blob: f9a02c7301416c43e90898813003822348b63872 [file] [log] [blame]
#include <array>
#include <unordered_map>
#include <thread>
#include <chrono>
#include <sstream>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDACachingAllocator.h>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/python_headers.h>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
THCState *state = nullptr;
static bool in_bad_fork = false; // True for children forked after cuda init
#ifndef WIN32
// Called in the forked child if cuda has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_run_yet_variable_to_false();
state = nullptr;
}
#endif
// Should be called before the first cuda call.
// Note: This is distinct from initExtension because a stub cuda implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static std::once_flag flag;
std::call_once(flag, []{ pthread_atfork(nullptr, nullptr, forked_child); });
#endif
}
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device)
{
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
}
PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
torch::utils::cuda_lazy_init();
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDevice_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::utils::cuda_lazy_init();
auto device = static_cast<int>(c10::cuda::current_device());
return PyLong_FromLong(device);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDeviceCount_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
return PyLong_FromLong(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getArchFlags(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject * THCPModule_isInBadFork(PyObject *self, PyObject *noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getCurrentCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDefaultStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getDefaultCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assert(PyLong_Check(obj), "invalid stream");
uint64_t bits = PyLong_AsUnsignedLongLong(obj);
if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) {
throw python_error();
}
auto stream = at::cuda::CUDAStream::unpack(bits);
auto device = static_cast<int>(c10::cuda::current_device());
if (device != stream.device_index()) {
THCPModule_setDevice(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCompiledVersion(PyObject *self, PyObject *noargs)
{
return PyLong_FromLong((long) CUDA_VERSION);
}
PyObject * THCPModule_cudaHostAllocator(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::Allocator* allocator = THCState_getCudaHostAllocator(state);
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_alloc(PyObject *_unused, PyObject *args){
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if(!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
ssize_t size = PyLong_AsSsize_t(size_o);
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
void* mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_delete(PyObject *_unused, PyObject *obj){
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSynchronize(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::device_synchronize();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaIPCCollect(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long as
// it holds the CUDA mutex. Otherwise another thread might be scheduled and try to
// e.g. allocate a new tensor which will cause a deadlock. It's enough to have a
// single global, because it can be only set once (cudaMutex is not recursive)
// by the thread that owns the mutex (obviously there can be only one such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject * THCPModule_cudaLockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject * THCPModule_cudaUnlockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject * THCPModule_hasPrimaryContext(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to has_primary_context");
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
if (at::detail::getCUDAHooks().hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setMemoryFraction(PyObject *_unused, PyObject *args)
{
HANDLE_TH_ERRORS
PyObject* fraction_o = nullptr;
PyObject* device_o = nullptr;
if(!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"set_memory_fraction",
1,
"(double fraction, int device);");
return nullptr;
}
double fraction = PyFloat_AsDouble(fraction_o);
int64_t device = PyLong_AsLongLong(device_o);
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_emptyCache(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const int device = (int) THPUtils_unpackLong(arg);
using c10::cuda::CUDACachingAllocator::StatType;
using c10::cuda::CUDACachingAllocator::Stat;
using c10::cuda::CUDACachingAllocator::StatArray;
using c10::cuda::CUDACachingAllocator::DeviceStats;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> statTypeNames = {
"all", "small_pool", "large_pool"
};
py::dict dict;
for (size_t i = 0; i < statTypeNames.size(); ++i) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats = c10::cuda::CUDACachingAllocator::getDeviceStats(device);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_resetAccumulatedMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_accumulated_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_resetPeakMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memorySnapshot(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
using c10::cuda::CUDACachingAllocator::SegmentInfo;
using c10::cuda::CUDACachingAllocator::BlockInfo;
const auto segmentInfoToDict = [](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict["device"] = segmentInfo.device;
segmentDict["address"] = segmentInfo.address;
segmentDict["total_size"] = segmentInfo.total_size;
segmentDict["allocated_size"] = segmentInfo.allocated_size;
segmentDict["active_size"] = segmentInfo.active_size;
segmentDict["segment_type"] = (segmentInfo.is_large ? "large" : "small");
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict["size"] = blockInfo.size;
blockDict["state"] = (blockInfo.allocated ? "active_allocated" : (blockInfo.active ? "active_pending_free" : "inactive"));
blocks.append(blockDict);
}
segmentDict["blocks"] = blocks;
return segmentDict;
};
const std::vector<SegmentInfo>& snapshot = c10::cuda::CUDACachingAllocator::snapshot();
py::list result;
for (const auto& segmentInfo : snapshot) {
result.append(segmentInfoToDict(segmentInfo));
}
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def("__repr__", [](const cudaDeviceProp &prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major
<< ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
return stream.str();
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def("_get_device_properties", [](int device) -> cudaDeviceProp * {
return at::cuda::getDeviceProperties(device);
}, py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python classes
static PyObject * THCPModule_initExtension(PyObject *self, PyObject *noargs)
{
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
state = at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m) throw python_error();
// Register Storage Python objects with DynamicTypes.cpp
THCPDoubleStorage_postInit(m);
THCPFloatStorage_postInit(m);
THCPHalfStorage_postInit(m);
THCPLongStorage_postInit(m);
THCPIntStorage_postInit(m);
THCPShortStorage_postInit(m);
THCPCharStorage_postInit(m);
THCPByteStorage_postInit(m);
THCPBoolStorage_postInit(m);
THCPBFloat16Storage_postInit(m);
THCPComplexDoubleStorage_postInit(m);
THCPComplexFloatStorage_postInit(m);
bool has_half = true;
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
set_module_attr("has_half", has_half ? Py_True : Py_False);
auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state));
if (!_state_cdata) throw python_error();
set_module_attr("_state_cdata", _state_cdata.get());
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for(int i = 0; i < num_gpus; i++) {
auto gen = at::cuda::detail::getDefaultCUDAGenerator(i);
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen);
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount", THCPModule_getDeviceCount_wrap, METH_NOARGS, nullptr},
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
THCPModule_getCurrentStream_wrap, METH_O, nullptr},
{"_cuda_getDefaultStream",
THCPModule_getDefaultStream_wrap, METH_O, nullptr},
{"_cuda_getCurrentBlasHandle", THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, nullptr},
{"_cuda_setStream", THCPModule_setStream_wrap, METH_O, nullptr},
{"_cuda_getCompiledVersion", THCPModule_getCompiledVersion, METH_NOARGS, nullptr},
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_setMemoryFraction", THCPModule_setMemoryFraction, METH_VARARGS, nullptr},
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats", THCPModule_resetAccumulatedMemoryStats, METH_O, nullptr},
{"_cuda_resetPeakMemoryStats", THCPModule_resetPeakMemoryStats, METH_O, nullptr},
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
{"_cuda_cudaHostAllocator", THCPModule_cudaHostAllocator, METH_NOARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc", THCPModule_cudaCachingAllocator_raw_alloc, METH_VARARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_delete", THCPModule_cudaCachingAllocator_raw_delete, METH_O, nullptr},
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
#ifdef USE_NCCL
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter", THCPModule_nccl_reduce_scatter, METH_VARARGS, nullptr},
#endif
{nullptr}
};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch { namespace cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
void initCudnnBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject *module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
shared::initCudnnBindings(module);
#endif
registerCudaDeviceProperties(module);
}
}}