blob: 6d1fa9c147d8d9b738bbfae1377fd8a14ab2543e [file] [log] [blame]
#include <torch/csrc/jit/interpreter.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/variable.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/constants.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/ir.h>
#include <ATen/core/ivalue.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/script/jit_exception.h>
#include <ATen/core/thread_pool.h>
#include <exception>
#include <iostream>
#include <memory>
#include <mutex>
#include <ostream>
#include <stdexcept>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
namespace torch {
namespace jit {
// Before we translate to intepreter instructions, we do
// some preprocessing of the graph to turn it into a form that is closer
// to what the instructions will look like.
// In particular we:
// * (TODO) desugar Loop trip counts into c = 0, c += 1 instructions in the loop
// * Turn inputs/outputs into Load/Store instruction
// *. computes move_flags (see Outputs), and inserts
// * Drop nodes are inserted for any node that is unused to create a dummy use
// that will cause the interpreter to free the node.
// A drop node is just a node with no outputs that just pops its inputs off
// the stack, to ensure the interpreter release references to nodes that are
// never used. Drop nodes are also inserted when the last use of a node is in
// some conditionally run control flow (e.g. one side of an If) and the
// interpreter must free the node only after the control flow has reconverged
// Outputs are:
// * graph - the post processed copy of g
// * move_flags[n] - a list of booleans, one for each input,
// indicating whether this is the last use of the value. The interpreter
// should generate a move rather than a copy in this case.
namespace {
// new_cond = (i < max_trip_count) && cond
Value* createTripCountConjunctiveCondition(
Graph* g,
Value* cur_trip_count,
Value* max_trip_count,
Value* cond) {
// Emit initial comparison -- initial_trip_count < max_trip_count
Value* initial_comparison_value =
g->insertNode(g->create(aten::lt, {cur_trip_count, max_trip_count}, 1))
->output()
->setType(BoolType::get());
// Replace initial condition with logical `and` of trip count and
// initial condition
Value* new_cond =
g->insertNode(
g->create(aten::__and__, {initial_comparison_value, cond}, 1))
->output()
->setType(BoolType::get());
return new_cond;
}
// this currently just _removes_ the trip count inputs and checks they are
// unused. In the future they will be desugared into normal arithmetic to
// provide a loop counter
void desugarTripCounts(Block* b) {
for (auto n : b->nodes()) {
if (n->kind() == prim::Loop) {
auto g = n->owningGraph();
auto body_block = n->blocks()[0];
Value* block_trip_count_input = body_block->inputs()[0];
// Treat loop iteration number as a loop-carried dependency. We emit an
// increment at the end of the body block.
n->insertOutput(0);
Value* max_trip_count_value = n->input(0);
{
WithInsertPoint guard(n);
// int i = 0
Value* initial_trip_count = g->insertConstant(0);
// Set up initial iteration number value for loop-carried dependency
n->removeInput(0);
// Input 0 is now initial termination condition, insert this after that.
// LCD's start at index 1.
n->insertInput(1, initial_trip_count);
Value* new_cond = createTripCountConjunctiveCondition(
g, initial_trip_count, max_trip_count_value, n->input(0));
n->replaceInput(0, new_cond);
}
{
WithInsertPoint guard(body_block);
// Trip count is now a loop carried dependency. We emit an op to
// increment the trip count at the end of the body. Then, emit the same
// conjunctive stopping condition as above.
