blob: a38046eca0a36045668d98d0bfd551708acb1494 [file] [log] [blame]
import sys
import io
import os
import math
import random
import operator
import copy
import torch
import torch.cuda
import tempfile
import unittest
import warnings
import pickle
from torch.utils.dlpack import from_dlpack, to_dlpack
from torch._utils import _rebuild_tensor
from itertools import product, combinations
from functools import reduce
from common import TestCase, iter_indices, TEST_NUMPY, TEST_SCIPY, TEST_MKL, \
run_tests, download_file, skipIfNoLapack, suppress_warnings, IS_WINDOWS, PY3
if TEST_NUMPY:
import numpy as np
if TEST_SCIPY:
from scipy import signal
SIZE = 100
can_retrieve_source = True
with warnings.catch_warnings(record=True) as warns:
with tempfile.NamedTemporaryFile() as checkpoint:
x = torch.save(torch.nn.Module(), checkpoint)
for warn in warns:
if "Couldn't retrieve source code" in warn.message.args[0]:
can_retrieve_source = False
break
class FilelikeMock(object):
def __init__(self, data, has_fileno=True, has_readinto=False):
if has_readinto:
setattr(self, 'readinto', self.readinto_opt)
if has_fileno:
# Python 2's StringIO.StringIO has no fileno attribute.
# This is used to test that.
setattr(self, 'fileno', self.fileno_opt)
self.calls = set([])
self.bytesio = io.BytesIO(data)
def trace(fn, name):
def result(*args, **kwargs):
self.calls.add(name)
return fn(*args, **kwargs)
return result
for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']:
traced_fn = trace(getattr(self.bytesio, attr), attr)
setattr(self, attr, traced_fn)
def fileno_opt(self):
raise io.UnsupportedOperation('Not a real file')
def readinto_opt(self, view):
self.calls.add('readinto')
return self.bytesio.readinto(view)
def was_called(self, name):
return name in self.calls
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
class TestTorch(TestCase):
def test_dot(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
v1 = torch.randn(100).type(tname)
v2 = torch.randn(100).type(tname)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
v1 = torch.randn(1).type(tname).expand(100)
v2 = torch.randn(100).type(tname)
res1 = torch.dot(v1, v2)
res2 = 0
for i, j in zip(v1, v2):
res2 += i * j
self.assertEqual(res1, res2)
def test_ger(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
v1 = torch.randn(100).type(tname)
v2 = torch.randn(100).type(tname)
res1 = torch.ger(v1, v2)
res2 = torch.zeros(100, 100).type(tname)
for i in range(100):
for j in range(100):
res2[i, j] = v1[i] * v2[j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
v1 = torch.randn(1).type(tname).expand(100)
v2 = torch.randn(100).type(tname)
res1 = torch.ger(v1, v2)
res2 = torch.zeros(100, 100).type(tname)
for i in range(100):
for j in range(100):
res2[i, j] = v1[i] * v2[j]
self.assertEqual(res1, res2)
def test_addr(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
def run_test(m, v1, v2, m_transform=lambda x: x):
m = m_transform(m.clone())
ref = m.clone()
torch.addr(m, v1, v2, out=m)
for i in range(m.size(0)):
for j in range(m.size(1)):
ref[i, j] += v1[i] * v2[j]
self.assertEqual(m, ref)
for tname, _prec in types.items():
for h, w in [(100, 110), (1, 20), (200, 2)]:
m = torch.randn(h, w).type(tname)
v1 = torch.randn(h).type(tname)
v2 = torch.randn(w).type(tname)
run_test(m, v1, v2)
# test transpose
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
# test 0 strided
v1 = torch.randn(1).type(tname).expand(h)
run_test(m, v1, v2)
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
def test_addmv(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
t = torch.randn(10).type(tname)
m = torch.randn(10, 100).type(tname)
v = torch.randn(100).type(tname)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10).type(tname)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
t = torch.randn(1).type(tname).expand(10)
m = torch.randn(10, 1).type(tname).expand(10, 100)
v = torch.randn(100).type(tname)
res1 = torch.addmv(t, m, v)
res2 = torch.zeros(10).type(tname)
res2 += t
for i in range(10):
for j in range(100):
res2[i] += m[i, j] * v[j]
self.assertEqual(res1, res2)
def test_addmm(self):
types = {
'torch.DoubleTensor': 1e-8,
'torch.FloatTensor': 1e-4,
}
for tname, _prec in types.items():
M = torch.randn(10, 25).type(tname)
m1 = torch.randn(10, 50).type(tname)
m2 = torch.randn(50, 25).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2)
# Test 0-strided
for tname, _prec in types.items():
M = torch.randn(10, 1).type(tname).expand(10, 25)
m1 = torch.randn(10, 1).type(tname).expand(10, 50)
m2 = torch.randn(50, 25).type(tname)
res1 = torch.addmm(M, m1, m2)
res2 = torch.zeros(10, 25).type(tname)
res2 += M
for i in range(10):
for j in range(25):
for k in range(50):
res2[i, j] += m1[i, k] * m2[k, j]
self.assertEqual(res1, res2)
def test_allclose(self):
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([1.01, 2.01, 3.01])
self.assertTrue(torch.allclose(x, y, rtol=0, atol=0.02))
self.assertTrue(torch.allclose(x, y, rtol=0.01, atol=0.0))
self.assertFalse(torch.allclose(x, y))
self.assertTrue(torch.allclose(torch.tensor([0.0]), torch.tensor([1e-8])))
x = torch.tensor([2.0, 3.0, float('nan')])
y = torch.tensor([2.01, 3.01, float('nan')])
self.assertFalse(torch.allclose(x, y, rtol=1e-2))
self.assertTrue(torch.allclose(x, y, rtol=1e-2, equal_nan=True))
self.assertFalse(torch.allclose(x, y, rtol=1e-3, equal_nan=True))
inf = torch.tensor([float('inf')])
self.assertTrue(torch.allclose(inf, inf))
self.assertTrue(torch.allclose(-inf, -inf))
self.assertFalse(torch.allclose(inf, -inf))
self.assertFalse(torch.allclose(inf, torch.tensor([1e20])))
self.assertFalse(torch.allclose(-inf, torch.tensor([-1e20])))
def test_linear_algebra_scalar_raises(self):
m = torch.randn(5, 5)
v = torch.randn(5)
s = torch.tensor(7)
self.assertRaises(RuntimeError, lambda: torch.mv(m, s))
self.assertRaises(RuntimeError, lambda: torch.addmv(v, m, s))
self.assertRaises(RuntimeError, lambda: torch.ger(v, s))
self.assertRaises(RuntimeError, lambda: torch.ger(s, v))
self.assertRaises(RuntimeError, lambda: torch.addr(m, v, s))
self.assertRaises(RuntimeError, lambda: torch.addr(m, s, v))
def _test_math(self, torchfn, mathfn, input=None):
if input is None:
input = []
input.append(list(range(-5, 5)))
input.append([x + 1e-6 for x in range(-5, 5)])
input.append(torch.randn(10).tolist())
input.append((torch.randn(10) + 1e6).tolist())
input.append([math.pi * (x / 2) for x in range(-5, 5)])
def compare_reference(input, dtype):
input = torch.tensor(input, dtype=dtype)
res1 = torchfn(input)
res2 = input.clone().apply_(lambda x: mathfn(x))
torch.testing.assert_allclose(res1, res2)
# compare against the reference math function
compare_reference(input, torch.double)
compare_reference(input, torch.float)
def check_non_contiguous(shape, dtype):
contig = torch.randn(shape, dtype=dtype)
non_contig = torch.empty(shape + (2,), dtype=dtype)[..., 0]
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
self.assertEqual(torchfn(contig), torchfn(non_contig), 'non-contiguous')
# compare application against contiguous vs. non-contiguous
check_non_contiguous((5, 7), torch.double)
check_non_contiguous((1024,), torch.double)
check_non_contiguous((5, 7), torch.float)
check_non_contiguous((1024,), torch.float)
def check_large(dtype):
input = torch.randn(1024, 512, dtype=dtype)
actual = torchfn(input)
expected = torch.stack([torchfn(slice) for slice in input])
self.assertEqual(actual, expected, 'large')
# compare large tensor vs. repeated small applications to expose
# possible parallelism bugs.
check_large(torch.double)
check_large(torch.float)
def _test_math_by_name(self, function_name):
torchfn = getattr(torch, function_name)
mathfn = getattr(math, function_name)
self._test_math(torchfn, mathfn)
def test_sin(self):
self._test_math_by_name('sin')
def test_sinh(self):
def sinh(x):
try:
return math.sinh(x)
except OverflowError:
return float('inf') if x > 0 else float('-inf')
self._test_math(torch.sinh, sinh)
def test_lgamma(self):
def lgamma(x):
if x <= 0 and x == int(x):
return float('inf')
return math.lgamma(x)
self._test_math(torch.lgamma, lgamma)
def _digamma_input(self, test_poles=True):
input = []
input.append((torch.randn(10).abs() + 1e-4).tolist())
input.append((torch.randn(10).abs() + 1e6).tolist())
zeros = torch.linspace(-9.5, -0.5, 10)
input.append(zeros.tolist())
input.append((zeros - 0.49).tolist())
input.append((zeros + 0.49).tolist())
input.append((zeros + (torch.rand(10) * 0.99) - 0.5).tolist())
if test_poles:
input.append([-0.999999994, -1.999999994, -2.0000000111,
-100.99999994, -1931.99999994, 0.000000111,
-0.000000111, 0, -2, -329])
return input
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_digamma(self):
from scipy.special import digamma
self._test_math(torch.digamma, digamma, self._digamma_input())
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_polygamma(self):
from scipy.special import polygamma
for n in [0, 1]:
self._test_math(lambda x: torch.polygamma(n, x),
lambda x: polygamma(n, x).item(),
self._digamma_input(test_poles=False))
def test_asin(self):
self._test_math(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else float('nan'))
def test_cos(self):
self._test_math_by_name('cos')
def test_cosh(self):
def cosh(x):
try:
return math.cosh(x)
except OverflowError:
return float('inf') if x > 0 else float('-inf')
self._test_math(torch.cosh, cosh)
def test_acos(self):
self._test_math(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
def test_tan(self):
self._test_math_by_name('tan')
def test_tanh(self):
self._test_math_by_name('tanh')
def test_atan(self):
self._test_math_by_name('atan')
def test_log(self):
def log(x):
if x == 0:
return float('-inf')
elif x < 0:
return float('nan')
return math.log(x)
self._test_math(torch.log, log)
def test_log10(self):
def log10(x):
if x == 0:
return float('-inf')
elif x < 0:
return float('nan')
return math.log10(x)
self._test_math(torch.log10, log10)
def test_log1p(self):
def log1p(x):
if x == -1:
return float('-inf')
elif x < -1:
return float('nan')
return math.log1p(x)
self._test_math(torch.log1p, log1p)
def test_log2(self):
def log2(x):
if x == 0:
return float('-inf')
elif x < 0:
return float('nan')
try:
return math.log2(x)
except AttributeError:
return math.log(x, 2)
self._test_math(torch.log2, log2)
def test_sqrt(self):
self._test_math(torch.sqrt, lambda x: math.sqrt(x) if x >= 0 else float('nan'))
def test_erf(self):
self._test_math_by_name('erf')
def test_erfinv(self):
def checkType(tensor):
inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.)
self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues))
# test inf
self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([float('-inf'), float('inf')])))
# test nan
self.assertEqual(tensor([-2, 2]).erfinv(), tensor([float('nan'), float('nan')]))
checkType(torch.FloatTensor)
checkType(torch.DoubleTensor)
def test_exp(self):
def exp(x):
try:
return math.exp(x)
except OverflowError:
return float('inf')
self._test_math(torch.exp, exp)
def test_expm1(self):
def expm1(x):
try:
return math.expm1(x)
except OverflowError:
return float('inf')
self._test_math(torch.expm1, expm1)
def test_floor(self):
self._test_math_by_name('floor')
def test_ceil(self):
self._test_math_by_name('ceil')
def test_rsqrt(self):
def rsqrt(x):
if x == 0:
return float('inf')
elif x < 0:
return float('nan')
return 1.0 / math.sqrt(x)
self._test_math(torch.rsqrt, rsqrt)
def test_sigmoid(self):
# TODO: why not simulate math.sigmoid like with rsqrt?
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
precision_4dps = 0.0002
def checkType(tensor):
self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps)
checkType(torch.FloatTensor)
checkType(torch.DoubleTensor)
def test_frac(self):
self._test_math(torch.frac, lambda x: math.fmod(x, 1))
def test_trunc(self):
self._test_math(torch.trunc, lambda x: x - math.fmod(x, 1))
def test_round(self):
self._test_math(torch.round, round)
def test_has_storage(self):
self.assertIsNotNone(torch.Tensor().storage())
self.assertIsNotNone(torch.Tensor(0).storage())
self.assertIsNotNone(torch.Tensor([]).storage())
self.assertIsNotNone(torch.Tensor().clone().storage())
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
self.assertIsNotNone(torch.Tensor().new().storage())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_has_storage_numpy(self):
for dtype in [np.float32, np.float64, np.int64,
np.int32, np.int16, np.uint8]:
arr = np.array([1], dtype=dtype)
self.assertIsNotNone(torch.FloatTensor(arr).storage())
self.assertIsNotNone(torch.DoubleTensor(arr).storage())
self.assertIsNotNone(torch.IntTensor(arr).storage())
self.assertIsNotNone(torch.LongTensor(arr).storage())
self.assertIsNotNone(torch.ByteTensor(arr).storage())
if torch.cuda.is_available():
self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage())
self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage())
self.assertIsNotNone(torch.cuda.IntTensor(arr).storage())
self.assertIsNotNone(torch.cuda.LongTensor(arr).storage())
self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage())
def _testSelection(self, torchfn, mathfn):
# contiguous
m1 = torch.randn(100, 100)
res1 = torchfn(m1)
res2 = m1[0, 0]
for i, j in iter_indices(m1):
res2 = mathfn(res2, m1[i, j])
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10)
m2 = m1[:, 4]
res1 = torchfn(m2)
res2 = m2[0, 0]
for i, j in iter_indices(m2):
res2 = mathfn(res2, m2[i][j])
self.assertEqual(res1, res2)
# with indices
m1 = torch.randn(100, 100)
res1val, res1ind = torchfn(m1, 1, False)
res2val = m1[:, 0:1].clone().squeeze()
res2ind = res1ind.clone().fill_(0)
for i, j in iter_indices(m1):
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
res2val[i] = m1[i, j]
res2ind[i] = j
maxerr = 0
for i in range(res1val.size(0)):
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
self.assertEqual(res1ind[i], res2ind[i])
self.assertLessEqual(abs(maxerr), 1e-5)
# NaNs
for index in (0, 4, 99):
m1 = torch.randn(100)
m1[index] = float('nan')
res1val, res1ind = torch.max(m1, 0)
self.assertTrue(math.isnan(res1val))
self.assertEqual(res1ind, index)
res1val = torchfn(m1)
self.assertTrue(math.isnan(res1val))
def test_max(self):
self._testSelection(torch.max, max)
def test_min(self):
self._testSelection(torch.min, min)
@staticmethod
def _test_dim_reduction(self, cast):
example = [[-1, 2, 1], [5, 3, 6]]
types = [torch.double,
torch.float,
torch.int64,
torch.int32,
torch.int16,
torch.uint8]
