| import warnings |
| import torch |
| from . import Linear |
| from torch.nn.init import xavier_uniform_ |
| from torch.nn.init import constant_ |
| from torch.nn.init import xavier_normal_ |
| from torch.nn.parameter import Parameter |
| from .module import Module |
| from .. import functional as F |
| from ..._jit_internal import weak_module, weak_script_method |
| |
| |
| @weak_module |
| class Threshold(Module): |
| r"""Thresholds each element of the input Tensor. |
| |
| Threshold is defined as: |
| |
| .. math:: |
| y = |
| \begin{cases} |
| x, &\text{ if } x > \text{threshold} \\ |
| \text{value}, &\text{ otherwise } |
| \end{cases} |
| |
| Args: |
| threshold: The value to threshold at |
| value: The value to replace with |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.Threshold(0.1, 20) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['threshold', 'value', 'inplace'] |
| |
| def __init__(self, threshold, value, inplace=False): |
| super(Threshold, self).__init__() |
| self.threshold = threshold |
| self.value = value |
| self.inplace = inplace |
| # TODO: check in THNN (if inplace == True, then assert value <= threshold) |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.threshold(input, self.threshold, self.value, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'threshold={}, value={}{}'.format( |
| self.threshold, self.value, inplace_str |
| ) |
| |
| |
| @weak_module |
| class ReLU(Module): |
| r"""Applies the rectified linear unit function element-wise: |
| |
| :math:`\text{ReLU}(x)= \max(0, x)` |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| |
| An implementation of CReLU - https://arxiv.org/abs/1603.05201 |
| |
| >>> m = nn.ReLU() |
| >>> input = torch.randn(2).unsqueeze(0) |
| >>> output = torch.cat((m(input),m(-input))) |
| """ |
| __constants__ = ['inplace'] |
| |
| def __init__(self, inplace=False): |
| super(ReLU, self).__init__() |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.relu(input, inplace=self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace' if self.inplace else '' |
| return inplace_str |
| |
| |
| @weak_module |
| class RReLU(Module): |
| r"""Applies the randomized leaky rectified liner unit function, element-wise, |
| as described in the paper: |
| |
| `Empirical Evaluation of Rectified Activations in Convolutional Network`_. |
| |
| The function is defined as: |
| |
| .. math:: |
| \text{RReLU}(x) = |
| \begin{cases} |
| x & \text{if } x \geq 0 \\ |
| ax & \text{ otherwise } |
| \end{cases} |
| |
| where :math:`a` is randomly sampled from uniform distribution |
| :math:`\mathcal{U}(\text{lower}, \text{upper})`. |
| |
| See: https://arxiv.org/pdf/1505.00853.pdf |
| |
| Args: |
| lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}` |
| upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}` |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Examples:: |
| |
| >>> m = nn.RReLU(0.1, 0.3) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Empirical Evaluation of Rectified Activations in Convolutional Network`: |
| https://arxiv.org/abs/1505.00853 |
| """ |
| __constants__ = ['lower', 'upper', 'inplace'] |
| |
| def __init__(self, lower=1. / 8, upper=1. / 3, inplace=False): |
| super(RReLU, self).__init__() |
| self.lower = lower |
| self.upper = upper |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.rrelu(input, self.lower, self.upper, self.training, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str) |
| |
| |
| @weak_module |
| class Hardtanh(Module): |
| r"""Applies the HardTanh function element-wise |
| |
| HardTanh is defined as: |
| |
| .. math:: |
| \text{HardTanh}(x) = \begin{cases} |
| 1 & \text{ if } x > 1 \\ |
| -1 & \text{ if } x < -1 \\ |
| x & \text{ otherwise } \\ |
| \end{cases} |
| |
| The range of the linear region :math:`[-1, 1]` can be adjusted using |
| :attr:`min_val` and :attr:`max_val`. |
| |
| Args: |
| min_val: minimum value of the linear region range. Default: -1 |
| max_val: maximum value of the linear region range. Default: 1 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Keyword arguments :attr:`min_value` and :attr:`max_value` |
| have been deprecated in favor of :attr:`min_val` and :attr:`max_val`. |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Hardtanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardtanh(-2, 2) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['min_val', 'max_val', 'inplace'] |
| |
| def __init__(self, min_val=-1., max_val=1., inplace=False, min_value=None, max_value=None): |