Value* const_one = g->insertConstant(1);
Value* inc_trip_count =
g->insertNode(
g->create(aten::add, {block_trip_count_input, const_one}, 1))
->output()
->setType(IntType::get());
body_block->insertOutput(1, inc_trip_count);
Value* body_cond = createTripCountConjunctiveCondition(
g, inc_trip_count, max_trip_count_value, body_block->outputs()[0]);
body_block->eraseOutput(0);
body_block->insertOutput(0, body_cond);
}
}
for (auto sb : n->blocks()) {
desugarTripCounts(sb);
}
}
}
// removes all inputs and outputs to a graph, replacing them with Load Store
// nodes
static void flattenIO(Graph& graph) {
auto load = graph.prependNode(graph.create(prim::Load, 0));
for (auto old_input : graph.inputs()) {
auto nv = load->addOutput();
nv->setType(old_input->type());
old_input->replaceAllUsesWith(nv);
}
graph.appendNode(graph.create(prim::Store, graph.outputs(), 0));
while (graph.inputs().size() > 0)
graph.eraseInput(graph.inputs().size() - 1);
while (graph.outputs().size() > 0)
graph.eraseOutput(graph.outputs().size() - 1);
}
// insert Drop nodes to kill references for anything unused:
// this can happen in a few places, e.g. when a node returns
// many values but only one is used
// a, b = foo()
// return a
void dropUnused(Block* b) {
auto createDropIfUnused = [&](ArrayRef<Value*> values) -> Node* {
std::vector<Value*> to_drop;
for (auto v : values) {
if (v->uses().size() == 0)
to_drop.push_back(v);
}
if (to_drop.size() == 0)
return nullptr;
return b->owningGraph()->create(prim::Drop, to_drop, 0);
};
if (auto d = createDropIfUnused(b->inputs())) {
b->prependNode(d);
}
for (auto n : b->nodes()) {
if (auto d = createDropIfUnused(n->outputs())) {
d->insertAfter(n);
}
for (auto b : n->blocks())
dropUnused(b);
}
}
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> findLastUses(Graph& g) {
// struct to share common data structures
struct FindLastUses {
Graph& graph;
// have we seen this value, yet, if not, it is the last use of the value
std::unordered_set<Value*> seen;
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
// A map from an If or Loop node to the optional Drop block that
// occurs directly after it to release any tensors that go out of scope
// when the If/Loop exits. These are created and inserted on demand.
std::unordered_map<Node*, Node*> drop_for_node;
FindLastUses(Graph& g) : graph(g) {
scanBlock(graph.block());
}
void scanBlock(Block* b) {
scanNode(b->return_node());
for (auto n : b->nodes().reverse()) {
scanNode(n);
}
}
void scanNode(Node* n) {
for (auto b : n->blocks()) {
scanBlock(b);
}
move_flags[n].resize(n->inputs().size());
// scan backwards so if a value is used twice in the list then it is a
// move
for (size_t i = n->inputs().size(); i > 0; --i) {
scanUse(n, i - 1);
}
}
void scanUse(Node* n, size_t i) {
auto& move_flags_n = move_flags[n];
auto v = n->inputs()[i];
auto inserted = seen.insert(v).second;
if (!inserted) {
move_flags_n[i] = false;
return;
}
// the last use of v may be in a nested block of an If or Loop statement
// find the node 'same_depth_node' at the same depth as the definition of
// v, and consider that node to be the last use of v. This ensures we do
// not delete nodes in nested scopes that may be executed multiple times
// and that nodes used on one side of an if
// but not the other get deleted regardless of the branch
// e.g.
// a = 4
// while <...>:
// y = a + a
// drop(a)
// In other words, we find the first program point for v that
// _reverse_ dominates the definition of v, and add a drop point there.
Node* same_depth_node = findOwnerInBlock(n, v->node()->owningBlock());
AT_ASSERT(
same_depth_node); // failure means v is not in scope for n, use lint!
// In the case where v and n are in the same block, just mark
// its move_flags to be true
if (same_depth_node == n) {
move_flags_n[i] = true;
return;
}
// in the case where the use is nested in a block
// add a Drop node after that block which will drop 'v'.
move_flags_n[i] = false;
addToDropIfNotExists(
findOrCreateDropInstructionForNode(same_depth_node), v);
}
// finds the node in block 'block' that contains in 'n'
// or nullptr if no such node exists, e.g.:
// n0: a = 4
// n1: if <cond>:
// n2: b = a + a
// findOwnerInBlock(n2, n0.block()) == n1
Node* findOwnerInBlock(Node* n, Block* block) {
while (n != nullptr && block != n->owningBlock()) {
n = n->owningBlock()->owningNode();
}
return n;
}
Node* findOrCreateDropInstructionForNode(Node* n) {
auto it = drop_for_node.find(n);
if (it == drop_for_node.end()) {
auto drop_node = graph.create(prim::Drop, 0);
drop_node->insertAfter(n);
it = drop_for_node.emplace(n, drop_node).first;
}
return it->second;
}
void addToDropIfNotExists(Node* drop, Value* v) {
for (auto i : drop->inputs()) {
// we already accounted for this use
if (i == v)
return;
}
drop->addInput(v);
move_flags[drop].push_back(true);
}
};
return FindLastUses(g).move_flags;
}
} // namespace
// pre-processing that happens once per graph
struct PreprocessGraph {
PreprocessGraph(Graph& g) : graph(g.copy()) {
n_outputs = graph->outputs().size();