# This won't test for 256bit instructions, since we usually
# only work on 1 cacheline (1024bit) at a time and these
# examples aren't big enough to trigger that.
for dtype in types:
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.sum().item(), 16)
self.assertEqual(x.sum(0), torch.FloatTensor([4, 5, 7]))
self.assertEqual(x.sum(1), torch.FloatTensor([2, 14]))
y = cast(torch.tensor(example, dtype=dtype))
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0), y)
# Mean not supported for Int types
for dtype in types[:2]:
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.mean().item(), 16.0 / 6)
self.assertEqual(x.mean(0), torch.FloatTensor([2.0, 2.5, 7.0 / 2]))
self.assertEqual(x.mean(1), torch.FloatTensor([2.0 / 3, 14.0 / 3]))
for dtype in types:
if dtype == torch.uint8: # Overflows
continue
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.prod().item(), -180)
self.assertEqual(x.prod(0), torch.FloatTensor([-5, 6, 6]))
self.assertEqual(x.prod(1), torch.FloatTensor([-2, 90]))
for dtype in types:
if dtype == torch.uint8: # Doesn't support negative values
continue
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.max().item(), 6)
self.assertEqual(x.max(0), (torch.FloatTensor([5, 3, 6]), torch.FloatTensor([1, 1, 1])))
self.assertEqual(x.max(1), (torch.FloatTensor([2, 6]), torch.FloatTensor([1, 2])))
for dtype in types:
if dtype == torch.uint8: # Doesn't support negative values
continue
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.min().item(), -1)
self.assertEqual(x.min(0), (torch.FloatTensor([-1, 2, 1]), torch.FloatTensor([0, 0, 0])))
self.assertEqual(x.min(1), (torch.FloatTensor([-1, 3]), torch.FloatTensor([0, 1])))
for dtype in types:
if dtype == torch.uint8: # Doesn't support negative values
continue
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.argmax().item(), 5)
self.assertEqual(x.argmax(dim=0), torch.FloatTensor([1, 1, 1]))
self.assertEqual(x.argmax(dim=1), torch.FloatTensor([1, 2]))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.FloatTensor([[1, 1, 1]]))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].argmax().item(), 2)
for dtype in types:
if dtype == torch.uint8: # Doesn't support negative values
continue
x = cast(torch.tensor(example, dtype=dtype))
self.assertEqual(x.argmin().item(), 0)
self.assertEqual(x.argmin(dim=0), torch.FloatTensor([0, 0, 0]))
self.assertEqual(x.argmin(dim=1), torch.FloatTensor([0, 1]))
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.FloatTensor([[0], [1]]))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].argmin().item(), 0)
dim_red_fns = [
"mean", "median", "mode", "norm", "prod",
"std", "sum", "var", "max", "min"]
def normfn_attr(t, dim, keepdim=False, out=None):
attr = getattr(torch, "norm")
return attr(t, 2, dim, keepdim, out=out)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False, out=None):
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
return ans if not isinstance(ans, tuple) else ans[0]
def fn_tuple(x, dim, keepdim=False, out=None):
return fn_attr(x, dim, keepdim=keepdim, out=out)
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = cast(torch.randn(3, 4, 5))
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = cast(torch.randn(1))
dim = 0
self.assertEqual(fn(x, dim).shape, tuple())
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = cast(torch.randn(dims))
test_multidim(x, singleton_dim)
# check reducing with output kwargs
if fn_name in ['median', 'mode', 'max', 'min']:
y = cast(torch.randn(5, 3))
values = cast(torch.randn(5, 3))
indices = cast(torch.zeros(5, 3).long() - 1)
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
self.assertEqual(values[:, 1], values_expected,
'{} values with out= kwarg'.format(fn_name))
self.assertEqual(indices[:, 1], indices_expected,
'{} indices with out= kwarg'.format(fn_name))
continue
x = cast(torch.randn(5, 3))
y = cast(torch.randn(5, 3))
fn(y, 1, keepdim=False, out=x[:, 1])
expected = fn(y, 1, keepdim=False)
self.assertEqual(x[:, 1], expected, '{} with out= kwarg'.format(fn_name))
def test_dim_reduction(self):
self._test_dim_reduction(self, lambda t: t)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_cpu_parallel(self):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, 0)
def test_max_elementwise(self):
self._testCSelection(torch.max, max)
def test_min_elementwise(self):
self._testCSelection(torch.min, min)
def test_lerp(self):
def TH_lerp(a, b, weight):
return a + weight * (b - a)
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
w = random.random()
result = torch.lerp(a, b, w)
expected = a.clone()
expected.map2_(a, b, lambda _, a, b: TH_lerp(a, b, w))
self.assertEqual(result, expected)
def test_all_any(self):
def test(size):
x = torch.ones(*size).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_empty(self):
x = torch.ByteTensor()
self.assertTrue(x.all())
self.assertFalse(x.any())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_all_any_empty_cuda(self):
x = torch.cuda.ByteTensor()
self.assertTrue(x.all())
self.assertFalse(x.any())
def test_mv(self):
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
res1 = torch.mv(m1, v1)
res2 = res1.clone().zero_()
for i, j in iter_indices(m1):
res2[i] += m1[i][j] * v1[j]
self.assertEqual(res1, res2)
def test_add(self):
# [res] torch.add([res,] tensor1, tensor2)
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
# contiguous
res1 = torch.add(m1[4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(1)):
res2[i] = m1[4, i] + v1[i]
self.assertEqual(res1, res2)
m1 = torch.randn(100, 100)
v1 = torch.randn(100)
# non-contiguous
res1 = torch.add(m1[:, 4], v1)
res2 = res1.clone().zero_()
for i in range(m1.size(0)):
res2[i] = m1[i, 4] + v1[i]
self.assertEqual(res1, res2)
# [res] torch.add([res,] tensor, value)
m1 = torch.randn(10, 10)
# contiguous
res1 = m1.clone()
res1[3].add_(2)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[3, i] = res2[3, i] + 2
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].add_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] + 2
self.assertEqual(res1, res2)
# [res] torch.add([res,] tensor1, value, tensor2)
def test_csub(self):
# with a tensor
a = torch.randn(100, 90)
b = a.clone().normal_()
res_add = torch.add(a, -1, b)
res_csub = a.clone()
res_csub.sub_(b)
self.assertEqual(res_add, res_csub)
# with a scalar
a = torch.randn(100, 100)
scalar = 123.5
res_add = torch.add(a, -scalar)
res_csub = a.clone()
res_csub.sub_(scalar)
self.assertEqual(res_add, res_csub)
@staticmethod
def _test_neg(self, cast):
float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor']
int_types = ['torch.IntTensor', 'torch.ShortTensor', 'torch.ByteTensor',
'torch.CharTensor']
for t in float_types + int_types:
if t in float_types:
a = cast(torch.randn(100, 90).type(t))
else:
a = cast(torch.Tensor(100, 90).type(t).random_())
zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_()
if t == 'torch.ByteTensor':
res_add = torch.add(zeros, a, alpha=255)
else:
res_add = torch.add(zeros, a, alpha=-1)
res_neg = a.clone()
res_neg.neg_()
self.assertEqual(res_neg, res_add)
# test out of place as well
res_neg_out_place = a.clone().neg()
self.assertEqual(res_neg_out_place, res_add)
# test via __neg__ operator
res_neg_op = -a.clone()
self.assertEqual(res_neg_op, res_add)
def test_neg(self):
self._test_neg(self, lambda t: t)
def test_reciprocal(self):
a = torch.randn(100, 89)
res_div = 1 / a
res_reciprocal = a.clone()
res_reciprocal.reciprocal_()
self.assertEqual(res_reciprocal, res_div)
def test_mul(self):
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].mul_(2)
res2 = m1.clone()
for i in range(res1.size(0)):
res2[i, 3] = res2[i, 3] * 2
self.assertEqual(res1, res2)
def test_div(self):
m1 = torch.randn(10, 10)
res1 = m1.clone()
res1[:, 3].div_(2)
res2 = m1.clone()
for i in range(m1.size(0)):
res2[i, 3] = res2[i, 3] / 2
self.assertEqual(res1, res2)
def test_fmod(self):
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
res1 = m1.clone()
q = 2.1
res1[:, 3].fmod_(q)
res2 = m1.clone()
for i in range(m1.size(1)):
res2[i, 3] = math.fmod(res2[i, 3], q)
self.assertEqual(res1, res2)
def test_remainder(self):
# Check the Floating point case
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
res1 = m1.clone()
res2 = m1.clone()
qs = torch.arange(-5.1, 4.1)
# Check the case where the divisor is a simple float
for col_idx, q in enumerate(qs):
# Reference
for i in range(m1.size(0)):
res2[i, col_idx] = res2[i, col_idx] % q
# To test
res1[:, col_idx].remainder_(q)
self.assertEqual(res1, res2)
# Check the case where the divisor is a tensor
res1 = m1.clone()
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
self.assertEqual(res1, res2)
# Check the LongTensor case
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
long_res1 = long_m1.clone()
long_res2 = long_m1.clone()
long_qs = torch.arange(-5, 5).long()
long_qs[5] = 5 # Can't handle the divisor=0 case
for col_idx, long_q in enumerate(long_qs):
# Reference
for i in range(long_m1.size(0)):
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
# To test
long_res1[:, col_idx].remainder_(long_q)
self.assertEqual(long_res1, long_res2)
# Divisor is a tensor case
long_res1 = long_m1.clone()
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
@staticmethod
def _test_remainder_overflow(self, dtype, device):
# Check Integer Overflows
x = torch.tensor(23500, dtype=dtype, device=device)
q = 392486996410368
self.assertEqual(x % q, x)
self.assertEqual(-x % q, q - x)
self.assertEqual(x % -q, x - q)
self.assertEqual(-x % -q, -x)
def test_remainder_overflow(self):
self._test_remainder_overflow(self, dtype=torch.int64, device='cpu')
def test_mm(self):
# helper function
def matrixmultiply(mat1, mat2):
n = mat1.size(0)
m = mat1.size(1)
p = mat2.size(1)
res = torch.zeros(n, p)
for i, j in iter_indices(res):
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
return res
# contiguous case
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 1
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 2
n, m, p = 10, 10, 5
mat1 = torch.randn(m, n).t()
mat2 = torch.randn(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# non contiguous case 3
n, m, p = 10, 10, 5
mat1 = torch.randn(m, n).t()
mat2 = torch.randn(p, m).t()
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
# test with zero stride
n, m, p = 10, 10, 5
mat1 = torch.randn(n, m)
mat2 = torch.randn(m, 1).expand(m, p)
res = torch.mm(mat1, mat2)
res2 = matrixmultiply(mat1, mat2)
self.assertEqual(res, res2)
@staticmethod
def _test_btrifact(self, cast):
a = torch.FloatTensor((((1.3722, -0.9020),
(1.8849, 1.9169)),
((0.7187, -1.1695),
(-0.0139, 1.3572)),
((-1.6181, 0.7148),
(1.3728, 0.1319))))
a = cast(a)
a_LU, pivots = a.btrifact() # test default info
# test deprecated info argument
info = cast(torch.IntTensor())
with warnings.catch_warnings(record=True):
a_LU, pivots = a.btrifact(info=info)
self.assertEqual(info.abs().sum(), 0)
a_LU_, pivots_, info_ = a.btrifact_with_info()
self.assertEqual(a_LU, a_LU_)
self.assertEqual(pivots, pivots_)
self.assertEqual(info, info_)
P, a_L, a_U = torch.btriunpack(a_LU, pivots)
a_ = torch.bmm(P, torch.bmm(a_L, a_U))
self.assertEqual(a_, a)
@skipIfNoLapack
def test_btrifact(self):
self._test_btrifact(self, lambda t: t)
@staticmethod
def _test_btrisolve(self, cast):
a = torch.FloatTensor((((1.3722, -0.9020),
(1.8849, 1.9169)),
((0.7187, -1.1695),
(-0.0139, 1.3572)),
((-1.6181, 0.7148),
(1.3728, 0.1319))))
b = torch.FloatTensor(((4.02, 6.19),
(-1.56, 4.00),
(9.81, -4.09)))
a, b = cast(a), cast(b)
LU_data, pivots, info = a.btrifact_with_info()
self.assertEqual(info.abs().sum(), 0)
x = torch.btrisolve(b, LU_data, pivots)
b_ = torch.bmm(a, x.unsqueeze(2)).squeeze()
self.assertEqual(b_, b)
@skipIfNoLapack
def test_btrisolve(self):
self._test_btrisolve(self, lambda t: t)
def test_bmm(self):
num_batches = 10
M, N, O = 23, 8, 12
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
for i in range(num_batches):
r = torch.mm(b1[i], b2[i])
self.assertEqual(r, res[i])
def test_addbmm(self):
# num_batches = 10
# M, N, O = 12, 8, 5
num_batches = 2
M, N, O = 2, 3, 4
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
res2 = torch.Tensor().resize_as_(res[0]).zero_()
res2.addbmm_(b1, b2)
self.assertEqual(res2, res.sum(0, False))
res2.addbmm_(1, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2)
res2.addbmm_(1., .5, b1, b2)
self.assertEqual(res2, res.sum(0, False) * 2.5)
res3 = torch.addbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.addbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res.sum(0, False) * 3)
res5 = torch.addbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res.sum(0, False))
res6 = torch.addbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5))
def test_baddbmm(self):
num_batches = 10
M, N, O = 12, 8, 5
b1 = torch.randn(num_batches, M, N)
b2 = torch.randn(num_batches, N, O)
res = torch.bmm(b1, b2)
res2 = torch.Tensor().resize_as_(res).zero_()
res2.baddbmm_(b1, b2)
self.assertEqual(res2, res)
res2.baddbmm_(1, b1, b2)
self.assertEqual(res2, res * 2)
res2.baddbmm_(1, .5, b1, b2)
self.assertEqual(res2, res * 2.5)
res3 = torch.baddbmm(1, res2, 0, b1, b2)
self.assertEqual(res3, res2)
res4 = torch.baddbmm(1, res2, .5, b1, b2)
self.assertEqual(res4, res * 3)
res5 = torch.baddbmm(0, res2, 1, b1, b2)
self.assertEqual(res5, res)
res6 = torch.baddbmm(.1, res2, .5, b1, b2)
self.assertEqual(res6, res2 * .1 + res * .5)
def test_clamp(self):
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
# just in case we're extremely lucky.
min_val = -1
max_val = 1
m1[1] = min_val
m1[2] = max_val
res1 = m1.clone()
res1.clamp_(min_val, max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, min(max_val, res2[i]))
self.assertEqual(res1, res2)
out = m1.clone()
torch.clamp(m1, min=min_val, max=max_val, out=out)
self.assertEqual(out, res1)
res1 = torch.clamp(m1, min=min_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = max(min_val, res2[i])
self.assertEqual(res1, res2)
torch.clamp(m1, min=min_val, out=out)
self.assertEqual(out, res1)
res1 = torch.clamp(m1, max=max_val)
res2 = m1.clone()
for i in iter_indices(res2):
res2[i] = min(max_val, res2[i])
self.assertEqual(res1, res2)
torch.clamp(m1, max=max_val, out=out)
self.assertEqual(out, res1)
def test_pow(self):
# [res] torch.pow([res,] x)
# pow has dedicated implementation for different exponents
for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]:
# base - tensor, exponent - number
# contiguous
m1 = torch.rand(100, 100) + 0.5
res1 = torch.pow(m1[4], exponent)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[4][i], exponent)
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.rand(100, 100) + 0.5
res1 = torch.pow(m1[:, 4], exponent)
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(m1[i, 4], exponent)
self.assertEqual(res1, res2)
# base - number, exponent - tensor
# contiguous
m1 = torch.randn(100, 100)
res1 = torch.pow(3, m1[4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[4, i])
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(100, 100)
res1 = torch.pow(3, m1[:, 4])
res2 = res1.clone().zero_()
for i in range(res2.size(0)):
res2[i] = math.pow(3, m1[i][4])
self.assertEqual(res1, res2)
def test_rpow(self):
m = torch.randn(10, 10)
self.assertEqual(torch.pow(2, m), 2**m)
@staticmethod
def _test_int_pow(self, cast):
if not TEST_NUMPY:
return
import numpy as np
def check_against_np(tensor, exp):
tensor_np = tensor.cpu().numpy()
exp_np = exp if isinstance(exp, int) else exp.cpu().numpy()
expected = torch.LongTensor(tensor_np ** exp_np).type_as(tensor)
self.assertEqual(torch.pow(tensor, exp), expected)
self.assertEqual(tensor.pow(exp), torch.pow(tensor, exp))
typecasts = [
lambda x: x.long(),
lambda x: x.short(),
lambda x: x.byte(),
]
if not IS_WINDOWS:
typecasts.append(lambda x: x.int())
shape = (11, 5)
tensor = cast(torch.LongTensor(shape).random_(-10, 10))
exps = [0, 1, 2, 5, cast(torch.LongTensor(shape).random_(0, 20))]
for typecast in typecasts:
for exp in exps:
t = typecast(tensor)
e = exp if isinstance(exp, int) else typecast(exp)
check_against_np(t, e)
def test_int_pow(self):
self._test_int_pow(self, lambda x: x)
def _test_cop(self, torchfn, mathfn):
def reference_implementation(res2):
for i, j in iter_indices(sm1):
idx1d = i * sm1.size(0) + j
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
return res2
# contiguous
m1 = torch.randn(10, 10, 10)
m2 = torch.randn(10, 10 * 10)
sm1 = m1[4]
sm2 = m2[4]
res1 = torchfn(sm1, sm2.view(10, 10))
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
# non-contiguous
m1 = torch.randn(10, 10, 10)
m2 = torch.randn(10 * 10, 10 * 10)
sm1 = m1[:, 4]
sm2 = m2[:, 4]
# view as sm1.size()
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
res1 = torchfn(sm1, sm2)
# reference_implementation assumes 1-d sm2
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
res2 = reference_implementation(res1.clone())
self.assertEqual(res1, res2)
def test_cdiv(self):
self._test_cop(torch.div, lambda x, y: x / y)
def test_cfmod(self):
self._test_cop(torch.fmod, math.fmod)
def test_cremainder(self):
self._test_cop(torch.remainder, lambda x, y: x % y)
def test_cmul(self):
self._test_cop(torch.mul, lambda x, y: x * y)
def test_cpow(self):
self._test_cop(torch.pow, lambda x, y: float('nan') if x < 0 else math.pow(x, y))
def test_sum_all(self):
def check_sum_all(tensor):
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
check_sum_all(torch.tensor([1, 2, 3, 4, 5]))
check_sum_all(torch.randn(200000))
check_sum_all(torch.randn(2000, 2)[:, 0])
@unittest.skipIf(not TEST_NUMPY, 'Numpy not found')
def test_sum_dim(self):
def check_sum_dim(tensor, dim):
expected = tensor.numpy().sum(dim)
actual = tensor.sum(dim)
self.assertEqual(expected.shape, actual.shape)
self.assertTrue(np.allclose(expected, actual.numpy()))
check_sum_dim(torch.randn(3, 5, 7), 0)
check_sum_dim(torch.randn(3, 5, 7), 1)
check_sum_dim(torch.randn(3, 5, 7), 2)
check_sum_dim(torch.randn(100000), -1)
check_sum_dim(torch.randn(5, 400000), 1)
check_sum_dim(torch.randn(50, 50, 50), 0)
check_sum_dim(torch.randn(50, 50, 50), 1)
check_sum_dim(torch.randn(50, 50, 50), 2)
def test_sum_out(self):
x = torch.rand(100, 100)
res1 = torch.sum(x, 1)
res2 = torch.Tensor()
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
# TODO: these tests only check if it's possible to pass a return value
# it'd be good to expand them
def test_prod(self):
x = torch.rand(100, 100)
res1 = torch.prod(x, 1)
res2 = torch.Tensor()
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cumsum(self):
x = torch.rand(100, 100)
res1 = torch.cumsum(x, 1)
res2 = torch.Tensor()
torch.cumsum(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cumprod(self):
x = torch.rand(100, 100)
res1 = torch.cumprod(x, 1)
res2 = torch.Tensor()
torch.cumprod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_cross(self):
x = torch.rand(100, 3, 100)
y = torch.rand(100, 3, 100)
res1 = torch.cross(x, y)
res2 = torch.Tensor()
torch.cross(x, y, out=res2)
self.assertEqual(res1, res2)
def test_zeros(self):
res1 = torch.zeros(100, 100)
res2 = torch.Tensor()
torch.zeros(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_zeros_like(self):
expected = torch.zeros(100, 100)
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_zeros_like_cuda(self):
expected = torch.zeros(100, 100).cuda()
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
def test_zeros_like_multiple_device(self):
expected = torch.zeros(100, 100).cuda()
x = torch.cuda.FloatTensor(100, 100, device=1)
output = torch.zeros_like(x)
self.assertEqual(output, expected)
def test_histc(self):
x = torch.Tensor((2, 4, 2, 2, 5, 4))
y = torch.histc(x, 5, 1, 5) # nbins, min, max
z = torch.Tensor((0, 3, 0, 2, 1))
self.assertEqual(y, z)
def test_ones(self):
res1 = torch.ones(100, 100)
res2 = torch.Tensor()
torch.ones(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_ones_like(self):
expected = torch.ones(100, 100)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_ones_like_cuda(self):
expected = torch.ones(100, 100).cuda()
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
def test_ones_like_multiple_device(self):
expected = torch.ones(100, 100).cuda()
x = torch.cuda.FloatTensor(100, 100, device=1)
output = torch.ones_like(x)
self.assertEqual(output, expected)
@staticmethod
def _test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
def test_dtypes(self):
all_dtypes = torch.testing.get_all_dtypes()
self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cpu'))
if torch.cuda.is_available():
self._test_dtypes(self, all_dtypes, torch.strided, torch.device('cuda:0'))
def test_device(self):
cpu = torch.device('cpu')
self.assertEqual('cpu', str(cpu))
self.assertEqual('cpu', cpu.type)
self.assertEqual(None, cpu.index)
cpu0 = torch.device('cpu:0')
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cpu0 = torch.device('cpu', 0)
self.assertEqual('cpu:0', str(cpu0))
self.assertEqual('cpu', cpu0.type)
self.assertEqual(0, cpu0.index)
cuda = torch.device('cuda')
self.assertEqual('cuda', str(cuda))
self.assertEqual('cuda', cuda.type)
self.assertEqual(None, cuda.index)
cuda1 = torch.device('cuda:1')
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
cuda1 = torch.device('cuda', 1)
self.assertEqual('cuda:1', str(cuda1))
self.assertEqual('cuda', cuda1.type)
self.assertEqual(1, cuda1.index)
self.assertRaises(RuntimeError, lambda: torch.device('cpu:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cpu:1'))
self.assertRaises(RuntimeError, lambda: torch.device('cpu', -1))
self.assertRaises(RuntimeError, lambda: torch.device('cpu', 1))
self.assertRaises(RuntimeError, lambda: torch.device('cuda:-1'))
self.assertRaises(RuntimeError, lambda: torch.device('cuda', -1))
self.assertRaises(TypeError, lambda: torch.device('other'))
self.assertRaises(TypeError, lambda: torch.device('other:0'))
def test_tensor_device(self):
def assertEqual(device_str, fn):
self.assertEqual(torch.device(device_str), fn().device)
self.assertEqual(device_str, str(fn().device))
assertEqual('cpu', lambda: torch.tensor(5))
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu'))
