blob: 36faa99add3537af386a6995519753539d0a3418 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
def _find_match(str_list, key_str, postfix):
split_str = key_str.split(".")
if split_str[-1] == postfix:
match_string = "".join(key_str.split(".")[0:-1])
for s2 in str_list:
pattern1 = "".join(s2.split(".")[0:-1])
pattern2 = "".join(s2.split(".")[0:-2])
if match_string == pattern1:
return s2
if match_string == pattern2:
return s2
else:
return None
def compare_weights(float_dict, quantized_dict):
r"""Returns a dict with key corresponding to module names and each entry being
a dictionary with two keys 'float' and 'quantized', containing the float and
quantized weights. This dict can be used to compare and compute the quantization
error of the weights of float and quantized models .
Args:
float_dict: state dict of the float model
quantized_dict: state dict of the quantized model
Return:
weight_dict: dict with key corresponding to module names and each entry being
a dictionary with two keys 'float' and 'quantized', containing the float and
quantized weights
"""
weight_dict = {}
for key in quantized_dict:
match_key = _find_match(float_dict, key, "weight")
if match_key is not None:
weight_dict[key] = {}
weight_dict[key]["float"] = float_dict[match_key]
weight_dict[key]["quantized"] = quantized_dict[key]
return weight_dict
def get_observer_dict(mod, target_dict, observer_type, prefix=""):
r"""Traverse the modules and save all observers into dict.
This is mainly used for quantization accuracy debug
Args:
mod: the top module we want to save all observers
prefix: the prefix for the current module
observer_type: the type of observer we want to get, RecordingLogger is used
to do the module level comparison between quantized module and its
matching float shadow module, and TensorLogger is
used to compare the module outputs between float and quantized
models
target_dict: the dictionary used to save all the observers
"""
def get_prefix(prefix):
return prefix if prefix == "" else prefix + "."
for name, child in mod.named_children():
if isinstance(child, observer_type):
target_dict[get_prefix(prefix) + "stats"] = child.stats
break
for name, child in mod.named_children():
module_prefix = get_prefix(prefix) + name if prefix else name
get_observer_dict(child, target_dict, observer_type, module_prefix)
class Logger(nn.Module):
r"""Base class used in Shadow module to process the outputs of the module
"""
def __init__(self):
super(Logger, self).__init__()
self.stats = {}
def forward(self, x):
pass
class RecordingLogger(Logger):
r"""Class used in Shadow module to record the outputs of the original and
shadow modules
"""
def __init__(self):
super(RecordingLogger, self).__init__()
self.stats["float"] = None
self.stats["quantized"] = None
def forward(self, x, y):
if self.stats["float"] is None:
if x.is_quantized:
self.stats["quantized"] = x.dequantize().detach()
else: # Output is in float for dynamic quantization
self.stats["quantized"] = x.detach()
self.stats["float"] = y.detach()
else:
if x.is_quantized:
self.stats["quantized"] = torch.cat(
(self.stats["quantized"], x.dequantize().detach())
)
else:
self.stats["quantized"] = torch.cat(
(self.stats["quantized"], x.detach())
)
self.stats["float"] = torch.cat((self.stats["float"], y.detach()))
class Shadow(nn.Module):
r"""Shadow module attaches the float module to its matching quantized module
as the shadow. Then it uses Logger module to process the outputs of both
modules to do the comparison.
Args:
q_module: quantized module that we want to shadow
float_module: float module used to shadow q_module
Logger: class used to process the outputs of q_module and float_module
"""
def __init__(self, q_module, float_module, Logger):
super(Shadow, self).__init__()
self.orig_module = q_module
self.shadow_module = float_module
self.dequant = nnq.DeQuantize()
self.logger = Logger()
def forward(self, x):
output = self.orig_module(x)
x = x.dequantize()
shadow_output = self.shadow_module(x)
self.logger(output, shadow_output)
return output
def add(self, x, y):
output = self.orig_module.add(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.add(x, y)
self.logger(output, shadow_output)
return output
def add_scalar(self, x, y):
output = self.orig_module.add_scalar(x, y)
x = x.dequantize()
shadow_output = self.shadow_module.add_scalar(x, y)
self.logger(output, shadow_output)
return output
def mul(self, x, y):
output = self.orig_module.mul(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.mul(x, y)
self.logger(output, shadow_output)
return output
def mul_scalar(self, x, y):
output = self.orig_module.mul_scalar(x, y)
x = x.dequantize()
shadow_output = self.shadow_module.mul_scalar(x, y)
self.logger(output, shadow_output)
return output
def cat(self, x, dim=0):
output = self.orig_module.cat(x, dim)
x = [y.dequantize() for y in x]
shadow_output = self.shadow_module.cat(x, dim)
self.logger(output, shadow_output)
return output
def add_relu(self, x, y):
output = self.orig_module.add_relu(x, y)
x = x.dequantize()
y = y.dequantize()
shadow_output = self.shadow_module.add_relu(x, y)
self.logger(output, shadow_output)
return output
def prepare_model_with_stubs(float_module, q_module, module_swap_list, Logger):
r"""Prepare the model by attaching the float module to its matching quantized
module as the shadow if the float module type is in module_swap_list.
Args:
float_module: the float module used to generate the q_module
q_module: the quantized module
module_swap_list: list of float module types to attach the shadow
Logger: the class to be used in shadow module to process the outputs of
quantized module and its float shadow module
"""
float_module_children = {}
for name, mod in float_module.named_children():
float_module_children[name] = mod
reassign = {}
for name, mod in q_module.named_children():
if name not in float_module_children:
continue
float_mod = float_module_children[name]
if type(float_mod) not in module_swap_list:
prepare_model_with_stubs(float_mod, mod, module_swap_list, Logger)
if type(float_mod) in module_swap_list:
reassign[name] = Shadow(mod, float_mod, Logger)
for key, value in reassign.items():
q_module._modules[key] = value
def compare_model_stub(float_model, q_model, module_swap_list, data, Logger=Logger):
r"""Returns a dict with key corresponding to module names and each entry being
a dictionary with two keys 'float' and 'quantized', containing the output
tensors of quantized and its matching float shadow module. This dict can be
used to compare and compute the module level quantization error.
Args:
float_module: the float module used to generate the q_module
q_module: the quantized module
module_swap_list: list of float module types to attach the shadow
Logger: the class to be used in shadow module to process the outputs of
quantized module and its float shadow module
"""
prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
q_model(data)
ob_dict = {}
get_observer_dict(q_model, ob_dict, Logger)
return ob_dict