desugarTripCounts(graph->block());
flattenIO(*graph);
dropUnused(graph->block());
// fill in move_flags by scanning blocks;
move_flags = findLastUses(*graph);
// TODO: desugar Loop trip counts, for now we drop trip counts
}
// Outputs of the preprocessing:
std::shared_ptr<Graph> graph;
// for each input, should we move rather than copy the inputs
std::unordered_map<Node*, std::vector<uint8_t>> move_flags;
// Record number of outputs before flattenIO()
size_t n_outputs;
};
// Sometimes we want to pass things that are not tensors. Instead of
// coming up with some "superclass" for tensor, which is annoying since
// 99% of values are at::Tensor, we instead we create a fake subclass of
// TensorImpl that can be subclassed to hold arbitrary things
// Note: this is currently unused but will probably be useful in the future,
// so we keep it around
struct ContainerTensor : public at::TensorImpl {
public:
ContainerTensor()
: TensorImpl(
at::UndefinedTensorId(),
caffe2::TypeMeta(),
nullptr,
/* is_variable */ false) {}
~ContainerTensor() override = default;
at::IntList sizes() const override {
throw std::runtime_error("sizes() on ContainerTensor");
}
at::IntList strides() const override {
throw std::runtime_error("strides() on ContainerTensor");
}
int64_t dim() const override {
throw std::runtime_error("dim() on ContainerTensor");
}
const at::Storage& storage() const override {
throw std::runtime_error("storage() on ContainerTensor");
}
};
// We need some lists for inputs and outputs. To keep all the memory
// contiguous we allocate a single vector and use offsets into the vector
// which are stored in the ListHandle struct
// start is an offset into int_data of Code for ListHandle<int>
// and bool_data of Code for ListHandle<bool>
template <typename T>
struct ListHandle {
int start;
int size;
};
struct UseList {
// values to be used
ListHandle<int> values;
// boolean flags indicating whether to free the Tensor after this use
ListHandle<bool> free_flags;
};
// one instruction plus meta-data
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct Instruction {
Operation callback;
UseList inputs;
ListHandle<int> outputs;
Symbol debug_name; // used in dump to understand the generated code
std::shared_ptr<SourceLocation> debug_location; // for error reporting
};
int relativeJump(int from_inst, int to_inst) {
return to_inst - (from_inst + 1);
}
struct CodeImpl {
CodeImpl(const std::shared_ptr<Graph>& graph_) : preprocess(*graph_) {
graph = preprocess.graph;
insertNodesFromBlock(graph->block());
}
// jump when input is false
void createJumpFalse(int from_inst, int to_inst) {
auto& inst = instructions[from_inst];
AT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack& stack) {
auto t = pop(stack).toBool();
return t ? 0 : offset;
};
inst.debug_name = prim::JumpZ;
}
// jump when input is true
void createJumpTrue(int from_inst, int to_inst) {
auto& inst = instructions[from_inst];
AT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [offset](Stack& stack) {
auto t = pop(stack).toBool();
return t ? offset : 0;
};
inst.debug_name = prim::JumpNZ;
}
void createJump(int from_inst, int to_inst) {
auto& inst = instructions[from_inst];
AT_ASSERT(inst.debug_name == prim::Placeholder);
auto offset = relativeJump(from_inst, to_inst);
inst.callback = [=](Stack& stack) { return offset; };
inst.debug_name = prim::Jump;
}
void insertNodesFromBlock(Block* block) {
for (auto node : block->nodes()) {
const auto& source_location = node->getSourceLocation();
switch (node->kind()) {
case prim::If: {
// x = if c:
// <then_block>
// -> (vt)
// else:
// <else_block>
// -> (vf)
// turns into:
// JumpNZ c, then
// <else_block>
// x = vf
// Jump end
// then:
// <then_block>
// x = vt
// end:
// prim::Placeholder instructions are replaced with branch
// instructions when the branch target locations are known
auto cond_branch = insertInstruction(
prim::Placeholder,
source_location,
node->inputs(),
moveFlags(node),
{});
auto then_block = node->blocks()[0];
auto else_block = node->blocks()[1];
insertNodesFromBlock(else_block);
insertAssign(
source_location,
else_block->outputs(),
moveFlags(else_block),
node->outputs());
auto jump =
insertInstruction(prim::Placeholder, source_location, {}, {}, {});
auto then_block_start = instructions.size();
insertNodesFromBlock(then_block);
insertAssign(
source_location,
then_block->outputs(),
moveFlags(then_block),
node->outputs());
createJump(jump, instructions.size());
createJumpTrue(cond_branch, then_block_start);
} break;
case prim::Loop: {
// o0 = while c i0
// block 0: l0
// <body>
// -> (v0, v1)
// turns into:
// l0 = i0
// JumpZ c, end
// begin:
// <body>
// c, l0 = v0, v1
// JumpNZ c, begin
// end:
auto body_block = node->blocks()[0];
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(
source_location,
node->inputs(),
moveFlags(node),
body_block->inputs());
// after assign op: stack: ... <cond>
// cond_branch consumes <cond> from top of the stack
auto cond_branch =
insertInstruction(prim::Placeholder, source_location, {}, {}, {});
// after branch: stack: ...