# NOTE: 'cpu' is the canonical representation of 'cpu:0', but 'cuda:X' is the canonical
# representation of cuda devices.
assertEqual('cpu', lambda: torch.ones((2, 3), dtype=torch.float32, device='cpu:0'))
if torch.cuda.is_available():
assertEqual('cuda:0', lambda: torch.tensor(5).cuda(0))
assertEqual('cuda:0', lambda: torch.tensor(5).cuda('cuda:0'))
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu'))
self.assertRaises(RuntimeError, lambda: torch.tensor(5).cuda('cpu:0'))
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device=0))
assertEqual('cuda:0', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:0'))
assertEqual('cuda:' + str(torch.cuda.current_device()),
lambda: torch.tensor(5, dtype=torch.int64, device='cuda'))
if torch.cuda.device_count() > 1:
assertEqual('cuda:1', lambda: torch.tensor(5).cuda(1))
assertEqual('cuda:1', lambda: torch.tensor(5).cuda('cuda:1'))
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device=1))
assertEqual('cuda:1', lambda: torch.tensor(5, dtype=torch.int64, device='cuda:1'))
def test_to(self):
a = torch.tensor(5)
self.assertEqual(a.device, a.to('cpu').device)
self.assertEqual(a.device, a.to('cpu', dtype=torch.float32).device)
self.assertIs(torch.float32, a.to('cpu', dtype=torch.float32).dtype)
self.assertEqual(a.device, a.to(torch.float32).device)
self.assertIs(torch.float32, a.to(dtype=torch.float32).dtype)
if torch.cuda.is_available():
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
self.assertEqual(b.device, b.to(cuda).device)
self.assertEqual(a.device, b.to('cpu').device)
self.assertEqual(b.device, a.to(cuda).device)
self.assertIs(torch.int32, b.to('cpu', dtype=torch.int32).dtype)
self.assertEqual(a.device, b.to('cpu', dtype=torch.int32).device)
self.assertIs(torch.int32, b.to(dtype=torch.int32).dtype)
self.assertEqual(b.device, b.to(dtype=torch.int32).device)
def test_to_with_tensor(self):
a = torch.tensor(5)
self.assertEqual(a.device, a.to(a).device)
if torch.cuda.is_available():
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = torch.tensor(5., device=cuda)
self.assertEqual(b.device, b.to(b).device)
self.assertEqual(a.device, b.to(a).device)
self.assertEqual(b.device, a.to(b).device)
@staticmethod
def _test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device != -1:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in [True, False]:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=rg),
int64_dtype, layout, device, None, rg)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=rg),
int64_dtype, layout, device, None, rg)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=rg),
int64_dtype, layout, device, fv + 3, rg)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=rg),
int64_dtype, layout, device, fv + 5, rg)
def test_empty_full(self):
self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cpu'))
if torch.cuda.device_count() > 0:
self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, -1)
self._test_empty_full(self, torch.testing.get_all_dtypes(), torch.strided, torch.device('cuda:0'))
def test_dtype_out_match(self):
d = torch.autograd.Variable(torch.DoubleTensor(2, 3))
self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), out=d, dtype=torch.float32))
def test_constructor_dtypes(self):
default_type = torch.Tensor().type()
self.assertIs(torch.Tensor().dtype, torch.get_default_dtype())
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
self.assertIs(torch.float32, torch.FloatTensor.dtype)
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
torch.set_default_tensor_type('torch.FloatTensor')
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
torch.set_default_tensor_type(torch.float64)
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.DoubleStorage, torch.Storage)
torch.set_default_tensor_type(torch.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
# don't support integral or sparse default types.
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.int64))
torch.set_default_tensor_type(default_type)
def test_type(self):
x = torch.randn(3, 3).double()
self.assertEqual(x.type('torch.FloatTensor').dtype, torch.float32)
self.assertEqual(x.type(torch.FloatTensor).dtype, torch.float32)
self.assertEqual(x.int().type(torch.Tensor).dtype, torch.get_default_dtype())
self.assertEqual(x.type(torch.int32).dtype, torch.int32)
def test_tensor_factory(self):
expected = torch.Tensor([1, 1])
# test data
res1 = torch.tensor([1, 1])
self.assertEqual(res1, expected)
res1 = torch.tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = torch.tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = torch.tensor(expected, dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy with numpy
if TEST_NUMPY:
a = np.array([5.])
res1 = torch.tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
def test_tensor_factory_type_inference(self):
def test_inference(default_dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_tensor_type(default_dtype)
self.assertIs(default_dtype, torch.tensor(()).dtype)
self.assertIs(default_dtype, torch.tensor(5.).dtype)
self.assertIs(torch.int64, torch.tensor(5).dtype)
self.assertIs(torch.uint8, torch.tensor(True).dtype)
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
if TEST_NUMPY:
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
else:
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
torch.set_default_tensor_type(saved_dtype)
test_inference(torch.float64)
test_inference(torch.float32)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_tensor_factory_cuda_type_inference(self):
saved_dtype = torch.get_default_dtype()
torch.set_default_tensor_type(torch.float32)
self.assertIs(torch.float32, torch.tensor(0.).dtype)
self.assertEqual(torch.device('cpu'), torch.tensor(0.).device)
torch.set_default_tensor_type(torch.float64)
self.assertIs(torch.float64, torch.tensor(0.).dtype)
torch.set_default_tensor_type(saved_dtype)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_tensor_factory_cuda_type(self):
saved_dtype = torch.get_default_dtype()
torch.set_default_tensor_type(torch.cuda.FloatTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float32, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(torch.cuda.DoubleTensor)
x = torch.zeros((5, 5))
self.assertIs(torch.float64, x.dtype)
self.assertTrue(x.is_cuda)
torch.set_default_tensor_type(saved_dtype)
def test_new_tensor(self):
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
# test data
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1, expected)
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = expected.new_tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertEqual(res2, expected)
self.assertIs(torch.int, res2.dtype)
# test copy with numpy
if TEST_NUMPY:
a = np.array([5.])
res1 = torch.tensor(a)
res1 = res1.new_tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
if torch.cuda.device_count() >= 2:
expected = expected.cuda(1)
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
res2 = expected.new_tensor(expected)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), 0)
res1 = expected.new_tensor(1)
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor(1, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
def test_diag(self):
x = torch.rand(100, 100)
res1 = torch.diag(x)
res2 = torch.Tensor()
torch.diag(x, out=res2)
self.assertEqual(res1, res2)
@staticmethod
def _test_diagonal(self, dtype, device):
x = torch.randn((100, 100), dtype=dtype, device=device)
result = torch.diagonal(x)
expected = torch.diag(x)
self.assertEqual(result, expected)
x = torch.randn((100, 100), dtype=dtype, device=device)
result = torch.diagonal(x, 17)
expected = torch.diag(x, 17)
self.assertEqual(result, expected)
def test_diagonal(self):
self._test_diagonal(self, dtype=torch.float32, device='cpu')
@staticmethod
def _test_diagflat(self, dtype, device):
# Basic sanity test
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x)
self.assertEqual(result, expected)
# Test offset
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x, 17)
expected = torch.diag(x, 17)
self.assertEqual(result, expected)
# Test where input has more than one dimension
x = torch.randn((2, 3, 4), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
# Noncontig input
x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0)
self.assertFalse(x.is_contiguous())
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
def test_diagflat(self):
self._test_diagflat(self, dtype=torch.float32, device='cpu')
def test_eye(self):
res1 = torch.eye(100, 100)
res2 = torch.Tensor()
torch.eye(100, 100, out=res2)
self.assertEqual(res1, res2)
def test_renorm(self):
m1 = torch.randn(10, 5)
res1 = torch.Tensor()
def renorm(matrix, value, dim, max_norm):
m1 = matrix.transpose(dim, 0).contiguous()
# collapse non-dim dimensions.
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
norms = m2.norm(value, 1, True)
# clip
new_norms = norms.clone()
new_norms[torch.gt(norms, max_norm)] = max_norm
new_norms.div_(norms.add_(1e-7))
# renormalize
m1.mul_(new_norms.expand_as(m1))
return m1.transpose(dim, 0)
# note that the axis fed to torch.renorm is different (2~=1)
maxnorm = m1.norm(2, 1).mean()
m2 = renorm(m1, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
self.assertEqual(m1, m2, 1e-5)
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)
m1 = torch.randn(3, 4, 5)
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
maxnorm = m2.norm(2, 0).mean()
m2 = renorm(m2, 2, 1, maxnorm)
m1.renorm_(2, 1, maxnorm)
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
self.assertEqual(m3, m2)
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
@staticmethod
def _test_multinomial(self, type):
def make_prob_dist(shape, is_contiguous):
if is_contiguous:
return type(*shape).uniform_()
elif len(shape) == 1:
return type(*(shape + [5])).uniform_()[:, 2]
else:
# num dim = 2
new_shape = [2, shape[1], 7, 1, shape[0], 1, 10]
prob_dist = type(*new_shape).uniform_()
prob_dist = prob_dist.transpose(1, 4)
prob_dist = prob_dist[1, :, 5, 0, :, 0, 4]
assert not prob_dist.is_contiguous() # sanity check
return prob_dist
for is_contiguous in (True, False):
# with replacement
n_row = 3
for n_col in range(4, 5 + 1):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-2, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = n_col * 3
sample_indices = torch.multinomial(prob_dist, n_sample, True)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
zero_prob_idx = zero_prob_indices[i]
if zero_prob_idx < 0:
continue
for j in range(n_sample):
self.assertNotEqual(sample_indices[i, j], zero_prob_idx,
"sampled an index with zero probability")
# without replacement
n_row = 3
for n_col in range(2, 10 + 1, 2):
prob_dist = make_prob_dist([n_row, n_col], is_contiguous)
# indices that shouldn't be sampled (<0 means none)
zero_prob_indices = torch.LongTensor(n_row).random_(-1, n_col).tolist()
for i, j in enumerate(zero_prob_indices):
if j >= 0:
prob_dist[i, j] = 0
n_sample = max(1, n_col - 2)
sample_indices = torch.multinomial(prob_dist, n_sample, False)
self.assertEqual(prob_dist.dim(), 2)
self.assertEqual(sample_indices.size(1), n_sample)
for i in range(n_row):
row_samples = {}
zero_prob_idx = zero_prob_indices[i]
for j in range(n_sample):
sample_idx = sample_indices[i, j]
if zero_prob_idx >= 0:
self.assertNotEqual(sample_idx, zero_prob_idx,
"sampled an index with zero probability")
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
row_samples[sample_idx] = True
# vector
n_col = 4
prob_dist = make_prob_dist([n_col], is_contiguous).fill_(1)
zero_prob_idx = 1 # index that shouldn't be sampled
prob_dist[zero_prob_idx] = 0
n_sample = 20
sample_indices = torch.multinomial(prob_dist, n_sample, True)
for sample_index in sample_indices:
self.assertNotEqual(sample_index, zero_prob_idx, "sampled an index with zero probability")
s_dim = sample_indices.dim()
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
def test_multinomial(self):
self._test_multinomial(self, torch.FloatTensor)
@suppress_warnings
def test_range(self):
res1 = torch.range(0, 1)
res2 = torch.Tensor()
torch.range(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check range for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.range(0, 3, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.range(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.range(1, 1, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.range(1, 1, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 31)
# DoubleTensor
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 4)
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 31)
def test_arange(self):
res1 = torch.arange(0, 1)
res2 = torch.Tensor()
torch.arange(0, 1, out=res2)
self.assertEqual(res1, res2, 0)
# Check arange with only one argument
res1 = torch.arange(10)
res2 = torch.arange(0, 10)
self.assertEqual(res1, res2, 0)