| super(Hardtanh, self).__init__() |
| if min_value is not None: |
| warnings.warn("keyword argument min_value is deprecated and renamed to min_val") |
| min_val = min_value |
| if max_value is not None: |
| warnings.warn("keyword argument max_value is deprecated and renamed to max_val") |
| max_val = max_value |
| |
| self.min_val = min_val |
| self.max_val = max_val |
| self.inplace = inplace |
| assert self.max_val > self.min_val |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.hardtanh(input, self.min_val, self.max_val, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'min_val={}, max_val={}{}'.format( |
| self.min_val, self.max_val, inplace_str |
| ) |
| |
| |
| @weak_module |
| class ReLU6(Hardtanh): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{ReLU6}(x) = \min(\max(0,x), 6) |
| |
| Args: |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ReLU6.png |
| |
| Examples:: |
| |
| >>> m = nn.ReLU6() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def __init__(self, inplace=False): |
| super(ReLU6, self).__init__(0., 6., inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace' if self.inplace else '' |
| return inplace_str |
| |
| |
| @weak_module |
| class Sigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)} |
| |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Sigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.Sigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| return torch.sigmoid(input) |
| |
| |
| @weak_module |
| class Tanh(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Tanh}(x) = \tanh(x) = \frac{e^x - e^{-x}} {e^x + e^{-x}} |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Tanh.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanh() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| return torch.tanh(input) |
| |
| |
| @weak_module |
| class ELU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{ELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1)) |
| |
| Args: |
| alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/ELU.png |
| |
| Examples:: |
| |
| >>> m = nn.ELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| |
| def __init__(self, alpha=1., inplace=False): |
| super(ELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.elu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| @weak_module |
| class CELU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) |
| |
| More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ . |
| |
| Args: |
| alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/CELU.png |
| |
| Examples:: |
| |
| >>> m = nn.CELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _`Continuously Differentiable Exponential Linear Units`: |
| https://arxiv.org/abs/1704.07483 |
| """ |
| __constants__ = ['alpha', 'inplace'] |
| |
| def __init__(self, alpha=1., inplace=False): |
| super(CELU, self).__init__() |
| self.alpha = alpha |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.celu(input, self.alpha, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'alpha={}{}'.format(self.alpha, inplace_str) |
| |
| |
| @weak_module |
| class SELU(Module): |
| r"""Applied element-wise, as: |
| |
| .. math:: |
| \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) |
| |
| with :math:`\alpha = 1.6732632423543772848170429916717` and |
| :math:`\text{scale} = 1.0507009873554804934193349852946`. |
| |
| More details can be found in the paper `Self-Normalizing Neural Networks`_ . |
| |
| Args: |
| inplace (bool, optional): can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/SELU.png |
| |
| Examples:: |
| |
| >>> m = nn.SELU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| |
| .. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515 |
| """ |
| __constants__ = ['inplace'] |
| |
| def __init__(self, inplace=False): |
| super(SELU, self).__init__() |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.selu(input, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = 'inplace' if self.inplace else '' |
| return inplace_str |
| |
| |
| @weak_module |
| class GLU(Module): |
| r"""Applies the gated linear unit function |
| :math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half |
| of the input matrices and :math:`b` is the second half. |
| |
| Args: |
| dim (int): the dimension on which to split the input. Default: -1 |
| |
| Shape: |
| - Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2` |
| |
| Examples:: |
| |
| >>> m = nn.GLU() |
