| import torch |
| from torch.distributions import constraints |
| from torch.distributions.categorical import Categorical |
| from torch.distributions.utils import clamp_probs, broadcast_all, log_sum_exp |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import ExpTransform |
| |
| |
| class ExpRelaxedCategorical(Distribution): |
| r""" |
| Creates a ExpRelaxedCategorical parameterized by `probs` and `temperature`. |
| Returns the log of a point in the simplex. Based on the interface to OneHotCategorical. |
| |
| Implementation based on [1]. |
| |
| See also: :func:`torch.distributions.OneHotCategorical` |
| |
| Args: |
| temperature (Tensor): relaxation temperature |
| probs (Tensor): event probabilities |
| logits (Tensor): the log probability of each event. |
| |
| [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables |
| (Maddison et al, 2017) |
| |
| [2] Categorical Reparametrization with Gumbel-Softmax |
| (Jang et al, 2017) |
| """ |
| arg_constraints = {'probs': constraints.simplex} |
| support = constraints.real |
| has_rsample = True |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| self._categorical = Categorical(probs, logits) |
| self.temperature = temperature |
| batch_shape = self._categorical.batch_shape |
| event_shape = self._categorical.param_shape[-1:] |
| super(ExpRelaxedCategorical, self).__init__(batch_shape, event_shape, validate_args=validate_args) |
| |
| def _new(self, *args, **kwargs): |
| return self._categorical._new(*args, **kwargs) |
| |
| @property |
| def param_shape(self): |
| return self._categorical.param_shape |
| |
| @property |
| def logits(self): |
| return self._categorical.logits |
| |
| @property |
| def probs(self): |
| return self._categorical.probs |
| |
| def rsample(self, sample_shape=torch.Size()): |
| sample_shape = torch.Size(sample_shape) |
| uniforms = clamp_probs(self.logits.new(self._extended_shape(sample_shape)).uniform_()) |
| gumbels = -((-(uniforms.log())).log()) |
| scores = (self.logits + gumbels) / self.temperature |
| return scores - log_sum_exp(scores) |
| |
| def log_prob(self, value): |
| K = self._categorical._num_events |
| if self._validate_args: |
| self._validate_sample(value) |
| logits, value = broadcast_all(self.logits, value) |
| log_scale = (self.temperature.new(self.temperature.shape).fill_(K).lgamma() - |
| self.temperature.log().mul(-(K - 1))) |
| score = logits - value.mul(self.temperature) |
| score = (score - log_sum_exp(score)).sum(-1) |
| return score + log_scale |
| |
| |
| class RelaxedOneHotCategorical(TransformedDistribution): |
| r""" |
| Creates a RelaxedOneHotCategorical distribution parametrized by `temperature` and either `probs` or `logits`. |
| This is a relaxed version of the `OneHotCategorical` distribution, so its |
| values are on simplex, and has reparametrizable samples. |
| |
| Example:: |
| |
| >>> m = RelaxedOneHotCategorical(torch.tensor([2.2]), |
| torch.tensor([0.1, 0.2, 0.3, 0.4])) |
| >>> m.sample() # equal probability of 1, 1, 2, 3 |
| 0.1294 |
| 0.2324 |
| 0.3859 |
| 0.2523 |
| [torch.FloatTensor of size 4] |
| |
| Args: |
| temperature (Tensor): relaxation temperature |
| probs (Tensor): event probabilities |
| logits (Tensor): the log probability of each event. |
| """ |
| arg_constraints = {'probs': constraints.simplex} |
| support = constraints.simplex |
| has_rsample = True |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| super(RelaxedOneHotCategorical, self).__init__(ExpRelaxedCategorical(temperature, probs, logits), |
| ExpTransform(), validate_args=validate_args) |
| |
| @property |
| def temperature(self): |
| return self.base_dist.temperature |
| |
| @property |
| def logits(self): |
| return self.base_dist.logits |
| |
| @property |
| def probs(self): |
| return self.base_dist.probs |