# Check arange for non-contiguous tensors.
x = torch.zeros(2, 3)
torch.arange(0, 4, out=x.narrow(1, 1, 2))
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
self.assertEqual(x, res2, 1e-16)
# Check negative
res1 = torch.Tensor((1, 0))
res2 = torch.Tensor()
torch.arange(1, -1, -1, out=res2)
self.assertEqual(res1, res2, 0)
# Equal bounds
res1 = torch.ones(1)
res2 = torch.Tensor()
torch.arange(1, 0, -1, out=res2)
self.assertEqual(res1, res2, 0)
torch.arange(1, 2, 1, out=res2)
self.assertEqual(res1, res2, 0)
# FloatTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# DoubleTensor
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
self.assertEqual(res1, [0.6, 0.7, 0.8])
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# Check that it's exclusive
r = torch.arange(0, 5)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 5)
r = torch.arange(0, 5, 2)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 3)
r1 = torch.arange(0, 5 + 1e-6)
r2 = torch.arange(0, 5)
r3 = torch.arange(0, 5 - 1e-6)
self.assertEqual(r1[:-1], r2, 0)
self.assertEqual(r2, r3, 0)
r1 = torch.arange(10, -1 + 1e-6, -1)
r2 = torch.arange(10, -1, -1)
r3 = torch.arange(10, -1 - 1e-6, -1)
self.assertEqual(r1, r2, 0)
self.assertEqual(r2, r3[:-1], 0)
@staticmethod
def _select_broadcastable_dims(dims_full=None):
# select full dimensionality
if dims_full is None:
dims_full = []
ndims = random.randint(1, 4)
dims_full = [random.randint(1, 8) for _ in range(ndims)]
else:
ndims = len(dims_full)
# select actual dimensions for ops:
# larger: full ndims, individual sizes may be reduced
# smaller: possibly reduced ndims, sizes may be reduced
smaller_ndims = random.randint(1, ndims)
dims_small = []
dims_large = []
for i in range(ndims - 1, -1, -1):
j = random.randint(1, 3)
if j == 1: # no reduced singleton dimension
ds = dims_full[i]
dl = dims_full[i]
elif j == 2: # larger may have reduced singleton dimension
ds = dims_full[i]
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
elif j == 3: # smaller may have reduced singleton dimension
ds = 1
dl = dims_full[i]
dims_large = [dl] + dims_large
if len(dims_small) < smaller_ndims:
dims_small = [ds] + dims_small
return (dims_small, dims_large, dims_full)
@staticmethod
def _test_broadcast(self, cast):
# all functions
fns = {
"dist", "atan2", "pow", "lerp", "add",
"sub", "mul", "div", "fmod", "remainder",
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
"map", "map2", "copy"
}
# functions with three tensor arguments
fns_3_args = {"addcdiv", "addcmul", "map2"}
for fn in fns:
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
small = cast(torch.randn(*dims_small).float())
large = cast(torch.randn(*dims_large).float())
small_expanded = small.expand(*dims_full)
large_expanded = large.expand(*dims_full)
small2 = None
small2_expanded = None
if fn in fns_3_args:
# create another smaller tensor
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
small2 = cast(torch.randn(*dims_small2).float())
small2_expanded = small2.expand(*dims_full)
if small.is_cuda and fn in ['map', 'map2']:
# map and map2 are not implementd on CUDA tensors
continue
# TODO: fix masked_scatter and masked_fill broadcasting
if hasattr(large_expanded, fn) and fn not in ['masked_scatter', 'masked_fill']:
# run through tensor versions of functions
# and verify fully expanded inputs give same results
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def tensorfn(myfn, t1, t2):
if fn == "lerp":
return myfn(t1, 0.5)
elif fn == "masked_select":
return myfn(t1 < 0)
elif fn in fns_3_args:
return myfn(1, t1, t2)
else:
return myfn(t1)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
method_expanded = getattr(expanded[first], fn)
method = getattr(first, fn)
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
r2 = tensorfn(method, second, third)
self.assertEqual(r1, r2)
# now for torch. versions of functions
if hasattr(torch, fn):
fntorch = getattr(torch, fn)
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
def torchfn(t1, t2, t3):
if fn == "lerp":
return fntorch(t1, t2, 0.5)
elif fn == "masked_select":
return fntorch(t1, t2 < 0)
elif fn == "masked_scatter":
return fntorch(t1, t2 < 0.5, cast(torch.arange(1, t1.nelement() + 1).float()))
elif fn == "masked_fill":
return fntorch(t1, t2 < 0.5, 1.0)
elif fn in fns_3_args:
return fntorch(t1, 1.0, t2, t3)
else:
return fntorch(t1, t2)
# test various orders
for first, second, third in [(large, small, small2), (small, large, small2),
(small2, small, large), (small2, large, small)]:
if first is None:
break # ignore last iter when small2 is None
r1 = torchfn(expanded[first], expanded[second], expanded[third])
r2 = torchfn(first, second, third)
self.assertEqual(r1, r2)
# now for in place functions
# in-place tensor is not broadcastable; test only guaranteed
# to work by broadcasting other argument(s)
if not hasattr(large_expanded, fn + "_"):
continue
# need to clone largeExpanded so we can reuse, since functions are in-place
large_expanded_clone = large_expanded.clone()
def tensorfn_inplace(t0, t1, t2=None):
t0_fn = getattr(t0, fn + "_")
if fn == "lerp":
return t0_fn(t1, 0.5)
elif fn == "masked_scatter":
return t0_fn(t1 < 0.5, cast(torch.arange(1, t0.nelement() + 1).float()))
elif fn == "masked_fill":
return t0_fn(t1 < 0.5, 1.0)
elif fn == "map":
return t0_fn(t1, lambda x, y: x + y)
elif fn == "map2":
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
elif fn in fns_3_args:
return t0_fn(1.0, t1, t2)
else:
return t0_fn(t1)
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
# in-place pointwise operations don't actually work if the in-place
# tensor is 0-strided (numpy has the same issue)
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
self.assertEqual(r1, r2)
def broadcastable(t0, t1, t2=None):
try:
t1.expand_as(t0)
if t2 is not None:
t2.expand_as(t0)
except RuntimeError:
return False
return True
def _test_in_place_broadcastable(t0, t1, t2=None):
if not broadcastable(t0, t1, t2):
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
if not same_size:
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
else:
tensorfn_inplace(t0, t1, t2)
if fn not in fns_3_args:
_test_in_place_broadcastable(small, large_expanded)
_test_in_place_broadcastable(small, large)
else:
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
_test_in_place_broadcastable(small2, small, large)
def test_broadcast(self):
self._test_broadcast(self, lambda t: t)
@staticmethod
def _test_contiguous(self, cast):
x = cast(torch.randn(1, 16, 5, 5))
self.assertTrue(x.is_contiguous())
stride = list(x.stride())
stride[0] = 20
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
x.set_(x.storage(), 0, x.size(), stride)
self.assertTrue(x.is_contiguous())
def test_contiguous(self):
return self._test_contiguous(self, lambda t: t)
def test_scalars_as_floats(self):
"zero-dim variables that don't require grad should bind to scalar arguments"
x = torch.tensor(2)
y = torch.tensor(3)
# 3 + (3 * 3) * 2
self.assertEqual(y.addcmul(y, y, value=x), 21)
x = torch.tensor(2, requires_grad=True)
self.assertRaises(Exception, lambda: y.addcmul(y, y, value=x))
@staticmethod
def _test_broadcast_fused_matmul(self, cast):
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
for fn in fns:
batch_dim = random.randint(1, 8)
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
def dims_full_for_fn():
if fn == "baddbmm":
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addbmm":
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
elif fn == "addmm":
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
elif fn == "addmv":
return ([n_dim], [n_dim, m_dim], [m_dim])
elif fn == "addr":
return ([n_dim, m_dim], [n_dim], [m_dim])
else:
raise AssertionError("unknown function")
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
t0_small = cast(torch.randn(*t0_dims_small).float())
t1 = cast(torch.randn(*t1_dims).float())
t2 = cast(torch.randn(*t2_dims).float())
t0_full = cast(t0_small.expand(*t0_dims_full))
fntorch = getattr(torch, fn)
r0 = fntorch(t0_small, t1, t2)
r1 = fntorch(t0_full, t1, t2)
self.assertEqual(r0, r1)
def test_broadcast_fused_matmul(self):
self._test_broadcast_fused_matmul(self, lambda t: t)
@staticmethod
def _test_broadcast_batched_matmul(self, cast):
n_dim = random.randint(1, 8)
m_dim = random.randint(1, 8)
p_dim = random.randint(1, 8)
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
def verify_batched_matmul(full_lhs, one_dimensional):
if not one_dimensional:
lhs_dims = [n_dim, m_dim]
rhs_dims = [m_dim, p_dim]
result_dims = [n_dim, p_dim]
else:
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
result_dims = [n_dim] if full_lhs else [p_dim]
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
dim0_dims = rhs_dims if full_lhs else lhs_dims
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
small = cast(torch.randn(*(small_dims)).float())
dim0 = cast(torch.randn(*(dim0_dims)).float())
full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float())
if not one_dimensional:
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
else:
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
def maybe_squeeze_result(l, r, result):
if len(lhs_dims) == 1 and l.dim() != 1:
return result.squeeze(-2)
elif len(rhs_dims) == 1 and r.dim() != 1:
return result.squeeze(-1)
else:
return result
for lhs in lhsTensors:
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
lhs_expanded_matmul_fn = getattr(lhs_expanded, "matmul")
for rhs in rhsTensors:
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
for l in (lhs, lhs_expanded):
for r in (rhs, rhs_expanded):
l_matmul_fn = getattr(l, "matmul")
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
self.assertEqual(truth, result)
# test torch.matmul function as well
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
self.assertEqual(truth, torch_result)
# compare to bmm
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
for indices in product((True, False), repeat=2):
verify_batched_matmul(*indices)
def test_broadcast_batched_matmul(self):
self._test_broadcast_batched_matmul(self, lambda t: t)
def test_copy_broadcast(self):
torch.zeros(5, 6).copy_(torch.zeros(6))
self.assertRaises(RuntimeError, lambda: torch.zeros(5, 6).copy_(torch.zeros(30)))
def test_randperm(self):
_RNGState = torch.get_rng_state()
res1 = torch.randperm(100)
res2 = torch.LongTensor()
torch.set_rng_state(_RNGState)
torch.randperm(100, out=res2)
self.assertEqual(res1, res2, 0)
def test_random(self):
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
t = torch.FloatTensor(200)
lb = 1
ub = 4
t.fill_(-1)
t.random_(lb, ub)
self.assertEqual(t.min(), lb)
self.assertEqual(t.max(), ub - 1)
t.fill_(-1)
t.random_(ub)
self.assertEqual(t.min(), 0)
self.assertEqual(t.max(), ub - 1)
@staticmethod
def _test_random_neg_values(self, use_cuda=False):
signed_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor',
'torch.IntTensor', 'torch.ShortTensor']
for tname in signed_types:
res = torch.rand(SIZE, SIZE).type(tname)
if use_cuda:
res = res.cuda()
res.random_(-10, -1)
self.assertLessEqual(res.max().item(), 9)
self.assertGreaterEqual(res.min().item(), -10)
def test_random_neg_values(self):
self._test_random_neg_values(self)
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = 4
if order == 'descending':
def check_order(a, b):
return a >= b
elif order == 'ascending':
def check_order(a, b):
return a <= b
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for j, k in product(range(SIZE), range(1, SIZE)):
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size = x.size(x.dim() - 1)
for k in range(size):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
'torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self):
SIZE = 4
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
torch.Tensor((10, 20, 30, 40, 50)),
0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(SIZE, SIZE)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
torch.Tensor((50, 40, 30, 20, 10)),
0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
def test_topk(self):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, 0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, 0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE))
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
def test_topk_arguments(self):
q = torch.randn(10, 2, 10)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
def test_kthvalue(self):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.Tensor()
res1ind = torch.LongTensor()
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], 0)
self.assertEqual(res1ind, res2ind[k - 1], 0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# check that the input wasn't modified
self.assertEqual(x, x0, 0)
# simple test case (with repetitions)
y = torch.Tensor((3, 5, 4, 1, 1, 5))
self.assertEqual(torch.kthvalue(y, 3)[0], 3, 0)
self.assertEqual(torch.kthvalue(y, 2)[0], 1, 0)
def test_median(self):
for size in (155, 156):
x = torch.rand(size, size)
x0 = x.clone()
nelem = x.nelement()
res1val = torch.median(x)
res2val, _ = torch.sort(x.view(nelem))
ind = int(math.floor((nelem + 1) / 2) - 1)
self.assertEqual(res2val[ind], res1val, 0)
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
res2val, res2ind = torch.sort(x)
ind = int(math.floor((size + 1) / 2) - 1)
self.assertEqual(res2val.select(1, ind), res1val, 0)
self.assertEqual(res2val.select(1, ind), res1val, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.median(x, dim=-1, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res2val, res1val, 0)
self.assertEqual(res2ind, res1ind, 0)
# Test non-default dim
res1val, res1ind = torch.median(x, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[ind], 0)
self.assertEqual(res1ind, res2ind[ind], 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_mode(self):
x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.Tensor(SIZE).fill_(1)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.LongTensor(SIZE).fill_(1)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test use of result tensor
res2val = torch.Tensor()
res2ind = torch.LongTensor()
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, 0)
self.assertEqual(res1ind, res2ind, 0)
# input unchanged
self.assertEqual(x, x0, 0)
def test_tril(self):
x = torch.rand(SIZE, SIZE)
res1 = torch.tril(x)
res2 = torch.Tensor()
torch.tril(x, out=res2)
self.assertEqual(res1, res2, 0)
def test_triu(self):
x = torch.rand(SIZE, SIZE)
res1 = torch.triu(x)
res2 = torch.Tensor()
torch.triu(x, out=res2)
self.assertEqual(res1, res2, 0)
def test_cat(self):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim)
y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim)
z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
x = torch.randn(20, SIZE, SIZE)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randn(1, SIZE, SIZE)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
self.assertRaises(RuntimeError, lambda: torch.cat([]))
def test_cat_bad_input_sizes(self):
x = torch.randn(2, 1)
y = torch.randn(2, 1, 1)
z = torch.randn(2, 1, 1)
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z]))
x = torch.randn(2, 1, 2)
y = torch.randn(2, 1, 1)
z = torch.randn(2, 2, 1)
self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1))
def test_cat_scalars(self):
x = torch.tensor(0)
y = torch.tensor(1)
with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'):
torch.cat([x, y])
@staticmethod
def _test_cat_empty(self, use_cuda=False):
# FIXME: this is legacy behavior and should be removed
# when we support empty tensors with arbitrary sizes
dtype = torch.float32
device = 'cuda' if use_cuda else 'cpu'
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
empty = torch.randn((0,), dtype=dtype, device=device)
res1 = torch.cat([x, empty], dim=1)
res2 = torch.cat([empty, x], dim=1)
self.assertEqual(res1, res2)
conv = torch.nn.Conv2d(3, 3, kernel_size=1).float()
if use_cuda:
conv = conv.cuda()
res1 = torch.cat([conv(x), empty], dim=1)
res2 = torch.cat([empty, conv(x)], dim=1)
self.assertEqual(res1, res2)
res1 = torch.cat([empty, empty], dim=1)
self.assertEqual(res1, empty)
with self.assertRaisesRegex(RuntimeError,
'expected a non-empty list of Tensors'):
torch.cat([], dim=1)
def test_cat_empty(self):
self._test_cat_empty(self)
def test_stack(self):
x = torch.rand(2, 3, 4)
y = torch.rand(2, 3, 4)
z = torch.rand(2, 3, 4)
for dim in range(4):
res = torch.stack((x, y, z), dim)
res_neg = torch.stack((x, y, z), dim - 4)
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
self.assertEqual(res, res_neg)
self.assertEqual(res.size(), expected_size)
self.assertEqual(res.select(dim, 0), x, 0)
self.assertEqual(res.select(dim, 1), y, 0)
self.assertEqual(res.select(dim, 2), z, 0)
def test_stack_out(self):
x = torch.rand(2, 3, 4)
y = torch.rand(2, 3, 4)
z = torch.rand(2, 3, 4)
for dim in range(4):
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
res_out = x.new(expected_size)
res_neg_out = x.new(expected_size)
res_out_dp = res_out.data_ptr()
res_out_neg_dp = res_neg_out.data_ptr()
torch.stack((x, y, z), dim, out=res_out)
torch.stack((x, y, z), dim - 4, out=res_neg_out)
self.assertEqual(res_out, res_neg_out)
self.assertEqual(res_out.size(), expected_size)
self.assertEqual(res_out_dp, res_out.data_ptr())
self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr())
self.assertEqual(res_out.select(dim, 0), x, 0)
self.assertEqual(res_out.select(dim, 1), y, 0)
self.assertEqual(res_out.select(dim, 2), z, 0)
def test_unbind(self):
x = torch.rand(2, 3, 4, 5)
for dim in range(4):
res = torch.unbind(x, dim)
self.assertEqual(x.size(dim), len(res))
for i in range(dim):
self.assertEqual(x.select(dim, i), res[i])
def test_linspace(self):
_from = random.random()
to = _from + random.random()
res1 = torch.linspace(_from, to, 137)
res2 = torch.Tensor()
torch.linspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, 1))
self.assertEqual(torch.linspace(0, 0, 1), torch.zeros(1), 0)
# Check linspace for generating with start > end.
self.assertEqual(torch.linspace(2, 0, 3), torch.Tensor((2, 1, 0)), 0)
# Check linspace for non-contiguous tensors.
x = torch.zeros(2, 3)
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.Tensor(((0, 0, 1), (0, 2, 3))), 0)
def test_logspace(self):
_from = random.random()
to = _from + random.random()
res1 = torch.logspace(_from, to, 137)
res2 = torch.Tensor()
torch.logspace(_from, to, 137, out=res2)
self.assertEqual(res1, res2, 0)
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, 1))
self.assertEqual(torch.logspace(0, 0, 1), torch.ones(1), 0)
# Check logspace_ for generating with start > end.
self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0)
