1], 1e-5, 1e-5, _types, False),
('split', 'neg_dim', _small_3d, lambda t, d: [2, -3], 1e-5, 1e-5, _types, False),
('squeeze', '', _new_t((1, 2, 1, 4)), lambda t, d: [],),
('squeeze', 'dim', _new_t((1, 2, 1, 4)), lambda t, d: [2], ),
('squeeze', 'neg_dim', _new_t((1, 2, 1, 4)), lambda t, d: [-2], ),
('t', '', _new_t((1, 2)), lambda t, d: [],),
('take', '', _new_t((3, 4)),
lambda t, d: [torch.LongTensor([[0], [-2]]).to(device=d)],
1e-5, 1e-5, _types, False),
('transpose', '', _new_t((1, 2, 3, 4)), lambda t, d: [1, 2],),
('transpose', 'neg_dim', _new_t((1, 2, 3, 4)), lambda t, d: [-1, -2], ),
('tolist', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('topk', 'dim_sort', _small_3d_unique, lambda t, d: [2, 1, False, True],
1e-5, 1e-5, _types, False),
('topk', 'neg_dim_sort', _small_3d_unique, lambda t, d: [2, -1, False, True],
1e-5, 1e-5, _types, False),
('topk', 'dim_desc_sort', _small_3d_unique, lambda t, d: [2, 1, True, True],
1e-5, 1e-5, _types, False),
('trace', '', _medium_2d, lambda t, d: [], 1e-3, 1e-5, _types, False),
('tril', '', _medium_2d, lambda t, d: [],),
('tril', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('tril', 'positive', _medium_2d, lambda t, d: [2], ),
('tril', 'negative', _medium_2d, lambda t, d: [-2], ),
('triu', '', _medium_2d, lambda t, d: [],),
('triu', 'zero_stride', _medium_2d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('triu', 'positive', _medium_2d, lambda t, d: [2], ),
('triu', 'negative', _medium_2d, lambda t, d: [-2], ),
('unsqueeze', '', _new_t((2, 3, 4)), lambda t, d: [2],),
('unsqueeze', 'neg_dim', _new_t((2, 3, 4)), lambda t, d: [-2], ),
('view', 'contiguous', _small_3d, lambda t, d: [25, 5], 1e-5, 1e-5, _types, False),
('view_as', '', _small_3d, lambda t, d: [_make_tensor((25, 5), t, d)],
1e-5, 1e-5, _types, False),
('zero_', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('new_zeros', '', _small_3d, lambda t, d: [1, 2, 3, 4], 1e-5, 1e-5, _types, False),
('flip', 'd0', _small_3d, lambda t, d: [0], 1e-5, 1e-5, _types, False),
('flip', 'd012', _small_3d, lambda t, d: [0, 1, 2], 1e-5, 1e-5, _types, False),
('flip', 'd02', _small_3d, lambda t, d: [0, 2], 1e-5, 1e-5, _types, False),
('flip', 'd20', _small_3d, lambda t, d: [2, 0], 1e-5, 1e-5, _types, False),
('flip', 'neg_d', _small_3d, lambda t, d: [-1], 1e-5, 1e-5, _types, False),
('rot90', 'k1_d01', _small_2d, lambda t, d: [1, [0, 1]], 1e-5, 1e-5, _types, False),
('rot90', 'k1_d12', _small_3d, lambda t, d: [1, [1, 2]], 1e-5, 1e-5, _types, False),
('rot90', 'k1_neg_d', _small_3d, lambda t, d: [1, [1, -1]], 1e-5, 1e-5, _types, False),
('rot90', 'default', _small_3d, lambda t, d: [], 1e-5, 1e-5, _types, False),
('rsqrt', '', lambda t, d: _small_3d(t, d) + 1, lambda t, d: [], 1e-2, 1e-4, _float_types_no_half),
('sinh', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, _float_types),
('tan', '', lambda t, d: _small_3d(t, d).clamp(-1, 1), lambda t, d: [], 1e-3, 1e-5, _float_types),
('__lshift__', '',
lambda t, d: torch.pow(2, torch.arange(1, 5).to(dtype=_convert_t(t, d), device=d)),
lambda t, d: [2],
1e-3, 1e-3, _signed_types_no_half, False),
('__rshift__', '',
lambda t, d: torch.pow(2, torch.arange(3, 7).to(dtype=_convert_t(t, d), device=d)),
lambda t, d: [2],
1e-3, 1e-3, _signed_types_no_half, False),
# lapack tests
('qr', 'square', _small_2d, lambda t, d: [],
1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('qr', 'skinny', _new_t((3, 4)), lambda t, d: [],
1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('qr', 'fat', _new_t((4, 3)), lambda t, d: [],
1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('qr', 'big', _large_2d, lambda t, d: [],
1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('geqrf', '', _new_t((20, 20)), lambda t, d: [],
1e-5, 3e-4, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'square', _new_t((10, 10)), lambda t, d: [],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'square_col_maj', lambda t, d: _new_t((10, 10))(t, d).t(), lambda t, d: [True],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'tall_some', _new_t((20, 5)), lambda t, d: [True],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'tall_all', _new_t((20, 5)), lambda t, d: [False],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'tall_some_col_maj', lambda t, d: _new_t((5, 20))(t, d).t(), lambda t, d: [True],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('svd', 'tall_all_col_maj', lambda t, d: _new_t((5, 20))(t, d).t(), lambda t, d: [False],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('eig', 'with_eigvec', _new_t((10, 10)), lambda t, d: [True],
1e-5, 1e-5, _float_types_no_half, False, [skipCUDAIfNoMagma]),