auto entry = instructions.size();
insertNodesFromBlock(body_block);
// before assign op: stack: ... <cond> <loop-carried-depdencies>
insertAssign(
source_location,
body_block->outputs(),
moveFlags(body_block),
body_block->inputs());
// after assign op: stack: ... <cond>
auto cond_branch_end =
insertInstruction(prim::Placeholder, source_location, {}, {}, {});
// after branch: stack: ...
aliasRegistersTo(node->outputs(), body_block->inputs());
createJumpFalse(cond_branch, instructions.size());
createJumpTrue(cond_branch_end, entry);
} break;
default: { insertInstruction(node); } break;
}
}
}
size_t insertInstruction(Node* n) {
auto inst = insertInstruction(
n->kind(),
n->getSourceLocation(),
n->inputs(),
moveFlags(n),
n->outputs());
instructions[inst].callback = getOperation(n);
return inst;
}
size_t insertInstruction(
Symbol sym,
std::shared_ptr<SourceLocation> debug_location,
ArrayRef<Value*> inputs,
ArrayRef<uint8_t> move_flags,
ArrayRef<Value*> outputs) {
instructions.emplace_back();
auto& inst = instructions.back();
inst.debug_name = sym;
inst.debug_location = std::move(debug_location);
listBegin(inst.inputs.values);
for (auto input : inputs) {
listInsert(inst.inputs.values, getOrAllocateRegister(input, true));
}
listBegin(inst.inputs.free_flags);
for (auto flag : move_flags) {
listInsert(inst.inputs.free_flags, flag);
}
listBegin(inst.outputs);
for (auto output : outputs) {
listInsert(inst.outputs, getOrAllocateRegister(output));
}
return instructions.size() - 1;
}
ArrayRef<uint8_t> moveFlags(Node* n) {
return preprocess.move_flags.at(n);
}
ArrayRef<uint8_t> moveFlags(Block* b) {
return moveFlags(b->return_node());
}
size_t insertAssign(
std::shared_ptr<SourceLocation> debug_location,
ArrayRef<Value*> inputs,
ArrayRef<uint8_t> move_flags,
ArrayRef<Value*> outputs) {
auto inst = insertInstruction(
prim::Assign, std::move(debug_location), inputs, move_flags, outputs);
// This node effectively forwards its inputs into different places in a
// register list. We don't need to manipulate the stack in any way, because
// all inputs are also outputs, and the interpreter will take care of
// putting them in correct places.