# Check logspace_ for non-contiguous tensors.
x = torch.zeros(2, 3)
y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0)
def test_rand(self):
torch.manual_seed(123456)
res1 = torch.rand(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.rand(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_randint(self):
torch.manual_seed(123456)
res1 = torch.randint(0, 6, (SIZE, SIZE))
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.randint(0, 6, (SIZE, SIZE), out=res2)
torch.manual_seed(123456)
res3 = torch.randint(6, (SIZE, SIZE))
res4 = torch.Tensor()
torch.manual_seed(123456)
torch.randint(6, (SIZE, SIZE), out=res4)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
self.assertEqual(res1, res4)
self.assertEqual(res2, res3)
self.assertEqual(res2, res4)
self.assertEqual(res3, res4)
res1 = res1.view(-1)
high = (res1 < 6).type(torch.LongTensor)
low = (res1 >= 0).type(torch.LongTensor)
tensorSize = res1.size()[0]
assert(tensorSize == high.sum())
assert(tensorSize == low.sum())
def test_randn(self):
torch.manual_seed(123456)
res1 = torch.randn(SIZE, SIZE)
res2 = torch.Tensor()
torch.manual_seed(123456)
torch.randn(SIZE, SIZE, out=res2)
self.assertEqual(res1, res2)
def test_slice(self):
empty = torch.Tensor()
x = torch.arange(0, 16).view(4, 4)
self.assertEqual(x.slice(), x)
self.assertEqual(x.slice(0, 0, 4), x)
# start and stop are clamped to the size of dim
self.assertEqual(x.slice(0, 0, 5), x)
# if start >= stop then the result is empty
self.assertEqual(x.slice(0, 2, 1), empty)
self.assertEqual(x.slice(0, 2, 2), empty)
# out of bounds is also empty
self.assertEqual(x.slice(0, 10, 12), empty)
# additional correctness checks
self.assertEqual(x.slice(0, 0, 1).data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x.slice(0, 0, -3).data.tolist(), [[0, 1, 2, 3]])
self.assertEqual(x.slice(start=-2, end=3, dim=1).data.tolist(), [[2], [6], [10], [14]])
self.assertEqual(x.slice(0, 0, -1, 2).data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
def test_is_signed(self):
self.assertEqual(torch.IntTensor(5).is_signed(), True)
self.assertEqual(torch.ByteTensor(5).is_signed(), False)
self.assertEqual(torch.CharTensor(5).is_signed(), True)
self.assertEqual(torch.FloatTensor(5).is_signed(), True)
self.assertEqual(torch.HalfTensor(10).is_signed(), True)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_is_signed_cuda(self):
self.assertEqual(torch.cuda.IntTensor(5).is_signed(), True)
self.assertEqual(torch.cuda.ByteTensor(5).is_signed(), False)
self.assertEqual(torch.cuda.CharTensor(5).is_signed(), True)
self.assertEqual(torch.cuda.FloatTensor(5).is_signed(), True)
self.assertEqual(torch.cuda.HalfTensor(10).is_signed(), True)
@skipIfNoLapack
def test_gesv(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
res1 = torch.gesv(b, a)[0]
self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gesv(b, a, out=(tb, ta))[0]
res3 = torch.gesv(b, a, out=(b, a))[0]
self.assertEqual(res1, tb)
self.assertEqual(res1, b)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
# test reuse
res1 = torch.gesv(b, a)[0]
ta = torch.Tensor()
tb = torch.Tensor()
torch.gesv(b, a, out=(tb, ta))[0]
self.assertEqual(res1, tb)
torch.gesv(b, a, out=(tb, ta))[0]
self.assertEqual(res1, tb)
@skipIfNoLapack
def test_qr(self):
# Since the QR decomposition is unique only up to the signs of the rows of
# R, we must ensure these are positive before doing the comparison.
def canonicalize(q, r):
d = r.diag().sign().diag()
return torch.mm(q, d), torch.mm(d, r)
def canon_and_check(q, r, expected_q, expected_r):
q_canon, r_canon = canonicalize(q, r)
expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r)
self.assertEqual(q_canon, expected_q_canon)
self.assertEqual(r_canon, expected_r_canon)
def check_qr(a, expected_q, expected_r):
# standard invocation
q, r = torch.qr(a)
canon_and_check(q, r, expected_q, expected_r)
# in-place
q, r = torch.Tensor(), torch.Tensor()
torch.qr(a, out=(q, r))
canon_and_check(q, r, expected_q, expected_r)
# manually calculate qr using geqrf and orgqr
m = a.size(0)
n = a.size(1)
k = min(m, n)
result, tau = torch.geqrf(a)
self.assertEqual(result.size(0), m)
self.assertEqual(result.size(1), n)
self.assertEqual(tau.size(0), k)
r = torch.triu(result.narrow(0, 0, k))
q = torch.orgqr(result, tau)
q, r = q.narrow(1, 0, k), r
canon_and_check(q, r, expected_q, expected_r)
# check square case
a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10)))
expected_q = torch.Tensor((
(-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01),
(-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01),
(-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01)))
expected_r = torch.Tensor((
(-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01),
(0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00),
(0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01)))
check_qr(a, expected_q, expected_r)
# check rectangular thin
a = torch.Tensor((
(1, 2, 3),
(4, 5, 6),
(7, 8, 9),
(10, 11, 13),
))
expected_q = torch.Tensor((
(-0.0776150525706334, -0.833052161400748, 0.3651483716701106),
(-0.3104602102825332, -0.4512365874254053, -0.1825741858350556),
(-0.5433053679944331, -0.0694210134500621, -0.7302967433402217),
(-0.7761505257063329, 0.3123945605252804, 0.5477225575051663)
))
expected_r = torch.Tensor((
(-12.8840987267251261, -14.5916298832790581, -17.0753115655393231),
(0, -1.0413152017509357, -1.770235842976589),
(0, 0, 0.5477225575051664)
))
check_qr(a, expected_q, expected_r)
# check rectangular fat
a = torch.Tensor((
(1, 2, 3, 4),
(5, 6, 7, 8),
(9, 10, 11, 13)
))
expected_q = torch.Tensor((
(-0.0966736489045663, 0.907737593658436, 0.4082482904638653),
(-0.4833682445228317, 0.3157348151855452, -0.8164965809277254),
(-0.870062840141097, -0.2762679632873518, 0.4082482904638621)
))
expected_r = torch.Tensor((
(-1.0344080432788603e+01, -1.1794185166357092e+01,
-1.3244289899925587e+01, -1.5564457473635180e+01),
(0.0000000000000000e+00, 9.4720444555662542e-01,
1.8944088911132546e+00, 2.5653453733825331e+00),
(0.0000000000000000e+00, 0.0000000000000000e+00,
1.5543122344752192e-15, 4.0824829046386757e-01)
))
check_qr(a, expected_q, expected_r)
# check big matrix
a = torch.randn(1000, 1000)
q, r = torch.qr(a)
a_qr = torch.mm(q, r)
self.assertEqual(a, a_qr, prec=1e-3)
@skipIfNoLapack
def test_ormqr(self):
mat1 = torch.randn(10, 10)
mat2 = torch.randn(10, 10)
q, r = torch.qr(mat1)
m, tau = torch.geqrf(mat1)
res1 = torch.mm(q, mat2)
res2 = torch.ormqr(m, tau, mat2)
self.assertEqual(res1, res2)
res1 = torch.mm(mat2, q)
res2 = torch.ormqr(m, tau, mat2, False)
self.assertEqual(res1, res2)
res1 = torch.mm(q.t(), mat2)
res2 = torch.ormqr(m, tau, mat2, True, True)
self.assertEqual(res1, res2)
res1 = torch.mm(mat2, q.t())
res2 = torch.ormqr(m, tau, mat2, False, True)
self.assertEqual(res1, res2)
@skipIfNoLapack
def test_trtrs(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
U = torch.triu(a)
L = torch.tril(a)
# solve Ux = b
x = torch.trtrs(b, U)[0]
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
x = torch.trtrs(b, U, True, False, False)[0]
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
# solve Lx = b
x = torch.trtrs(b, L, False)[0]
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
x = torch.trtrs(b, L, False, False, False)[0]
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
# solve U'x = b
x = torch.trtrs(b, U, True, True)[0]
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
x = torch.trtrs(b, U, True, True, False)[0]
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
# solve U'x = b by manual transposition
y = torch.trtrs(b, U.t(), False, False)[0]
self.assertLessEqual(x.dist(y), 1e-12)
# solve L'x = b
x = torch.trtrs(b, L, False, True)[0]
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
x = torch.trtrs(b, L, False, True, False)[0]
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
# solve L'x = b by manual transposition
y = torch.trtrs(b, L.t(), True, False)[0]
self.assertLessEqual(x.dist(y), 1e-12)
# test reuse
res1 = torch.trtrs(b, a)[0]
ta = torch.Tensor()
tb = torch.Tensor()
torch.trtrs(b, a, out=(tb, ta))
self.assertEqual(res1, tb, 0)
tb.zero_()
torch.trtrs(b, a, out=(tb, ta))
self.assertEqual(res1, tb, 0)
@skipIfNoLapack
def test_gels(self):
def _test_underdetermined(a, b, expectedNorm):
m = a.size()[0]
n = a.size()[1]
assert(m <= n)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.gels(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gels(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
res3 = torch.gels(b, a, out=(b, a))[0]
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
def _test_overdetermined(a, b, expectedNorm):
m = a.size()[0]
n = a.size()[1]
assert(m > n)
def check_norm(a, b, expected_norm, gels_result):
# Checks |ax - b| and the residual info from the result
n = a.size()[1]
# The first n rows is the least square solution.
# Rows n to m-1 contain residual information.
x = gels_result[:n]
resid_info = gels_result[n:]
resid_norm = (torch.mm(a, x) - b).norm()
self.assertEqual(resid_norm, expectedNorm, 1e-8)
self.assertEqual(resid_info.norm(), resid_norm, 1e-8)
a_copy = a.clone()
b_copy = b.clone()
res1 = torch.gels(b, a)[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res1)
ta = torch.Tensor()
tb = torch.Tensor()
res2 = torch.gels(b, a, out=(tb, ta))[0]
self.assertEqual(a, a_copy, 0)
self.assertEqual(b, b_copy, 0)
check_norm(a, b, expectedNorm, res2)
res3 = torch.gels(b, a, out=(b, a))[0]
check_norm(a_copy, b_copy, expectedNorm, res3)
self.assertEqual(res1, tb, 0)
self.assertEqual(res1, b, 0)
self.assertEqual(res1, res2, 0)
self.assertEqual(res1, res3, 0)
# basic test
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26))).t()
_test_underdetermined(a, b, expectedNorm)
# test overderemined
expectedNorm = 17.390200628863
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t()
_test_overdetermined(a, b, expectedNorm)
# test underdetermined
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55),
(-7.84, -0.28, 3.24),
(-4.39, -3.24, 6.27),
(4.53, 3.83, -6.64))).t()
b = torch.Tensor(((8.58, 8.26, 8.48),
(9.35, -4.43, -0.70))).t()
_test_underdetermined(a, b, expectedNorm)
# test reuse
expectedNorm = 0
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
(-7.84, -0.28, 3.24, 8.09),
(-4.39, -3.24, 6.27, 5.28),
(4.53, 3.83, -6.64, 2.06))).t()
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
(9.35, -4.43, -0.70, -0.26))).t()
ta = torch.Tensor()
tb = torch.Tensor()
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
torch.gels(b, a, out=(tb, ta))
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
@skipIfNoLapack
def test_eig(self):
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
(-6.49, 3.80, 0.00, 0.00, 0.00),
(-0.47, -6.39, 4.17, 0.00, 0.00),
(-7.20, 1.50, -1.51, 5.70, 0.00),
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous()
e = torch.eig(a)[0]
ee, vv = torch.eig(a, True)
te = torch.Tensor()
tv = torch.Tensor()
eee, vvv = torch.eig(a, True, out=(te, tv))
self.assertEqual(e, ee, 1e-12)
self.assertEqual(ee, eee, 1e-12)
self.assertEqual(ee, te, 1e-12)
self.assertEqual(vv, vvv, 1e-12)
self.assertEqual(vv, tv, 1e-12)
# test reuse
X = torch.randn(4, 4)
X = torch.mm(X.t(), X)
e, v = torch.zeros(4, 2), torch.zeros(4, 4)
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
self.assertFalse(v.is_contiguous(), 'V is contiguous')
# test non-contiguous
X = torch.randn(4, 4)
X = torch.mm(X.t(), X)
e = torch.zeros(4, 2, 2)[:, 1]
v = torch.zeros(4, 2, 4)[:, 1]
self.assertFalse(v.is_contiguous(), 'V is contiguous')
self.assertFalse(e.is_contiguous(), 'E is contiguous')
torch.eig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
@skipIfNoLapack
def test_symeig(self):
xval = torch.rand(100, 3)
cov = torch.mm(xval.t(), xval)
rese = torch.zeros(3)
resv = torch.zeros(3, 3)
# First call to symeig
self.assertTrue(resv.is_contiguous(), 'resv is not contiguous')
torch.symeig(cov.clone(), True, out=(rese, resv))
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
# Second call to symeig
self.assertFalse(resv.is_contiguous(), 'resv is contiguous')
torch.symeig(cov.clone(), True, out=(rese, resv))
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
# test non-contiguous
X = torch.rand(5, 5)
X = X.t() * X
e = torch.zeros(4, 2).select(1, 1)
v = torch.zeros(4, 2, 4)[:, 1]
self.assertFalse(v.is_contiguous(), 'V is contiguous')
self.assertFalse(e.is_contiguous(), 'E is contiguous')
torch.symeig(X, True, out=(e, v))
Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t())
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
@skipIfNoLapack
def test_svd(self):
a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84),
(9.93, 6.91, -7.93, 1.64, 4.02, 0.15),
(9.83, 5.04, 4.86, 8.83, 9.80, -8.99),
(5.45, -0.27, 4.85, 0.74, 10.00, -6.02),
(3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone()
u, s, v = torch.svd(a)
uu = torch.Tensor()
ss = torch.Tensor()
vv = torch.Tensor()
uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv))
self.assertEqual(u, uu, 0, 'torch.svd')
self.assertEqual(u, uuu, 0, 'torch.svd')
self.assertEqual(s, ss, 0, 'torch.svd')
self.assertEqual(s, sss, 0, 'torch.svd')
self.assertEqual(v, vv, 0, 'torch.svd')
self.assertEqual(v, vvv, 0, 'torch.svd')
# test reuse
X = torch.randn(4, 4)
U, S, V = torch.svd(X)
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
self.assertFalse(U.is_contiguous(), 'U is contiguous')
torch.svd(X, out=(U, S, V))
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
# test non-contiguous
X = torch.randn(5, 5)
U = torch.zeros(5, 2, 5)[:, 1]
S = torch.zeros(5, 2)[:, 1]
V = torch.zeros(5, 2, 5)[:, 1]
self.assertFalse(U.is_contiguous(), 'U is contiguous')
self.assertFalse(S.is_contiguous(), 'S is contiguous')
self.assertFalse(V.is_contiguous(), 'V is contiguous')
torch.svd(X, out=(U, S, V))
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
@staticmethod
def _test_window_function(self, torch_method, scipy_name):
for size in [1, 2, 5, 10, 50, 100, 1024, 2048]:
for periodic in [True, False]:
ref = torch.from_numpy(signal.get_window(scipy_name, size, fftbins=periodic))
self.assertEqual(torch_method(size, periodic=periodic), ref)
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_hann_window(self):
self._test_window_function(self, torch.hann_window, 'hann')
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_hamming_window(self):
self._test_window_function(self, torch.hamming_window, 'hamming')
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_bartlett_window(self):
self._test_window_function(self, torch.bartlett_window, 'bartlett')
@skipIfNoLapack
def test_inverse(self):
M = torch.randn(5, 5)
MI = torch.inverse(M)
E = torch.eye(5)
self.assertFalse(MI.is_contiguous(), 'MI is contiguous')
self.assertEqual(E, torch.mm(M, MI), 1e-8, 'inverse value')
self.assertEqual(E, torch.mm(MI, M), 1e-8, 'inverse value')
MII = torch.Tensor(5, 5)
torch.inverse(M, out=MII)
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
self.assertEqual(MII, MI, 0, 'inverse value in-place')
# second call, now that MII is transposed
torch.inverse(M, out=MII)
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
self.assertEqual(MII, MI, 0, 'inverse value in-place')
@staticmethod
def _test_det_logdet_slogdet(self, conv_fn):
def reference_det(M):
# naive row reduction
M = M.clone()
l = M.size(0)
multiplier = 1
for i in range(l):
if M[i, 0] != 0:
if i != 0:
M[0], M[i] = M[i], M[0]
multiplier = -1
break
else:
return 0
for i in range(1, l):
row = M[i]
for j in range(i):
row -= row[j] / M[j, j] * M[j]
M[i] = row
return M.diag().prod() * multiplier
def test_single_det(M, target, desc):
det = M.det()
logdet = M.logdet()
sdet, logabsdet = M.slogdet()
self.assertEqual(det, target, 1e-7, '{} (det)'.format(desc))
if det.item() < 0:
self.assertTrue(logdet.item() != logdet.item(), '{} (logdet negative case)'.format(desc))
self.assertTrue(sdet.item() == -1, '{} (slogdet sign negative case)'.format(desc))
self.assertEqual(logabsdet.exp(), det.abs(), 1e-7, '{} (slogdet logabsdet negative case)'.format(desc))
elif det.item() == 0:
self.assertEqual(logdet.exp().item(), 0, 1e-7, '{} (logdet zero case)'.format(desc))
self.assertTrue(sdet.item() == 0, '{} (slogdet sign zero case)'.format(desc))
self.assertEqual(logabsdet.exp().item(), 0, 1e-7, '{} (slogdet logabsdet zero case)'.format(desc))
else:
self.assertEqual(logdet.exp(), det, 1e-7, '{} (logdet positive case)'.format(desc))
self.assertTrue(sdet.item() == 1, '{} (slogdet sign positive case)'.format(desc))
self.assertEqual(logabsdet.exp(), det, 1e-7, '{} (slogdet logabsdet positive case)'.format(desc))
eye = conv_fn(torch.eye(5))
test_single_det(eye, torch.tensor(1, dtype=eye.dtype), 'identity')
def test(M):
assert M.size(0) >= 5, 'this helper fn assumes M to be at least 5x5'
M = conv_fn(M)
M_det = M.det()
ref_M_det = reference_det(M)
test_single_det(M, ref_M_det, 'basic')
if abs(ref_M_det.item()) >= 1e-10: # skip singular
test_single_det(M, M.inverse().det().pow_(-1), 'inverse')
test_single_det(M, M.t().det(), 'transpose')
for x in [0, 2, 4]:
for scale in [-2, -0.1, 0, 10]:
target = M_det * scale
# dim 0
M_clone = M.clone()
M_clone[:, x] *= scale
test_single_det(M_clone, target, 'scale a row')
# dim 1
M_clone = M.clone()
M_clone[x, :] *= scale
test_single_det(M_clone, target, 'scale a column')
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
assert x1 != x2, 'x1 and x2 needs to be different for this test'
target = M_det.clone().zero_()
# dim 0
M_clone = M.clone()
M_clone[:, x2] = M_clone[:, x1]
test_single_det(M_clone, target, 'two rows are same')
# dim 1
M_clone = M.clone()
M_clone[x2, :] = M_clone[x1, :]
test_single_det(M_clone, target, 'two columns are same')
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
target = -M_det * scale1 * scale2
# dim 0
M_clone = M.clone()
t = M_clone[:, x1] * scale1
M_clone[:, x1] += M_clone[:, x2] * scale2
M_clone[:, x2] = t
test_single_det(M_clone, target, 'exchanging rows')
# dim 1
M_clone = M.clone()
t = M_clone[x1, :] * scale1
M_clone[x1, :] += M_clone[x2, :] * scale2
M_clone[x2, :] = t
test_single_det(M_clone, target, 'exchanging columns')
def get_random_mat_scale(n):