| >>> input = torch.randn(4, 2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=-1): |
| super(GLU, self).__init__() |
| self.dim = dim |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.glu(input, self.dim) |
| |
| def extra_repr(self): |
| return 'dim={}'.format(self.dim) |
| |
| |
| @weak_module |
| class Hardshrink(Module): |
| r"""Applies the hard shrinkage function element-wise: |
| |
| .. math:: |
| \text{HardShrink}(x) = |
| \begin{cases} |
| x, & \text{ if } x > \lambda \\ |
| x, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Hardshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Hardshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| |
| def __init__(self, lambd=0.5): |
| super(Hardshrink, self).__init__() |
| self.lambd = lambd |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.hardshrink(input, self.lambd) |
| |
| def extra_repr(self): |
| return '{}'.format(self.lambd) |
| |
| |
| @weak_module |
| class LeakyReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) |
| |
| |
| or |
| |
| .. math:: |
| \text{LeakyRELU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| \text{negative\_slope} \times x, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| negative_slope: Controls the angle of the negative slope. Default: 1e-2 |
| inplace: can optionally do the operation in-place. Default: ``False`` |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/LeakyReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.LeakyReLU(0.1) |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['inplace', 'negative_slope'] |
| |
| def __init__(self, negative_slope=1e-2, inplace=False): |
| super(LeakyReLU, self).__init__() |
| self.negative_slope = negative_slope |
| self.inplace = inplace |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.leaky_relu(input, self.negative_slope, self.inplace) |
| |
| def extra_repr(self): |
| inplace_str = ', inplace' if self.inplace else '' |
| return 'negative_slope={}{}'.format(self.negative_slope, inplace_str) |
| |
| |
| @weak_module |
| class LogSigmoid(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right) |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/LogSigmoid.png |
| |
| Examples:: |
| |
| >>> m = nn.LogSigmoid() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.logsigmoid(input) |
| |
| |
| @weak_module |
| class Softplus(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) |
| |
| SoftPlus is a smooth approximation to the ReLU function and can be used |
| to constrain the output of a machine to always be positive. |
| |
| For numerical stability the implementation reverts to the linear function |
| for inputs above a certain value. |
| |
| Args: |
| beta: the :math:`\beta` value for the Softplus formulation. Default: 1 |
| threshold: values above this revert to a linear function. Default: 20 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softplus.png |
| |
| Examples:: |
| |
| >>> m = nn.Softplus() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['beta', 'threshold'] |
| |
| def __init__(self, beta=1, threshold=20): |
| super(Softplus, self).__init__() |
| self.beta = beta |
| self.threshold = threshold |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.softplus(input, self.beta, self.threshold) |
| |
| def extra_repr(self): |
| return 'beta={}, threshold={}'.format(self.beta, self.threshold) |
| |
| |
| @weak_module |
| class Softshrink(Module): |
| r"""Applies the soft shrinkage function elementwise: |
| |
| .. math:: |
| \text{SoftShrinkage}(x) = |
| \begin{cases} |
| x - \lambda, & \text{ if } x > \lambda \\ |
| x + \lambda, & \text{ if } x < -\lambda \\ |
| 0, & \text{ otherwise } |
| \end{cases} |
| |
| Args: |
| lambd: the :math:`\lambda` value for the Softshrink formulation. Default: 0.5 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Softshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| __constants__ = ['lambd'] |
| |
| def __init__(self, lambd=0.5): |
| super(Softshrink, self).__init__() |
| self.lambd = lambd |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.softshrink(input, self.lambd) |
| |
| def extra_repr(self): |
| return str(self.lambd) |
| |
| |
| @weak_module |
| class MultiheadAttention(Module): |
| r"""Allows the model to jointly attend to information |
| from different representation subspaces. |
| See reference: Attention Is All You Need |
| |
| .. math:: |
| \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O |
| \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) |
| |