instructions[inst].callback = [](Stack& stack) { return 0; };
return inst;
}
// helpers to build/access RegList objects
int get(const ListHandle<int>& list, int i) const {
return int_data[list.start + i];
}
bool get(const ListHandle<bool>& list, int i) const {
return bool_data[list.start + i];
}
void listBegin(ListHandle<int>& list) {
list.start = int_data.size();
list.size = 0;
}
void listInsert(ListHandle<int>& list, int value) {
AT_CHECK(
list.start + list.size == (int)int_data.size(),
"another list already started");
int_data.push_back(value);
list.size++;
}
void listBegin(ListHandle<bool>& list) {
list.start = bool_data.size();
list.size = 0;
}
void listInsert(ListHandle<bool>& list, int value) {
AT_CHECK(
list.start + list.size == (int)bool_data.size(),
"another list already started");
bool_data.push_back(value);
list.size++;
}
// must be called before any new_allocations are used, otherwise they will
// already have registers assigned
void aliasRegistersTo(
ArrayRef<Value*> new_allocations,
ArrayRef<Value*> existing_allocations) {
AT_ASSERT(new_allocations.size() == existing_allocations.size());
for (size_t i = 0; i < new_allocations.size(); ++i) {
auto n = new_allocations[i]->unique();
auto e = existing_allocations[i]->unique();
AT_ASSERT(unique_to_reg.count(e) > 0 && unique_to_reg.count(n) == 0);
unique_to_reg[n] = unique_to_reg[e];
}
}
int getOrAllocateRegister(Value* n, bool required = false) {
size_t u = n->unique();
if (unique_to_reg.count(u) > 0)
return unique_to_reg[u];
AT_ASSERT(!required);
int r = register_size++;
unique_to_reg[u] = r;
return r;
}
const std::vector<GraphExecutor*>& grad_executors() {
if (!grad_executors_) {
grad_executors_.emplace();
for (Instruction& instr : instructions) {
if (auto executor = detail::getGradExecutor(instr.callback)) {
grad_executors_->push_back(executor);
}
}
}
return *grad_executors_;
}
void dumpInstruction(std::ostream& out, size_t pc) const {
auto writeList = [&](const ListHandle<int>& list) {
for (int i = 0; i < list.size; i++) {
if (i > 0)
out << ", ";
out << get(list, i);
}
};
auto writeUseList = [&](const UseList& list) {
for (int i = 0; i < list.values.size; i++) {
if (i > 0)
out << ", ";
if (get(list.free_flags, i))
out << "move(" << get(list.values, i) << ")";
else
out << get(list.values, i);
}
};
auto& inst = instructions.at(pc);
writeList(inst.outputs);
// NB: debug names are the kind of operator used to select
// dispatch
out << " = " << inst.debug_name.toUnqualString() << " ";
writeUseList(inst.inputs);
}
void dump(std::ostream& out) const {
for (size_t i = 0; i < instructions.size(); ++i) {
dumpInstruction(out, i);
out << "\n";
}
}
// We MUST hold onto graph here because some Operators stored in the
// instruction lists have dependencies on meta-data stored in the graph
// that would be dead otherwise.
// It is also very useful for debugging interpreter problems to
// keep this around.
std::shared_ptr<Graph> graph;
c10::optional<std::vector<GraphExecutor*>> grad_executors_;
PreprocessGraph preprocess;
std::unordered_map<size_t, int>
unique_to_reg; // map from unique of nodes to register in register table
friend struct InterpreterState;
std::vector<Instruction> instructions;
int register_size = 0;
// all memory ArrayRef<int> are slices of this, to make sure
// the interpreter is mostly linearly scanning through memory
std::vector<int> int_data;
std::vector<bool> bool_data;
};
// InterpreterState state that and used to compute a Code
struct InterpreterStateImpl : c10::intrusive_ptr_target {
InterpreterStateImpl(const Code& code)
: function(code.pImpl),
int_data(function->int_data.data()),
bool_data(function->bool_data),
registers(function->register_size) {}
private:
c10::intrusive_ptr<InterpreterStateImpl> intrusive_from_this() {
c10::raw::intrusive_ptr::incref(this);
return c10::intrusive_ptr<InterpreterStateImpl>::reclaim(this);
}
bool runImpl(Stack& stack) {
auto& instructions = function->instructions;
size_t last = instructions.size();
while (pc < last) {
// std::cout << "executing " << pc << ": ";
// function->dumpInstruction(std::cout, pc);
// std::cout << "\n";
auto& inst = instructions[pc];
try {
loadTensorsFromRegisters(inst.inputs, stack);
size_t new_pc = pc + 1 + inst.callback(stack);
for (int i = inst.outputs.size - 1; i >= 0; --i) {
int reg = get(inst.outputs, i);
registers[reg] = pop(stack);
// std::cout << "pop reg[" << reg << "];\n" << registers[reg] << "\n";
}
pc = new_pc;
} catch (Suspend& e) {
// wait() expects a single input
AT_ASSERT(inst.inputs.values.size == 1);
getOrCreateFuture();
if (get(inst.inputs.free_flags, 0)) {
// make sure the register is not freed once we are waked up
registers[get(inst.inputs.values, 0)] = e.future;
}
// Make sure adding callback is the last step.
// Otherwise if e.future has completed,
// the current thread will continue running before it suspends.