# For matrices with values i.i.d. with 0 mean, unit variance, and
# subexponential tail, we have:
# E[log det(A^2)] \approx log((n-1)!)
#
# Notice:
# log Var[det(A)] = log E[det(A^2)] >= E[log det(A^2)]
#
# So:
# stddev[det(A)] >= sqrt( (n-1)! )
#
# We use this as an intuitive guideline to scale random generated
# matrices so our closeness tests can work more robustly:
# scale by sqrt( (n-1)! )^(-1/n) = ( (n-1)! )^(-1/(2n))
#
# source: https://arxiv.org/pdf/1112.0752.pdf
return math.factorial(n - 1) ** (-1.0 / (2 * n))
for n in [5, 10, 25]:
scale = get_random_mat_scale(n)
test(torch.randn(n, n) * scale)
r = torch.randn(n, n) * scale
# symmetric psd
test(r.mm(r.t()))
# symmetric pd
r = torch.randn(n, n) * scale
test(r.mm(r.t()) + torch.eye(n) * 1e-6)
# symmetric
r = torch.randn(n, n) * scale
for i in range(n):
for j in range(i):
r[i, j] = r[j, i]
test(r)
# non-contiguous
test((torch.randn(n, n, n + 1) * scale)[:, 2, 1:])
# det = 0
r = torch.randn(n, n) * scale
u, s, v = r.svd()
if reference_det(u) < 0:
u = -u
if reference_det(v) < 0:
v = -v
s[0] *= -1
s[-1] = 0
test(u.mm(s.diag()).mm(v))
@skipIfNoLapack
def test_det_logdet_slogdet(self):
self._test_det_logdet_slogdet(self, lambda x: x)
@staticmethod
def _test_fft_ifft_rfft_irfft(self, build_fn):
# the conv_fn to convert tensors can be slow in cuda tests, so we use
# a build_fn: sizes => tensor
def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(build_fn(*sizes))
for normalized in (True, False):
res = x.fft(signal_ndim, normalized=normalized)
rec = res.ifft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec, 1e-8, 'fft and ifft')
res = x.ifft(signal_ndim, normalized=normalized)
rec = res.fft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec, 1e-8, 'ifft and fft')
def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(build_fn(*sizes))
signal_numel = 1
signal_sizes = x.size()[-signal_ndim:]
for normalized, onesided in product((True, False), repeat=2):
res = x.rfft(signal_ndim, normalized=normalized, onesided=onesided)
if not onesided: # check Hermitian symmetry
def test_one_sample(res, test_num=10):
idxs_per_dim = [torch.LongTensor(test_num).random_(s).tolist() for s in signal_sizes]
for idx in zip(*idxs_per_dim):
reflected_idx = tuple((s - i) % s for i, s in zip(idx, res.size()))
idx_val = res.__getitem__(idx)
reflected_val = res.__getitem__(reflected_idx)
self.assertEqual(idx_val[0], reflected_val[0], 'rfft hermitian symmetry on real part')
self.assertEqual(idx_val[1], -reflected_val[1], 'rfft hermitian symmetry on imaginary part')
if len(sizes) == signal_ndim:
test_one_sample(res)
else:
output_non_batch_shape = res.size()[-(signal_ndim + 1):]
flatten_batch_res = res.view(-1, *output_non_batch_shape)
nb = flatten_batch_res.size(0)
test_idxs = torch.LongTensor(min(nb, 4)).random_(nb)
for test_idx in test_idxs.tolist():
test_one_sample(flatten_batch_res[test_idx])
# compare with C2C
xc = torch.stack([x, torch.zeros_like(x)], -1)
xc_res = xc.fft(signal_ndim, normalized=normalized)
self.assertEqual(res, xc_res)
test_input_signal_sizes = [signal_sizes]
rec = res.irfft(signal_ndim, normalized=normalized,
onesided=onesided, signal_sizes=signal_sizes)
self.assertEqual(x, rec, 1e-8, 'rfft and irfft')
if not onesided: # check that we can use C2C ifft
rec = res.ifft(signal_ndim, normalized=normalized)
self.assertEqual(x, rec.select(-1, 0), 1e-8, 'twosided rfft and ifft real')
self.assertEqual(rec.select(-1, 1).data.abs().mean(), 0, 1e-8, 'twosided rfft and ifft imaginary')
# contiguous case
_test_real((100,), 1)
_test_real((10, 1, 10, 100), 1)
_test_real((100, 100), 2)
_test_real((2, 2, 5, 80, 60), 2)
_test_real((50, 40, 70), 3)
_test_real((30, 1, 50, 25, 20), 3)
_test_complex((100, 2), 1)
_test_complex((100, 100, 2), 1)
_test_complex((100, 100, 2), 2)
_test_complex((1, 20, 80, 60, 2), 2)
_test_complex((50, 40, 70, 2), 3)
_test_complex((6, 5, 50, 25, 20, 2), 3)
# non-contiguous case
_test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type
_test_real((100, 100, 3), 1, lambda x: x[:, :, 0])
_test_real((100, 100), 2, lambda x: x.t())
_test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60])
_test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80])
_test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3))
_test_complex((2, 100), 1, lambda x: x.t())
_test_complex((100, 2), 1, lambda x: x.expand(100, 100, 2))
_test_complex((300, 200, 3), 2, lambda x: x[:100, :100, 1:]) # input is not aligned to complex type
_test_complex((20, 90, 110, 2), 2, lambda x: x[:, 5:85].narrow(2, 5, 100))
_test_complex((40, 60, 3, 80, 2), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:])
_test_complex((30, 55, 50, 22, 2), 3, lambda x: x[:, 3:53, 15:40, 1:21])
# non-contiguous with strides not representable as aligned with complex type
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [3, 2, 1]))
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
_test_complex((50,), 1, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [3, 3, 1]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 2, 2]))
_test_complex((50,), 2, lambda x: x.as_strided([5, 5, 2], [4, 3, 1]))
@unittest.skipIf(not TEST_MKL, "PyTorch is built without MKL support")
def test_fft_ifft_rfft_irfft(self):
def randn_double(*sizes):
return torch.DoubleTensor(*sizes).normal_()
self._test_fft_ifft_rfft_irfft(self, build_fn=randn_double)
@staticmethod
def _test_stft(self, build_fn):
# the conv_fn to convert tensors can be slow in cuda tests, so we use
# a build_fn: sizes => tensor
def naive_stft(x, frame_length, hop, fft_size=None, normalized=False,
onesided=True, window=None, pad_end=0):
if fft_size is None:
fft_size = frame_length
x = x.clone()
if window is None:
window = x.new(frame_length).fill_(1)
else:
window = window.clone()
input_1d = x.dim() == 1
if input_1d:
x = x.view(1, -1)
batch = x.size(0)
if pad_end > 0:
x_pad = x.new(batch, pad_end).fill_(0)
x = torch.cat([x, x_pad], 1)
length = x.size(1)
if TEST_NUMPY and TEST_SCIPY:
sp_result = signal.stft(
x,
nperseg=frame_length,
noverlap=frame_length - hop,
window=window,
nfft=fft_size,
return_onesided=onesided,
boundary=None,
padded=False,
)[2].transpose((0, 2, 1)) * np.abs(window.sum().item())
result = torch.Tensor(np.stack([sp_result.real, sp_result.imag], -1))
else:
if onesided:
return_size = int(fft_size / 2) + 1
else:
return_size = fft_size
result = x.new(batch, int((length - frame_length) / float(hop)) + 1, return_size, 2)
for w in range(return_size): # freq
radians = torch.arange(frame_length) * w * 2 * math.pi / fft_size
radians = radians.type_as(x)
re_kernel = radians.cos().mul_(window)
im_kernel = -radians.sin().mul_(window)
for b in range(batch):
for i, t in enumerate(range(0, length - frame_length + 1, hop)):
seg = x[b, t:(t + frame_length)]
re = seg.dot(re_kernel)
im = seg.dot(im_kernel)
result[b, i, w, 0] = re
result[b, i, w, 1] = im
if normalized:
result /= frame_length ** 0.5
if input_1d:
result = result[0]
return result
def _test(sizes, frame_length, hop, fft_size=None, normalized=False,
onesided=True, window_sizes=None, pad_end=0, expected_error=None):
x = build_fn(*sizes)
if window_sizes is not None:
window = build_fn(*window_sizes)
else:
window = None
if expected_error is None:
result = x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end)
ref_result = naive_stft(x, frame_length, hop, fft_size, normalized, onesided, window, pad_end)
self.assertEqual(result.data, ref_result, 7e-6, 'stft result')
else:
self.assertRaises(expected_error,
lambda: x.stft(frame_length, hop, fft_size, normalized, onesided, window, pad_end))
_test((2, 5), 4, 2, pad_end=1)
_test((4, 150), 90, 45, pad_end=0)
_test((10,), 7, 2, pad_end=0)
_test((10, 4000), 1024, 512, pad_end=0)
_test((2, 5), 4, 2, window_sizes=(4,), pad_end=1)
_test((4, 150), 90, 45, window_sizes=(90,), pad_end=0)
_test((10,), 7, 2, window_sizes=(7,), pad_end=0)
_test((10, 4000), 1024, 512, window_sizes=(1024,), pad_end=0)
_test((2, 5), 4, 2, fft_size=5, window_sizes=(4,), pad_end=1)
_test((4, 150), 90, 45, fft_size=100, window_sizes=(90,), pad_end=0)
_test((10,), 7, 2, fft_size=33, window_sizes=(7,), pad_end=0)
_test((10, 4000), 1024, 512, fft_size=1500, window_sizes=(1024,), pad_end=0)
_test((2, 5), 4, 2, fft_size=5, onesided=False, window_sizes=(4,), pad_end=1)
_test((4, 150), 90, 45, fft_size=100, onesided=False, window_sizes=(90,), pad_end=0)
_test((10,), 7, 2, fft_size=33, onesided=False, window_sizes=(7,), pad_end=0)
_test((10, 4000), 1024, 512, fft_size=1500, onesided=False, window_sizes=(1024,), pad_end=0)
_test((2, 5), 4, 2, fft_size=5, normalized=True, onesided=False, window_sizes=(4,), pad_end=1)
_test((4, 150), 90, 45, fft_size=100, normalized=True, onesided=False, window_sizes=(90,), pad_end=0)
_test((10,), 7, 2, fft_size=33, normalized=True, onesided=False, window_sizes=(7,), pad_end=0)
_test((10, 4000), 1024, 512, fft_size=1500, normalized=True, onesided=False, window_sizes=(1024,), pad_end=0)
_test((10, 4, 2), 1, 1, expected_error=RuntimeError)
_test((10,), 11, 1, expected_error=RuntimeError)
_test((10,), 0, 1, pad_end=4, expected_error=RuntimeError)
_test((10,), 15, 1, pad_end=4, expected_error=RuntimeError)
_test((10,), 5, -4, expected_error=RuntimeError)
_test((10,), 5, 4, window_sizes=(11,), expected_error=RuntimeError)
_test((10,), 5, 4, window_sizes=(1, 1), expected_error=RuntimeError)
def test_stft(self):
def randn_double(*sizes):
return torch.DoubleTensor(*sizes).normal_()
self._test_stft(self, build_fn=randn_double)
@unittest.skip("Not implemented yet")
def test_conv2(self):
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
imvc = torch.conv2(x, k)
imvc2 = torch.conv2(x, k, 'V')
imfc = torch.conv2(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
imvx = torch.xcorr2(x, ki)
imvx2 = torch.xcorr2(x, ki, 'V')
imfx = torch.xcorr2(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
xx = torch.Tensor(2, x.size(1), x.size(2))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv2(xx, kk)
immvc2 = torch.conv2(xx, kk, 'V')
immfc = torch.conv2(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
@unittest.skip("Not implemented yet")
def test_conv3(self):
x = torch.rand(math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)),
math.floor(torch.uniform(20, 40)))
k = torch.rand(math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)),
math.floor(torch.uniform(5, 10)))
imvc = torch.conv3(x, k)
imvc2 = torch.conv3(x, k, 'V')
imfc = torch.conv3(x, k, 'F')
ki = k.clone()
ks = k.storage()
kis = ki.storage()
for i in range(ks.size() - 1, 0, -1):
kis[ks.size() - i + 1] = ks[i]
imvx = torch.xcorr3(x, ki)
imvx2 = torch.xcorr3(x, ki, 'V')
imfx = torch.xcorr3(x, ki, 'F')
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
xx[1].copy_(x)
xx[2].copy_(x)
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
kk[1].copy_(k)
kk[2].copy_(k)
immvc = torch.conv3(xx, kk)
immvc2 = torch.conv3(xx, kk, 'V')
immfc = torch.conv3(xx, kk, 'F')
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
@unittest.skip("Not implemented yet")
def _test_conv_corr_eq(self, fn, fn_2_to_3):
ix = math.floor(random.randint(20, 40))
iy = math.floor(random.randint(20, 40))
iz = math.floor(random.randint(20, 40))
kx = math.floor(random.randint(5, 10))
ky = math.floor(random.randint(5, 10))
kz = math.floor(random.randint(5, 10))
x = torch.rand(ix, iy, iz)
k = torch.rand(kx, ky, kz)
o3 = fn(x, k)
o32 = torch.zeros(o3.size())
fn_2_to_3(x, k, o3, o32)
self.assertEqual(o3, o32)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k), reference)
@unittest.skip("Not implemented yet")
def test_xcorr3_xcorr2_eq_full(self):
def reference(x, k, o3, o32):
for i in range(x.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
@unittest.skip("Not implemented yet")
def test_conv3_conv2_eq_valid(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k), reference)
@unittest.skip("Not implemented yet")
def test_fconv3_fconv2_eq(self):
def reference(x, k, o3, o32):
for i in range(o3.size(1)):
for j in range(k.size(1)):
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
def test_logical(self):
x = torch.rand(100, 100) * 2 - 1
xgt = torch.gt(x, 1)
xlt = torch.lt(x, 1)
xeq = torch.eq(x, 1)
xne = torch.ne(x, 1)
neqs = xgt + xlt
all = neqs + xeq
self.assertEqual(neqs.long().sum(), xne.long().sum(), 0)
self.assertEqual(x.nelement(), all.long().sum())
def test_isnan(self):
x = torch.Tensor([1, float('nan'), 2])
self.assertEqual(torch.isnan(x), torch.ByteTensor([0, 1, 0]))
def test_RNGState(self):
state = torch.get_rng_state()
stateCloned = state.clone()
before = torch.rand(1000)
self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0)
torch.set_rng_state(state)
after = torch.rand(1000)
self.assertEqual(before, after, 0)
def test_RNGStateAliasing(self):
# Fork the random number stream at this point
gen = torch.Generator()
gen.set_state(torch.get_rng_state())
self.assertEqual(gen.get_state(), torch.get_rng_state())
target_value = torch.rand(1000)
# Dramatically alter the internal state of the main generator
_ = torch.rand(100000)
forked_value = torch.rand(1000, generator=gen)
self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.")