| Args: |
| embed_dim: total dimension of the model |
| num_heads: parallel attention layers, or heads |
| |
| Examples:: |
| |
| >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) |
| >>> attn_output, attn_output_weights = multihead_attn(query, key, value) |
| """ |
| |
| def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False): |
| super(MultiheadAttention, self).__init__() |
| self.embed_dim = embed_dim |
| self.num_heads = num_heads |
| self.dropout = dropout |
| self.head_dim = embed_dim // num_heads |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
| self.scaling = self.head_dim ** -0.5 |
| |
| self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) |
| if bias: |
| self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) |
| else: |
| self.register_parameter('in_proj_bias', None) |
| self.out_proj = Linear(embed_dim, embed_dim, bias=bias) |
| |
| if add_bias_kv: |
| self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) |
| self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) |
| else: |
| self.bias_k = self.bias_v = None |
| |
| self.add_zero_attn = add_zero_attn |
| |
| self._reset_parameters() |
| |
| def _reset_parameters(self): |
| xavier_uniform_(self.in_proj_weight[:self.embed_dim, :]) |
| xavier_uniform_(self.in_proj_weight[self.embed_dim:(self.embed_dim * 2), :]) |
| xavier_uniform_(self.in_proj_weight[(self.embed_dim * 2):, :]) |
| |
| xavier_uniform_(self.out_proj.weight) |
| if self.in_proj_bias is not None: |
| constant_(self.in_proj_bias, 0.) |
| constant_(self.out_proj.bias, 0.) |
| if self.bias_k is not None: |
| xavier_normal_(self.bias_k) |
| if self.bias_v is not None: |
| xavier_normal_(self.bias_v) |
| |
| @weak_script_method |
| def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, |
| need_weights=True, static_kv=False, attn_mask=None): |
| """ |
| Inputs of forward function |
| query: [target length, batch size, embed dim] |
| key: [sequence length, batch size, embed dim] |
| value: [sequence length, batch size, embed dim] |
| key_padding_mask: if True, mask padding based on batch size |
| incremental_state: if provided, previous time steps are cashed |
| need_weights: output attn_output_weights |
| static_kv: key and value are static |
| |
| Outputs of forward function |
| attn_output: [target length, batch size, embed dim] |
| attn_output_weights: [batch size, target length, sequence length] |
| """ |
| qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() |
| kv_same = key.data_ptr() == value.data_ptr() |
| |
| tgt_len, bsz, embed_dim = query.size() |
| assert embed_dim == self.embed_dim |
| assert list(query.size()) == [tgt_len, bsz, embed_dim] |
| assert key.size() == value.size() |
| |
| if incremental_state is not None: |
| saved_state = self._get_input_buffer(incremental_state) |
| if 'prev_key' in saved_state: |
| # previous time steps are cached - no need to recompute |
| # key and value if they are static |
| if static_kv: |
| assert kv_same and not qkv_same |
| key = value = None |
| else: |
| saved_state = None |
| |
| if qkv_same: |
| # self-attention |
| q, k, v = self._in_proj_qkv(query) |
| elif kv_same: |
| # encoder-decoder attention |
| q = self._in_proj_q(query) |
| if key is None: |
| assert value is None |
| k = v = None |
| else: |
| k, v = self._in_proj_kv(key) |
| else: |
| q = self._in_proj_q(query) |
| k = self._in_proj_k(key) |
| v = self._in_proj_v(value) |
| q *= self.scaling |
| |
| if self.bias_k is not None: |
| assert self.bias_v is not None |
| k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
| v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
| if attn_mask is not None: |
| attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
| if key_padding_mask is not None: |
| key_padding_mask = torch.cat( |
| [key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) |
| |
| q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
| if k is not None: |
| k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
| if v is not None: |
| v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
| |
| if saved_state is not None: |
| # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) |
| if 'prev_key' in saved_state: |
| prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) |
| if static_kv: |
| k = prev_key |
| else: |
| k = torch.cat((prev_key, k), dim=1) |
| if 'prev_value' in saved_state: |
| prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) |
| if static_kv: |
| v = prev_value |
| else: |