('abs', '', _small_3d, lambda t, d: []),
('sign', '', _small_3d, lambda t, d: []),
('log', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('log10', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('log1p', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types_no_half),
('log2', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('sigmoid', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('sin', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('sqrt', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('tanh', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('acos', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('asin', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('atan', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('cos', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('cosh', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('erf', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('erfc', '', _small_3d, lambda t, d: [], 1e-3, 1e-5, _float_types),
('exp', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('expm1', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types),
('reciprocal', '', _small_3d, lambda t, d: [], 1e-1, 1e-5, _float_types),
('floor', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('frac', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('neg', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('round', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('trunc', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('ceil', '', _small_3d, lambda t, d: [], 1e-5, 1e-5, _float_types),
('lgamma', '', _small_3d, lambda t, d: [], 1e-2, 1e-5, _float_types_no_half),
('digamma', 'op', _small_3d, lambda t, d: [], 1e-5, 1e0, _float_types_no_half),
]
# Creates and decorates a generic test and adds it to the class.
def generate_test_function(cls,
op_str,
subtest_str,
tensor_ctor,
arg_ctor,
half_precision,
float_precision,
dtype_list,
decorators):
def fn(self, device, dtype):
# Generates the CPU inputs
# Note: CPU tensors are never torch.half
cpu_tensor = tensor_ctor(dtype, 'cpu')
cpu_args = arg_ctor(dtype, 'cpu')
# Converts CPU tensors to device tensors
device_tensor = cpu_tensor.to(dtype=dtype, device=device)
device_args = [arg.to(device=device) if torch.is_tensor(arg) else arg for arg in cpu_args]
# Converts float device tensors to half when the dtype is half
# Note: CPU half tensors don't support many operations.
if dtype == torch.half:
device_args = [arg.to(dtype=dtype) if
(torch.is_tensor(arg) and arg.dtype == torch.float) else arg
for arg in device_args]
# Runs the tensor op on CPU and device
cpu_result = getattr(cpu_tensor, op_str)(*cpu_args)
device_result = getattr(device_tensor, op_str)(*device_args)
# Compares CPU and device inputs and outputs
precision = half_precision if dtype == torch.half else float_precision
self.assertEqual(cpu_tensor, device_tensor, prec=precision)
self.assertEqual(cpu_args, device_args, prec=precision)
self.assertEqual(cpu_result, device_result, prec=precision)
test_name = "test_" + op_str + subtest_str
assert not hasattr(cls, test_name), "{0} already in TestDevicePrecision".format(test_name)
# Constructs decorator list and applies decorators
if decorators is None:
decorators = [dtypes(*dtype_list)]
else:
decorators = decorators + [dtypes(*dtype_list)]
for dec in decorators:
fn = dec(fn)
setattr(cls, test_name, fn)
# Instantiates variants of tensor_op_tests and adds them to the given class.
def generate_tensor_op_tests(cls):
def caller(cls,
op_str,
subtest_str,
tensor_ctor,
arg_ctor,
half_precision=1e-5,
float_precision=1e-5,
dtype_list=_types,
make_inplace_variant=True,
decorators=None):
if subtest_str:
subtest_str = '_' + subtest_str
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor,
half_precision, float_precision, dtype_list, decorators)
if make_inplace_variant:
op_str = op_str + '_'
subtest_str = 'inplace' + subtest_str
generate_test_function(cls, op_str, subtest_str, tensor_ctor, arg_ctor,
half_precision, float_precision, dtype_list, decorators)
for test in tensor_op_tests:
caller(cls, *test)
class TestTensorDeviceOps(TestCase):
pass
class TestTorch(TestCase, _TestTorchMixin):
pass
# Generates tests
# Note: test generation must be done at file scope, not within main, or
# pytest will fail.
add_neg_dim_tests()
generate_tensor_op_tests(TestTensorDeviceOps)
instantiate_device_type_tests(TestTorchDeviceType, globals())
instantiate_device_type_tests(TestDevicePrecision, globals(), except_for='cpu')
instantiate_device_type_tests(TestTensorDeviceOps, globals(), except_for='cpu')
if __name__ == '__main__':
run_tests()