def test_boxMullerState(self):
torch.manual_seed(123)
odd_number = 101
seeded = torch.randn(odd_number)
state = torch.get_rng_state()
midstream = torch.randn(odd_number)
torch.set_rng_state(state)
repeat_midstream = torch.randn(odd_number)
torch.manual_seed(123)
reseeded = torch.randn(odd_number)
self.assertEqual(midstream, repeat_midstream, 0,
'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
self.assertEqual(seeded, reseeded, 0,
'repeated calls to manual_seed not generating same sequence of normally distributed numbers')
def test_manual_seed(self):
rng_state = torch.get_rng_state()
torch.manual_seed(2)
x = torch.randn(100)
self.assertEqual(torch.initial_seed(), 2)
torch.manual_seed(2)
y = torch.randn(100)
self.assertEqual(x, y)
torch.set_rng_state(rng_state)
@skipIfNoLapack
def test_cholesky(self):
x = torch.rand(10, 10) + 1e-1
A = torch.mm(x, x.t())
# default Case
C = torch.potrf(A)
B = torch.mm(C.t(), C)
self.assertEqual(A, B, 1e-14)
# test Upper Triangular
U = torch.potrf(A, True)
B = torch.mm(U.t(), U)
self.assertEqual(A, B, 1e-14, 'potrf (upper) did not allow rebuilding the original matrix')
# test Lower Triangular
L = torch.potrf(A, False)
B = torch.mm(L, L.t())
self.assertEqual(A, B, 1e-14, 'potrf (lower) did not allow rebuilding the original matrix')
@skipIfNoLapack
def test_potrs(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
(-1.56, 4.00, -8.67, 1.75, 2.86),
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
# make sure 'a' is symmetric PSD
a = torch.mm(a, a.t())
# upper Triangular Test
U = torch.potrf(a)
x = torch.potrs(b, U)
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
# lower Triangular Test
L = torch.potrf(a, False)
x = torch.potrs(b, L, False)
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
@skipIfNoLapack
def tset_potri(self):
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
(-6.05, -3.30, 5.36, -4.44, 1.08),
(-0.45, 2.58, -2.70, 0.27, 9.04),
(8.32, 2.71, 4.35, -7.17, 2.14),
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
# make sure 'a' is symmetric PSD
a = a * a.t()
# compute inverse directly
inv0 = torch.inverse(a)
# default case
chol = torch.potrf(a)
inv1 = torch.potri(chol)
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# upper Triangular Test
chol = torch.potrf(a, 'U')
inv1 = torch.potri(chol, 'U')
self.assertLessEqual(inv0.dist(inv1), 1e-12)
# lower Triangular Test
chol = torch.potrf(a, 'L')
inv1 = torch.potri(chol, 'L')
self.assertLessEqual(inv0.dist(inv1), 1e-12)
@skipIfNoLapack
def test_pstrf(self):
def checkPsdCholesky(a, uplo, inplace):
if inplace:
u = torch.empty_like(a)
piv = a.new(a.size(0)).int()
kwargs = {'out': (u, piv)}
else:
kwargs = {}
args = [a]
if uplo is not None:
args += [uplo]
u, piv = torch.pstrf(*args, **kwargs)
if uplo is False:
a_reconstructed = torch.mm(u, u.t())
else:
a_reconstructed = torch.mm(u.t(), u)
piv = piv.long()
a_permuted = a.index_select(0, piv).index_select(1, piv)
self.assertEqual(a_permuted, a_reconstructed, 1e-14)
dimensions = ((5, 1), (5, 3), (5, 5), (10, 10))
for dim in dimensions:
m = torch.Tensor(*dim).uniform_()
a = torch.mm(m, m.t())
# add a small number to the diagonal to make the matrix numerically positive semidefinite
for i in range(m.size(0)):
a[i][i] = a[i][i] + 1e-7
for inplace in (True, False):
for uplo in (None, True, False):
checkPsdCholesky(a, uplo, inplace)
def test_numel(self):
b = torch.ByteTensor(3, 100, 100)
self.assertEqual(b.nelement(), 3 * 100 * 100)
self.assertEqual(b.numel(), 3 * 100 * 100)
def _consecutive(self, size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
sequence.add_(start - 1)
return sequence.resize_(*size)
@staticmethod
def _test_index(self, conv_fn):
def consec(size, start=1):
sequence = torch.ones(int(torch.Tensor(size).prod(0))).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size)
reference = conv_fn(consec((3, 3, 3)))
# empty tensor indexing
self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new())
self.assertEqual(reference[0], consec((3, 3)), 0)
self.assertEqual(reference[1], consec((3, 3), 10), 0)
self.assertEqual(reference[2], consec((3, 3), 19), 0)
self.assertEqual(reference[0, 1], consec((3,), 4), 0)
self.assertEqual(reference[0:2], consec((2, 3, 3)), 0)
self.assertEqual(reference[2, 2, 2], 27, 0)
self.assertEqual(reference[:], consec((3, 3, 3)), 0)
# indexing with Ellipsis
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
[12, 15, 18],
[21, 24, 27]]), 0)
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0)
self.assertEqual(reference[..., 2], reference[:, :, 2], 0)
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0)
self.assertEqual(reference[0, 2, ...], reference[0, 2], 0)
self.assertEqual(reference[..., 2, 2, 2], 27, 0)
self.assertEqual(reference[2, ..., 2, 2], 27, 0)
self.assertEqual(reference[2, 2, ..., 2], 27, 0)
self.assertEqual(reference[2, 2, 2, ...], 27, 0)
self.assertEqual(reference[...], reference, 0)
reference_5d = conv_fn(consec((3, 3, 3, 3, 3)))
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0)
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0)
self.assertEqual(reference_5d[...], reference_5d, 0)
# LongTensor indexing
reference = conv_fn(consec((5, 5, 5)))
idx = conv_fn(torch.LongTensor([2, 4]))
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
# TODO: enable one indexing is implemented like in numpy
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
# None indexing
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
# indexing with step
reference = consec((10, 10, 10))
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
self.assertEqual(reference[:, 2, 1:6:2],
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
tensor = conv_fn(torch.DoubleTensor(lst))
for _i in range(100):
idx1_start = random.randrange(10)
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
idx1_step = random.randrange(1, 8)
idx1 = slice(idx1_start, idx1_end, idx1_step)
if random.randrange(2) == 0:
idx2_start = random.randrange(10)
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
idx2_step = random.randrange(1, 8)
idx2 = slice(idx2_start, idx2_end, idx2_step)
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
tensor_indexed = tensor[idx1, idx2]
else:
lst_indexed = lst[idx1]
tensor_indexed = tensor[idx1]
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
self.assertRaises(ValueError, lambda: reference[1:9:0])
self.assertRaises(ValueError, lambda: reference[1:9:-1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
self.assertRaises(IndexError, lambda: reference[0.0])
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, ..., 0.0:2.0])
self.assertRaises(IndexError, lambda: reference[0.0, :, 0.0])
def test_index(self):
self._test_index(self, lambda x: x)
@staticmethod
def _test_advancedindex(self, conv_fn):
# Tests for Integer Array Indexing, Part I - Purely integer array
# indexing
def consec(size, start=1):
numel = reduce(lambda x, y: x * y, size, 1)
sequence = torch.ones(numel).cumsum(0)
sequence.add_(start - 1)
return sequence.view(*size)
# pick a random valid indexer type
def ri(indices):
choice = random.randint(0, 2)
if choice == 0:
return conv_fn(torch.LongTensor(indices))
elif choice == 1:
return list(indices)
else:
return tuple(indices)
# First, we will test indexing to generate return values
# Case 1: Purely Integer Array Indexing
reference = conv_fn(consec((10,)))
self.assertEqual(reference[[0]], consec((1,)))
self.assertEqual(reference[ri([0]), ], consec((1,)))
self.assertEqual(reference[ri([3]), ], consec((1,), 4))
self.assertEqual(reference[[2, 3, 4]], consec((3,), 3))
self.assertEqual(reference[ri([2, 3, 4]), ], consec((3,), 3))
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5]))
# setting values
reference[[0]] = -2
self.assertEqual(reference[[0]], torch.Tensor([-2]))
reference[[0]] = -1
self.assertEqual(reference[ri([0]), ], torch.Tensor([-1]))
reference[[2, 3, 4]] = 4
self.assertEqual(reference[[2, 3, 4]], torch.Tensor([4, 4, 4]))
reference[ri([2, 3, 4]), ] = 3
self.assertEqual(reference[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3]))
reference[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3]))
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3]))
# Tensor with stride != 1
# strided is [1, 3, 5, 7]
reference = conv_fn(consec((10,)))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), storage_offset=0,
size=torch.Size([4]), stride=[2])
self.assertEqual(strided[[0]], torch.Tensor([1]))
self.assertEqual(strided[ri([0]), ], torch.Tensor([1]))
self.assertEqual(strided[ri([3]), ], torch.Tensor([7]))
self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5]))
self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5]))
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
torch.Tensor([[5, 3], [1, 7]]))
# stride is [4, 8]
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), storage_offset=4,
size=torch.Size([2]), stride=[4])
self.assertEqual(strided[[0]], torch.Tensor([5]))
self.assertEqual(strided[ri([0]), ], torch.Tensor([5]))
self.assertEqual(strided[ri([1]), ], torch.Tensor([9]))
self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9]))
self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9]))
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
torch.Tensor([[5, 9], [9, 5]]))
# reference is 1 2
# 3 4
# 5 6
reference = conv_fn(consec((3, 2)))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5]))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6]))
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2]))
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
torch.Tensor([2, 4, 4, 2, 6]))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([1, 2, 3, 3]))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1],
[3, 5]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1],
[4, 5]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([[0, 1],
[1, 0]])
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2],
[4, 5]]))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
2, -4]))
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(reference[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# Verify still works with Transposed (i.e. non-contiguous) Tensors
reference = conv_fn(torch.Tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])).t_()
# Transposed: [[0, 4, 8],
# [1, 5, 9],
# [2, 6, 10],
# [3, 7, 11]]
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1,
2]))
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5,
6]))
self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0]))
self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6]))
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4]))
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
torch.Tensor([4, 5, 5, 4, 7]))
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([0, 4, 1, 1]))
rows = ri([[0, 0],
[1, 2]])
columns = [0],
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0],
[1, 2]]))
rows = ri([[0, 0],
[1, 2]])
columns = ri([1, 0])
self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0],
[5, 2]]))
rows = ri([[0, 0],
[1, 3]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4],
[5, 11]]))
# setting values
reference[ri([0]), ri([1])] = -1
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
2, -4]))
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(reference[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# stride != 1
# strided is [[1 3 5 7],
# [9 11 13 15]]
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
stride=[8, 2])
self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9]))
self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11]))
self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1]))
self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15]))
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7]))
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
torch.Tensor([9, 11, 11, 9, 15]))
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
torch.Tensor([1, 3, 9, 9]))
rows = ri([[0, 0],
[1, 1]])
columns = [0],
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1],
[9, 9]]))
rows = ri([[0, 1],
[1, 0]])
columns = ri([1, 2])
self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13],
[11, 5]]))
rows = ri([[0, 0],
[1, 1]])
columns = ri([[0, 1],
[1, 2]])
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3],
[11, 13]]))
# setting values
# strided is [[10, 11],
# [17, 18]]
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11]))
strided[ri([0]), ri([1])] = -1
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1]))
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11,
17]))
strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2]))
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1,
2]))
reference = conv_fn(torch.arange(0, 24).view(3, 8))
strided = conv_fn(torch.Tensor())
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
stride=[7, 1])
rows = ri([[0],
[1]])
columns = ri([[0, 1],
[0, 1]])
self.assertEqual(strided[rows, columns],
torch.Tensor([[10, 11], [17, 18]]))
strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
self.assertEqual(strided[rows, columns],
torch.Tensor([[4, 6], [2, 3]]))
# Tests using less than the number of dims, and ellipsis
# reference is 1 2
# 3 4
# 5 6
reference = conv_fn(consec((3, 2)))
self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]]))
self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]]))
self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]]))
# verify too many indices fails
with self.assertRaises(IndexError):
reference[ri([1]), ri([0, 2]), ri([3])]
# test invalid index fails
reference = conv_fn(torch.empty(10))
# can't test cuda because it is a device assert
if not reference.is_cuda:
for err_idx in (10, -11):
with self.assertRaisesRegex(IndexError, r'out of'):
reference[err_idx]
with self.assertRaisesRegex(RuntimeError, r'out of'):
reference[conv_fn(torch.LongTensor([err_idx]))]
with self.assertRaisesRegex(RuntimeError, r'out of'):
reference[[err_idx]]
if TEST_NUMPY:
# we use numpy to compare against, to verify that our advanced
# indexing semantics are the same, and also for ease of test
# writing
def tensor_indices_to_np(tensor, indices):
# convert the Torch Tensor to a numpy array
if (tensor.is_cuda):
tensor = tensor.cpu()
npt = tensor.numpy()
# convert indices
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
i for i in indices)
return npt, idxs
def get_numpy(tensor, indices):
npt, idxs = tensor_indices_to_np(tensor, indices)
# index and return as a Torch Tensor
return torch.Tensor(npt[idxs])
def set_numpy(tensor, indices, value):
if not isinstance(value, int):
if value.is_cuda:
value = value.cpu()
value = value.numpy()
npt, idxs = tensor_indices_to_np(tensor, indices)
npt[idxs] = value
return npt
def assert_get_eq(tensor, indexer):
self.assertEqual(reference[indexer],
conv_fn(get_numpy(reference, indexer)))
def assert_set_eq(tensor, indexer, val):
pyt = tensor.clone()
numt = tensor.clone()
pyt[indexer] = val
numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val)))
self.assertEqual(pyt, numt)
def get_set_tensor(indexed, indexer):
set_size = indexed[indexer].size()
set_count = indexed[indexer].numel()
set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double())
return set_tensor
# Tensor is 0 1 2 3 4
# 5 6 7 8 9
# 10 11 12 13 14
# 15 16 17 18 19
reference = conv_fn(torch.arange(0, 20).view(4, 5))
indices_to_test = [
# grab the second, fourth columns
[slice(None), [1, 3]],
# first, third rows,
[[0, 2], slice(None)],
# weird shape
[slice(None), [[0, 1],
[2, 3]]]
]
# only test dupes on gets
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
for indexer in get_indices_to_test:
assert_get_eq(reference, indexer)
for indexer in indices_to_test:
assert_set_eq(reference, indexer, 44)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
reference = conv_fn(torch.arange(0, 160).view(4, 8, 5))
indices_to_test = [
[slice(None), slice(None), [0, 3, 4]],
[slice(None), [2, 4, 5, 7], slice(None)],
[[2, 3], slice(None), slice(None)],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0], [1, 2, 4]],
[slice(None), [0, 1, 3], [4]],
[slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[slice(None), [[2]], [[0, 3], [4, 4]]],
[[0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4], slice(None)],
[[0, 1, 3], [4], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
[[[0, 1], [2, 3]], [[0]], slice(None)],
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
[[[2]], [[0, 3], [4, 1]], slice(None)],
# less dim, ellipsis
[[0, 2], ],
[[0, 2], slice(None)],
[[0, 2], Ellipsis],
[[0, 2], slice(None), Ellipsis],
[[0, 2], Ellipsis, slice(None)],
[[0, 2], [1, 3]],
[[0, 2], [1, 3], Ellipsis],
[Ellipsis, [1, 3], [2, 3]],
[Ellipsis, [2, 3, 4]],
[Ellipsis, slice(None), [2, 3, 4]],
[slice(None), Ellipsis, [2, 3, 4]],
# ellipsis counts for nothing
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), [0, 3, 4], Ellipsis],
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 212)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
reference = conv_fn(torch.arange(0, 1296).view(3, 9, 8, 6))
indices_to_test = [
[slice(None), slice(None), slice(None), [0, 3, 4]],
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
[slice(None), [2, 3], slice(None), slice(None)],
[[1, 2], slice(None), slice(None), slice(None)],
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), slice(None), [0], [1, 2, 4]],
[slice(None), slice(None), [0, 1, 3], [4]],
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
[slice(None), [0], [1, 2, 4], slice(None)],
[slice(None), [0, 1, 3], [4], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
[[0], [1, 2, 4], slice(None), slice(None)],
[[0, 1, 2], [4], slice(None), slice(None)],
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
[slice(None), [2, 3, 5], [3], [4]],
[slice(None), [0], [4], [1, 3, 4]],
[slice(None), [6], [0, 2, 3], [1]],
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
[[0, 2, 1], [3], [4], slice(None)],
[[0], [4], [1, 3, 4], slice(None)],
[[1], [0, 2, 3], [1], slice(None)],
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
# less dim, ellipsis
[Ellipsis, [0, 3, 4]],
[Ellipsis, slice(None), [0, 3, 4]],
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
[slice(None), Ellipsis, [0, 3, 4]],
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4]],
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
[[0], [1, 2, 4]],
[[0], [1, 2, 4], slice(None)],
[[0], [1, 2, 4], Ellipsis],
[[0], [1, 2, 4], Ellipsis, slice(None)],
[[1], ],
[[0, 2, 1], [3], [4]],
[[0, 2, 1], [3], [4], slice(None)],
[[0, 2, 1], [3], [4], Ellipsis],
[Ellipsis, [0, 2, 1], [3], [4]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
assert_set_eq(reference,
indexer,
get_set_tensor(reference, indexer))
indices_to_test += [
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
]
for indexer in indices_to_test:
assert_get_eq(reference, indexer)
assert_set_eq(reference, indexer, 1333)
def test_advancedindex(self):
self._test_advancedindex(self, lambda x: x)
@staticmethod
def _test_advancedindex_big(self, conv_fn):
reference = conv_fn(torch.arange(0, 123344).int())
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
torch.LongTensor([0, 123, 44488, 68807, 123343]))
def test_advancedindex_big(self):
self._test_advancedindex_big(self, lambda x: x)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_newaxis_numpy_comparison(self):
def run_test(tensor, *idx):
npt = tensor.numpy()
self.assertEqual(tensor[idx], npt[idx])
# 1D Tensor Tests
x = torch.arange(0, 10)
cases = [
[None],
[None, None],
[Ellipsis, None],
[None, Ellipsis],
[2, None],
[None, 2],
[Ellipsis, None, 2],
[Ellipsis, 2, None],
[2, Ellipsis, None],
[2, None, Ellipsis],
[None, 2, Ellipsis],
[None, Ellipsis, 2],
]
for case in cases:
run_test(x, *case)
# 2D Tensor Tests
x = torch.arange(0, 12).view(3, 4)
cases = [
[None],
[None, None],
[None, None, None],
[Ellipsis, None],
[Ellipsis, None, None],
[None, Ellipsis],
[None, Ellipsis, None],
[None, None, Ellipsis],
[2, None],
[2, None, Ellipsis],
[2, Ellipsis, None],
[None, 2, Ellipsis],
[Ellipsis, 2, None],
[Ellipsis, None, 2],
[None, Ellipsis, 2],
[1, 2, None],
[1, 2, Ellipsis, None],
[1, Ellipsis, 2, None],
[Ellipsis, 1, None, 2],
[Ellipsis, 1, 2, None],
[1, None, 2, Ellipsis],
[None, 1, Ellipsis, 2],
[None, 1, 2, Ellipsis],
]
for case in cases:
run_test(x, *case)
def test_newindex(self):
reference = self._consecutive((3, 3, 3))
# This relies on __index__() being correct - but we have separate tests for that
def checkPartialAssign(index):
reference = torch.zeros(3, 3, 3)
reference[index] = self._consecutive((3, 3, 3))[index]
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0)
reference[index] = 0
self.assertEqual(reference, torch.zeros(3, 3, 3), 0)
checkPartialAssign(0)
checkPartialAssign(1)
checkPartialAssign(2)
checkPartialAssign((0, 1))
checkPartialAssign((1, 2))
checkPartialAssign((0, 2))
checkPartialAssign(torch.LongTensor((0, 2)))
with self.assertRaises(IndexError):
reference[1, 1, 1, 1] = 1
with self.assertRaises(IndexError):
reference[1, 1, 1, (1, 1)] = 1
with self.assertRaises(IndexError):
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
with self.assertRaises(IndexError):
reference[0.0] = 1
with self.assertRaises(TypeError):
reference[0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, ..., 0.0:2.0] = 1
with self.assertRaises(IndexError):
reference[0.0, :, 0.0] = 1
def test_index_copy(self):
num_copy, num_dest = 3, 20
dest = torch.randn(num_dest, 4, 5)
src = torch.randn(num_copy, 4, 5)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, 0)
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_copy_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = src[i]
self.assertEqual(dest, dest2, 0)
def test_index_add(self):
num_copy, num_dest = 3, 3
dest = torch.randn(num_dest, 4, 5)
src = torch.randn(num_copy, 4, 5)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] += src[i]
self.assertEqual(dest, dest2)
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
dest2 = dest.clone()
dest.index_add_(0, idx, src)
for i in range(idx.size(0)):
dest2[idx[i]] = dest2[idx[i]] + src[i]
self.assertEqual(dest, dest2)
def test_index_select(self):
src = torch.randn(3, 4, 5)