| v = torch.cat((prev_value, v), dim=1) |
| saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) |
| saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) |
| |
| self._set_input_buffer(incremental_state, saved_state) |
| |
| src_len = k.size(1) |
| |
| if key_padding_mask is not None: |
| assert key_padding_mask.size(0) == bsz |
| assert key_padding_mask.size(1) == src_len |
| |
| if self.add_zero_attn: |
| src_len += 1 |
| k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
| v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
| if attn_mask is not None: |
| attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
| if key_padding_mask is not None: |
| key_padding_mask = torch.cat( |
| [key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) |
| |
| attn_output_weights = torch.bmm(q, k.transpose(1, 2)) |
| assert list(attn_output_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
| |
| if attn_mask is not None: |
| attn_mask = attn_mask.unsqueeze(0) |
| attn_output_weights += attn_mask |
| |
| if key_padding_mask is not None: |
| attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len) |
| attn_output_weights = attn_output_weights.masked_fill( |
| key_padding_mask.unsqueeze(1).unsqueeze(2), |
| float('-inf'), |
| ) |
| attn_output_weights = attn_output_weights.view(bsz * self.num_heads, tgt_len, src_len) |
| |
| attn_output_weights = F.softmax( |
| attn_output_weights.float(), dim=-1, |
| dtype=torch.float32 if attn_output_weights.dtype == torch.float16 else attn_output_weights.dtype) |
| attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training) |
| |
| attn_output = torch.bmm(attn_output_weights, v) |
| assert list(attn_output.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
| attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
| attn_output = self.out_proj(attn_output) |
| |
| if need_weights: |
| # average attention weights over heads |
| attn_output_weights = attn_output_weights.view(bsz, self.num_heads, tgt_len, src_len) |
| attn_output_weights = attn_output_weights.sum(dim=1) / self.num_heads |
| else: |
| attn_output_weights = None |
| |
| return attn_output, attn_output_weights |
| |
| def _in_proj_qkv(self, query): |
| return self._in_proj(query).chunk(3, dim=-1) |
| |
| def _in_proj_kv(self, key): |
| return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) |
| |
| def _in_proj_q(self, query): |
| return self._in_proj(query, end=self.embed_dim) |
| |
| def _in_proj_k(self, key): |
| return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) |
| |
| def _in_proj_v(self, value): |
| return self._in_proj(value, start=2 * self.embed_dim) |
| |
| def _in_proj(self, input, start=0, end=None): |
| weight = self.in_proj_weight |
| bias = self.in_proj_bias |
| weight = weight[start:end, :] |
| if bias is not None: |
| bias = bias[start:end] |
| return F.linear(input, weight, bias) |
| |
| |
| @weak_module |
| class PReLU(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{PReLU}(x) = \max(0,x) + a * \min(0,x) |
| |
| or |
| |
| .. math:: |
| \text{PReLU}(x) = |
| \begin{cases} |
| x, & \text{ if } x \geq 0 \\ |
| ax, & \text{ otherwise } |
| \end{cases} |
| |
| Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single |
| parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`, |
| a separate :math:`a` is used for each input channel. |
| |
| |
| .. note:: |
| weight decay should not be used when learning :math:`a` for good performance. |
| |
| .. note:: |
| Channel dim is the 2nd dim of input. When input has dims < 2, then there is |
| no channel dim and the number of channels = 1. |
| |
| Args: |
| num_parameters (int): number of :math:`a` to learn. |
| Although it takes an int as input, there is only two values are legitimate: |
| 1, or the number of channels at input. Default: 1 |
| init (float): the initial value of :math:`a`. Default: 0.25 |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| Attributes: |
| weight (Tensor): the learnable weights of shape (:attr:`num_parameters`). |
| |
| .. image:: scripts/activation_images/PReLU.png |
| |
| Examples:: |
| |
| >>> m = nn.PReLU() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| def __init__(self, num_parameters=1, init=0.25): |
| self.num_parameters = num_parameters |
| super(PReLU, self).__init__() |
| self.weight = Parameter(torch.Tensor(num_parameters).fill_(init)) |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.prelu(input, self.weight) |
| |
| def extra_repr(self): |
