blob: 813f06feb7419de66d2cc90855b886511f86512f [file] [log] [blame]
from tools.codegen.model import *
from tools.codegen.api.types import *
import tools.codegen.api.cpp as cpp
import tools.codegen.api.native as native
import tools.codegen.local as local
import itertools
from typing import Sequence, Optional, Tuple
# This file describes the translation of JIT schema to the dispatcher
# API, the *unboxed* calling convention by which invocations through
# the dispatcher are made. Historically, the dispatcher API matched
# the C++ API, but with the establishment of the boxed API, we've
# made changes to the dispatcher API to so that the unboxed API
# better aligns with the boxed API. The dispatcher API hooks heavily
# into our template based boxing/unboxing machinery, so changes
# to this convention will usually need template updates too.
#
# Prominent characteristics of the dispatcher API:
#
# - 'use_c10_dispatcher: full' controls whether or not we actually
# use the modern calling convention or not. When use_c10_dispatcher
# is not enabled, we don't use the template machinery.
#
# - dtype, layout, device and pin_memory are represented as separate
# arguments.
#
def argumenttype_type(t: Type, *, mutable: bool) -> str:
if local.use_c10_dispatcher().dispatcher_uses_new_style():
# This is a faux amis. If it makes sense in the future to add
# more special cases here, or invert things so cpp.argument_type
# calls this, or just completely inline the function, please do
# it.
return cpp.argumenttype_type(t, mutable=mutable)
else:
# This is real sharing. If you're modifying this path, ask
# yourself why you are changing the native functions protocol
# here and not in native.
return native.argumenttype_type(t, mutable=mutable)
def argument_type(a: Argument) -> str:
return argumenttype_type(a.type, mutable=a.is_write)
def returns_type(rs: Sequence[Return]) -> str:
# At present, there is no difference. But there could be!
return cpp.returns_type(rs)
def argument(a: Argument) -> DispatcherArgument:
if local.use_c10_dispatcher().dispatcher_uses_new_style():
return DispatcherArgument(
type=argument_type(a),
name=a.name,
argument=a,
)
else:
la = native.argument(a)
assert len(la) == 1, "Operators using the legacy signature in the dispatcher don't scatter TensorOptions."
return DispatcherArgument(
type=la[0].type,
name=la[0].name,
argument=la[0].argument,
)
def name(func: FunctionSchema) -> str:
return cpp.name(func)
def arguments(func: FunctionSchema) -> Tuple[DispatcherArgument, ...]:
if local.use_c10_dispatcher().dispatcher_uses_new_style():
return tuple(map(argument, itertools.chain(func.out_arguments, func.arguments, func.kwarg_only_arguments)))
else:
return tuple(
DispatcherArgument(type=la.type, name=la.name, argument=la.argument)
for la in native.arguments(func)
)
# Given a set of CppArguments in scope, return a sequence of dispatcher
# expressions that translate the cpp API into dispatcher API
#
# WARNING: This is unsound if you pass it CppArgument when you were
# supposed to pass it CppTensorOptionsArguments, it will directly
# translate device to device, which will give you the wrong signature
# for dispatcher. If Argument "knew" that it was part of a
# TensorOptions that would help us dynamically test for this case
def cppargument_exprs(
a: CppArgumentPack,
*, tensor_options: Optional[CppArgument]
) -> Sequence[DispatcherExpr]:
if isinstance(a, CppSingleArgumentPack):
if isinstance(a.this.argument, TensorOptionsArguments):
if local.use_c10_dispatcher().dispatcher_uses_new_style():
# Scatter
ta = a.this.argument
name = a.this.name
return [
DispatcherExpr(type=argument_type(ta.dtype), expr=f'optTypeMetaToScalarType({name}.dtype_opt())'),
DispatcherExpr(type=argument_type(ta.layout), expr=f'{name}.layout_opt()'),
DispatcherExpr(type=argument_type(ta.device), expr=f'{name}.device_opt()'),
DispatcherExpr(type=argument_type(ta.pin_memory), expr=f'{name}.pinned_memory_opt()'), # weird discrep
]
else:
# No-op
return [DispatcherExpr(type='const TensorOptions &', expr=a.this.name)]
elif isinstance(a.this.argument, Argument):
if a.this.name == 'memory_format' and \
tensor_options is not None and \
local.use_c10_dispatcher().dispatcher_uses_new_style():
return [DispatcherExpr(
type=argument_type(a.this.argument),
expr=f'c10::impl::check_tensor_options_and_extract_memory_format({tensor_options.name}, {a.this.name})')
]
else:
return [DispatcherExpr(type=argument_type(a.this.argument), expr=a.this.name)]
else:
assert_never(a.this.argument)
elif isinstance(a, CppTensorOptionsArgumentPack):
if local.use_c10_dispatcher().dispatcher_uses_new_style():
# No-op
return [
expr
for sub_a in a.explicit_arguments() # NB: don't really care about explicitness here
for expr in cppargument_exprs(CppSingleArgumentPack(sub_a), tensor_options=tensor_options)
]
else:
# Gather
return [DispatcherExpr(
type='const TensorOptions &',
expr=f'TensorOptions().dtype({a.dtype.name}).layout({a.layout.name})'
f'.device({a.device.name}).pinned_memory({a.pin_memory.name})',
)]
elif isinstance(a, CppThisArgumentPack):
return [DispatcherExpr(
type=a.type,
expr='const_cast<Tensor&>(*this)',
)]
else:
assert_never(a)
def cpparguments_exprs(args: Sequence[CppArgumentPack]) -> Sequence[DispatcherExpr]:
tensor_options = next(
(a.this for a in args if isinstance(a, CppSingleArgumentPack) and
isinstance(a.this.argument, TensorOptionsArguments)),
None
)
return [r for a in args for r in cppargument_exprs(a, tensor_options=tensor_options)]
# I don't think this is entirely sound, but it should be reasonably
# close
def nativearguments_exprs(args: Sequence[NativeArgument]) -> Sequence[DispatcherExpr]:
return cpparguments_exprs([
CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument))
for a in args
])
def exprs(args: Sequence[DispatcherArgument]) -> Sequence[DispatcherExpr]:
return cpparguments_exprs([
CppSingleArgumentPack(CppArgument(type=a.type, name=a.name, default=None, argument=a.argument))
for a in args
])