InterpreterState state(intrusive_from_this());
e.future->addCallback([state]() {
c10::global_work_queue().run(InterpreterContinuation(state, Stack(),
autograd::GradMode::is_enabled()));
});
return true;
} catch (Future::FutureError& e) {
// Error from the forked thread.
auto msg = e.error_msg; // copy the error for each callback
handleError(std::move(msg), false);
return false;
} catch (std::exception& e) {
// Error from the current thread
bool is_jit_exception = dynamic_cast<JITException*>(&e);
if (instructions[pc].debug_location) {
handleError(
instructions[pc].debug_location->wrapException(
e, "operation failed in interpreter"),
is_jit_exception);
} else {
handleError(e.what(), is_jit_exception);
}
return false;
}
}
if (future) {
auto num_outputs = function->preprocess.n_outputs;
if (num_outputs == 1) {
future->markCompleted(stack.back());
} else {
future->markCompleted(
Tuple::create(jit::last(stack, num_outputs).vec()));
}
}
return false;
}
void handleError(std::string&& error_msg, bool is_jit_exception) {
if (future) {
future->markCompleted(Future::FutureError(std::move(error_msg)));
} else if (is_jit_exception) {
throw JITException(std::move(error_msg));
} else {
throw std::runtime_error(std::move(error_msg));
}
}
public:
c10::intrusive_ptr<Future> getOrCreateFuture() {
if (!future) {
future = c10::make_intrusive<Future>();
}
return future;
}
c10::intrusive_ptr<Future> runAsync(Stack& stack) {
getOrCreateFuture();
runImpl(stack);
return future;
}
void run(Stack& stack) {
if (runImpl(stack)) {
future->wait();
auto num_outputs = function->preprocess.n_outputs;
if (num_outputs == 1) {
push(stack, future->value());
} else {
auto tuple = future->value().toTuple();
for (const auto& value : tuple->elements()) {
push(stack, value);
}
}
}
}
int get(const ListHandle<int>& list, int i) {
return int_data[list.start + i];
};
bool get(const ListHandle<bool>& list, int i) {
return bool_data[list.start + i];
}
void loadTensorsFromRegisters(const UseList& uses, Stack& stack) {
for (int i = 0; i < uses.values.size; i++) {
int reg = get(uses.values, i);
// std::cout << "push reg[" << reg << "];\n" << registers[reg] << "\n\n";
if (get(uses.free_flags, i)) {
stack.push_back(std::move(registers[reg]));
} else {
stack.push_back(registers[reg]);
}
}
}
// pc is critical for the interperter to pick up the progress from suspend
size_t pc = 0;
c10::intrusive_ptr<Future> future;
std::shared_ptr<CodeImpl> function; // keep function alive
// these are just copies of function to prevent indirections in interpreter
int* int_data;
const std::vector<bool>& bool_data;
// this holds all the tensors for this interpreter run
// we don't bother minimizing the size of this vector, since the extra
// memory used by the pointers in this will be small
// instead we are very aggresive about releasing tensors when they become dead
// to make sure memory management happens efficiently.
// We optimize for the case where derivatives are run with retain_graph=False
// in the case where it is true, then the interpreter and this array get
// copied if this every becomes a bottleneck then we _should_ consider
// minimizing the total number or register
std::vector<IValue> registers;
// single buffer for input/output calls to ATen functions, so that we do not
// reallocate
Stack stack;
};
std::ostream& operator<<(std::ostream& out, const Code& code) {
out << *code.pImpl->graph << "\n";
code.pImpl->dump(out);
return out;
}
Code::Code(const std::shared_ptr<Graph>& graph) : pImpl(new CodeImpl(graph)) {}
Code::~Code() = default;
const std::vector<GraphExecutor*>& Code::grad_executors() {
return pImpl->grad_executors();
}
InterpreterState::InterpreterState(const Code& code)
: pImpl(c10::make_intrusive<InterpreterStateImpl>(code)) {}
InterpreterState::~InterpreterState() = default;
void InterpreterState::run(Stack& stack) {
static_cast<InterpreterStateImpl*>(pImpl.get())->run(stack);
}
c10::intrusive_ptr<Future> InterpreterState::runAsync(Stack& stack) {
return static_cast<InterpreterStateImpl*>(pImpl.get())->runAsync(stack);
}
c10::intrusive_ptr<Future> InterpreterState::getFuture() {
return static_cast<InterpreterStateImpl*>(pImpl.get())->getOrCreateFuture();
}
InterpreterState::InterpreterState(
c10::intrusive_ptr<c10::intrusive_ptr_target> pImpl_)
: pImpl(std::move(pImpl_)) {}
void InterpreterContinuation::operator()() {
autograd::AutoGradMode grad_mode(grad_mode_enabled);
state.runAsync(stack);
}
} // namespace jit
} // namespace torch