| return 'num_parameters={}'.format(self.num_parameters) |
| |
| |
| @weak_module |
| class Softsign(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{SoftSign}(x) = \frac{x}{ 1 + |x|} |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Softsign.png |
| |
| Examples:: |
| |
| >>> m = nn.Softsign() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.softsign(input) |
| |
| |
| @weak_module |
| class Tanhshrink(Module): |
| r"""Applies the element-wise function: |
| |
| .. math:: |
| \text{Tanhshrink}(x) = x - \text{Tanh}(x) |
| |
| Shape: |
| - Input: :math:`(N, *)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(N, *)`, same shape as the input |
| |
| .. image:: scripts/activation_images/Tanhshrink.png |
| |
| Examples:: |
| |
| >>> m = nn.Tanhshrink() |
| >>> input = torch.randn(2) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.tanhshrink(input) |
| |
| |
| @weak_module |
| class Softmin(Module): |
| r"""Applies the Softmin function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range `[0, 1]` and sum to 1. |
| |
| Softmin is defined as: |
| |
| .. math:: |
| \text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)} |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Arguments: |
| dim (int): A dimension along which Softmin will be computed (so every slice |
| along dim will sum to 1). |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input, with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmin() |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(Softmin, self).__init__() |
| self.dim = dim |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.softmin(input, self.dim, _stacklevel=5) |
| |
| |
| @weak_module |
| class Softmax(Module): |
| r"""Applies the Softmax function to an n-dimensional input Tensor |
| rescaling them so that the elements of the n-dimensional output Tensor |
| lie in the range [0,1] and sum to 1. |
| |
| Softmax is defined as: |
| |
| .. math:: |
| \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Arguments: |
| dim (int): A dimension along which Softmax will be computed (so every slice |
| along dim will sum to 1). |
| |
| .. note:: |
| This module doesn't work directly with NLLLoss, |
| which expects the Log to be computed between the Softmax and itself. |
| Use `LogSoftmax` instead (it's faster and has better numerical properties). |
| |
| Examples:: |
| |
| >>> m = nn.Softmax() |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(Softmax, self).__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| self.__dict__.update(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.softmax(input, self.dim, _stacklevel=5) |
| |
| |
| @weak_module |
| class Softmax2d(Module): |
| r"""Applies SoftMax over features to each spatial location. |
| |
| When given an image of ``Channels x Height x Width``, it will |
| apply `Softmax` to each location :math:`(Channels, h_i, w_j)` |
| |
| Shape: |
| - Input: :math:`(N, C, H, W)` |
| - Output: :math:`(N, C, H, W)` (same shape as input) |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [0, 1] |
| |
| Examples:: |
| |
| >>> m = nn.Softmax2d() |
| >>> # you softmax over the 2nd dimension |
| >>> input = torch.randn(2, 3, 12, 13) |
| >>> output = m(input) |
| """ |
| |
| @weak_script_method |
| def forward(self, input): |
| assert input.dim() == 4, 'Softmax2d requires a 4D tensor as input' |
| return F.softmax(input, 1, _stacklevel=5) |
| |
| |
| @weak_module |
| class LogSoftmax(Module): |
| r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional |
| input Tensor. The LogSoftmax formulation can be simplified as: |
| |
| .. math:: |
| \text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) |
| |
| Shape: |
| - Input: :math:`(*)` where `*` means, any number of additional |
| dimensions |
| - Output: :math:`(*)`, same shape as the input |
| |
| Arguments: |
| dim (int): A dimension along which LogSoftmax will be computed. |
| |
| Returns: |
| a Tensor of the same dimension and shape as the input with |
| values in the range [-inf, 0) |
| |
| Examples:: |
| |
| >>> m = nn.LogSoftmax() |
| >>> input = torch.randn(2, 3) |
| >>> output = m(input) |
| """ |
| __constants__ = ['dim'] |
| |
| def __init__(self, dim=None): |
| super(LogSoftmax, self).__init__() |
| self.dim = dim |
| |
| def __setstate__(self, state): |
| self.__dict__.update(state) |
| if not hasattr(self, 'dim'): |
| self.dim = None |
| |
| @weak_script_method |
| def forward(self, input): |
| return F.log_softmax(input, self.dim, _stacklevel=5) |