# Index can be duplicated.
idx = torch.LongTensor([2, 1, 0, 1, 2])
dest = torch.index_select(src, 0, idx)
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
# Check that 'out' is used correctly.
out = torch.randn(5 * 4 * 5)
dest = torch.index_select(src, 0, idx, out=out.view(5, 4, 5))
self.assertEqual(dest.shape, (5, 4, 5))
for i in range(idx.size(0)):
self.assertEqual(dest[i], src[idx[i]])
out.fill_(0.123)
self.assertEqual(out, dest.view(-1)) # Must point to the same storage.
def test_take(self):
def check(src, idx):
expected = src.contiguous().view(-1).index_select(
0, idx.contiguous().view(-1)).view_as(idx)
actual = src.take(idx)
self.assertEqual(actual.size(), idx.size())
self.assertEqual(expected, actual)
src = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
check(src, idx)
check(src.transpose(1, 2), idx)
def test_put_(self):
def check(dst, idx, value):
expected = dst.clone().view(-1).index_copy_(
0, idx.contiguous().view(-1), value.contiguous().view(-1))
expected = expected.view_as(dst)
dst.put_(idx, value)
self.assertEqual(expected, dst)
dst = torch.randn(2, 3, 5)
idx = torch.LongTensor([[0, 2], [3, 4]])
values = torch.randn(2, 2)
check(dst, idx, values)
check(dst.transpose(1, 2), idx, values)
def test_put_accumulate(self):
dst = torch.ones(2, 2)
idx = torch.LongTensor([[0, 1], [0, 1]])
src = torch.Tensor([1, 2, 3, 4])
dst.put_(idx, src, accumulate=True)
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
# Fill idx with valid indices.
@staticmethod
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
@staticmethod
def _test_gather(self, cast, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
src = torch.randn(m, n, o)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.LongTensor().resize_(*idx_size)
TestTorch._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
src = cast(src)
idx = cast(idx)
actual = torch.gather(src, dim, idx)
expected = cast(torch.Tensor().resize_(*idx_size))
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 23
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
src = cast(torch.randn(3, 4, 5))
expected, idx = src.max(2, True)
expected = cast(expected)
idx = cast(idx)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, 0)
def test_gather(self):
self._test_gather(self, lambda t: t)
@staticmethod
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = cast(torch.LongTensor().resize_(*idx_size))
TestTorch._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
if is_scalar:
src = random.random()
else:
src = cast(torch.Tensor(*idx_size).normal_())
base = cast(torch.randn(m, n, o))
actual = getattr(base.clone(), method)(dim, idx, src)
expected = base.clone()
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if method == 'scatter_' and not is_scalar:
expected[tuple(ii)] = src[i, j, k]
elif method == 'scatter_add_':
expected[tuple(ii)] += src[i, j, k]
else:
expected[tuple(ii)] = src
self.assertEqual(actual, expected, 0)
if test_bounds:
idx[0][0][0] = 34
with self.assertRaises(RuntimeError):
getattr(base.clone(), method)(dim, idx, src)
def test_scatter(self):
self._test_scatter_base(self, lambda t: t, 'scatter_')
def test_scatterAdd(self):
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
def test_scatterFill(self):
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
def test_masked_scatter(self):
num_copy, num_dest = 3, 10
dest = torch.randn(num_dest)
src = torch.randn(num_copy)
mask = torch.ByteTensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0))
dest2 = dest.clone()
dest.masked_scatter_(mask, src)
j = 0
for i in range(num_dest):
if mask[i]:
dest2[i] = src[j]
j += 1
self.assertEqual(dest, dest2, 0)
# make source bigger than number of 1s in mask
src = torch.randn(num_dest)
dest.masked_scatter_(mask, src)
# make src smaller. this should fail
src = torch.randn(num_copy - 1)
with self.assertRaises(RuntimeError):
dest.masked_scatter_(mask, src)
def test_masked_select(self):
num_src = 10
src = torch.randn(num_src)
mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().byte()
dst = src.masked_select(mask)
dst2 = []
for i in range(num_src):
if mask[i]:
dst2 += [src[i]]
self.assertEqual(dst, torch.Tensor(dst2), 0)
def test_masked_fill(self):
num_dest = 10
dst = torch.randn(num_dest)
mask = torch.rand(num_dest).mul(2).floor().byte()
val = random.random()
dst2 = dst.clone()
dst.masked_fill_(mask, val)
for i in range(num_dest):
if mask[i]:
dst2[i] = val
self.assertEqual(dst, dst2, 0)
def test_abs(self):
size = 1000
max_val = 1000
original = torch.rand(size).mul(max_val)
# Tensor filled with values from {-1, 1}
switch = torch.rand(size).mul(2).floor().mul(2).add(-1)
types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor',
'torch.IntTensor', 'torch.ShortTensor']
for t in types:
data = original.type(t)
switch = switch.type(t)
res = torch.mul(data, switch)
# abs is used in assertEqual so we use the slow version instead
self.assertTensorsSlowEqual(res.abs(), data, 1e-16)
# Checking that the right abs function is called for LongTensor
bignumber = 2 ^ 31 + 1
res = torch.LongTensor((-bignumber,))
self.assertGreater(res.abs()[0], 0)
def test_unbiased(self):
tensor = torch.randn(100)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.FloatTensor([1.0, 2.0])
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self):
tensor = torch.FloatTensor([2281.5, 2281.25])
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
@staticmethod
def _test_view(self, cast):
tensor = cast(torch.rand(15))
template = cast(torch.rand(3, 5))
empty = cast(torch.Tensor())
target = template.size()
self.assertEqual(tensor.view_as(template).size(), target)
self.assertEqual(tensor.view(3, 5).size(), target)
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
self.assertEqual(tensor.view(-1, 5).size(), target)
self.assertEqual(tensor.view(3, -1).size(), target)
tensor_view = tensor.view(5, 3)
tensor_view.fill_(random.uniform(0, 1))
self.assertEqual(empty.view_as(empty), empty)
self.assertEqual(empty.view(0), empty)
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
# test view when tensor is not contiguous in every dimension, but only
# contiguous dimensions are touched.
tensor = cast(torch.rand(4, 2, 5, 1, 6, 2, 9, 3)).transpose(-1, 2).transpose(-2, 3)
# size: [ 4, 2, 3, 9, 6, 2, 1, 5]
# stride: [3840, 1620, 1, 3, 54, 27, 324, 324]
# contiguous dim chunks: [__________, ____, ____, __________, ____, ____]
# merging 1 to chunk after: [__________, ____, ____, __________, __________]
contig_tensor = tensor.clone()
# [4, 2] => [8, 1]
# [3] => [3]
# [9] => [3, 3]
# [6, 2] => [4, 1, 3]
# [1, 5] => [5]
view_size = [8, 1, 3, 3, 3, 4, 1, 3, 5]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# [4, 2] => [2, 4]
# [3] => [3]
# [9] => [1, 9]
# [6, 2] => [2, 2, 3]
# [1, 5] => [5, 1]
view_size = [2, 4, 3, 1, 9, 2, 2, 3, 5, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# adding size 1 dims
view_size = [1, 1, 2, 1, 4, 3, 1, 1, 9, 1, 2, 1, 2, 3, 1, 5, 1, 1]
self.assertEqual(tensor.view(*view_size), contig_tensor.view(*view_size))
# invalid views
self.assertRaises(RuntimeError, lambda: tensor.view(-1))
# crossing [4, 2], [3]
self.assertRaises(RuntimeError, lambda: tensor.view(24, 9, 6, 2, 1, 5))
# crossing [6, 2], [1, 5]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 9, 6, 10))
# crossing [9], [6, 2]
self.assertRaises(RuntimeError, lambda: tensor.view(8, 3, 54, 2, 1, 5))
# view with stride 0 dims
tensor = cast(torch.Tensor(1, 1)).expand(3, 4) # all dims are contiguous
contig_tensor = tensor.clone()
self.assertEqual(tensor.view(-1), contig_tensor.view(-1))
self.assertEqual(tensor.view(1, -1, 1), contig_tensor.view(1, -1, 1))
self.assertEqual(tensor.view(-1, 1), contig_tensor.view(-1, 1))
self.assertEqual(tensor.view(6, 2, 1), contig_tensor.view(6, 2, 1))
self.assertEqual(tensor.view(1, 6, 2, 1), contig_tensor.view(1, 6, 2, 1))
def test_view(self):
TestTorch._test_view(self, lambda x: x)
def test_reshape(self):
x = torch.randn(3, 3)
self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr())
self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr())
self.assertEqual(torch.reshape(x, (9,)), x.reshape(9))
self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1))
y = torch.randn(4, 4, 4)[:, 0, :]
self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr())
self.assertEqual(y.contiguous().view(-1), y.reshape(-1))
self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr())
s = torch.randn(())
self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr())
self.assertEqual(s.reshape(-1).shape, (1,))
self.assertRaises(RuntimeError, lambda: s.reshape(2))
empty = torch.tensor([])
self.assertEqual(empty, empty.reshape(-1))
self.assertEqual(empty, empty.reshape([0]))
# TODO: fix these once we have multi-dimensional empty tensors
self.assertEqual(empty.reshape([0, 1]).shape, (0,))
self.assertEqual(empty.reshape([1, -1]).shape, (0,))
self.assertRaises(RuntimeError, lambda: empty.reshape(1))
def test_expand(self):
tensor = torch.rand(1, 8, 1)
tensor2 = torch.rand(5)
template = torch.rand(4, 8, 5)
target = template.size()
self.assertEqual(tensor.expand_as(template).size(), target)
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
self.assertEqual(tensor.expand(target).size(), target)
self.assertEqual(tensor2.expand_as(template).size(), target)
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
self.assertEqual(tensor2.expand(target).size(), target)
# test double expand
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
# test non-contiguous
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
self.assertFalse(noncontig.is_contiguous())
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
# make sure it's compatible with unsqueeze
expanded = tensor2.expand(1, 1, 5)
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
self.assertEqual(expanded, unsqueezed)
self.assertEqual(expanded.stride(), unsqueezed.stride())
# test -1 as target size
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
# test expanding empty to empty
self.assertEqual(torch.zeros(0).expand((0,)), torch.zeros(0))
def test_repeat(self):
initial_shape = (8, 4)
tensor = torch.rand(*initial_shape)
size = (3, 1, 1)
torchSize = torch.Size(size)
target = [3, 8, 4]
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
self.assertEqual(tensor.repeat(torchSize).size(), target,
'Error in repeat using LongStorage')
result = tensor.repeat(*size)
self.assertEqual(result.size(), target, 'Error in repeat using result')
result = tensor.repeat(torchSize)
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_repeat_tile(self):
initial_shape = (8, 4)
repeats = ((3, 1, 1),
(3, 3, 3),
(1, 2, 1),
(2, 2, 2, 2))
def _generate_noncontiguous_input():
out = np.broadcast_to(np.random.random((1, 4)),
initial_shape)
assert not (out.flags.c_contiguous or out.flags.f_contiguous)
return out
for repeat in repeats:
for tensor in (torch.from_numpy(np.random.random(initial_shape)),
torch.from_numpy(_generate_noncontiguous_input()),):
self.assertEqual(tensor.repeat(*repeat).numpy(),
np.tile(tensor.numpy(), repeat))
def test_is_same_size(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4)
t3 = torch.Tensor(1, 9, 3, 3)
t4 = torch.Tensor(3, 4, 9, 10)
self.assertFalse(t1.is_same_size(t2))
self.assertFalse(t1.is_same_size(t3))
self.assertTrue(t1.is_same_size(t4))
def test_is_set_to(self):
t1 = torch.Tensor(3, 4, 9, 10)
t2 = torch.Tensor(3, 4, 9, 10)
t3 = torch.Tensor().set_(t1)
t4 = t3.clone().resize_(12, 90)
self.assertFalse(t1.is_set_to(t2))
self.assertTrue(t1.is_set_to(t3))
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
self.assertFalse(t1.is_set_to(t4))
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
"Tensors with no storages should not appear to be set "
"to each other")
def test_tensor_set(self):
t1 = torch.Tensor()
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
t1.set_(t2)
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
size = torch.Size([9, 3, 4, 10])
t1.set_(t2.storage(), 0, size)
self.assertEqual(t1.size(), size)
t1.set_(t2.storage(), 0, tuple(size))
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), (120, 40, 10, 1))
stride = (10, 360, 90, 1)
t1.set_(t2.storage(), 0, size, stride)
self.assertEqual(t1.stride(), stride)
t1.set_(t2.storage(), 0, size=size, stride=stride)
self.assertEqual(t1.size(), size)
self.assertEqual(t1.stride(), stride)
def test_equal(self):
# Contiguous, 1D
t1 = torch.Tensor((3, 4, 9, 10))
t2 = t1.contiguous()
t3 = torch.Tensor((1, 9, 3, 10))
t4 = torch.Tensor((3, 4, 9))
t5 = torch.Tensor()
self.assertTrue(t1.equal(t2))
self.assertFalse(t1.equal(t3))
self.assertFalse(t1.equal(t4))
self.assertFalse(t1.equal(t5))
self.assertTrue(torch.equal(t1, t2))
self.assertFalse(torch.equal(t1, t3))
self.assertFalse(torch.equal(t1, t4))
self.assertFalse(torch.equal(t1, t5))
# Non contiguous, 2D
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
s1 = s[:, 1:3]
s2 = s1.clone()
s3 = torch.Tensor(((2, 3), (6, 7)))
s4 = torch.Tensor(((0, 0), (0, 0)))
self.assertFalse(s1.is_contiguous())
self.assertTrue(s1.equal(s2))
self.assertTrue(s1.equal(s3))
self.assertFalse(s1.equal(s4))
self.assertTrue(torch.equal(s1, s2))
self.assertTrue(torch.equal(s1, s3))
self.assertFalse(torch.equal(s1, s4))
def test_element_size(self):
byte = torch.ByteStorage().element_size()
char = torch.CharStorage().element_size()
short = torch.ShortStorage().element_size()
int = torch.IntStorage().element_size()
long = torch.LongStorage().element_size()
float = torch.FloatStorage().element_size()
double = torch.DoubleStorage().element_size()
self.assertEqual(byte, torch.ByteTensor().element_size())
self.assertEqual(char, torch.CharTensor().element_size())
self.assertEqual(short, torch.ShortTensor().element_size())
self.assertEqual(int, torch.IntTensor().element_size())
self.assertEqual(long, torch.LongTensor().element_size())
self.assertEqual(float, torch.FloatTensor().element_size())
self.assertEqual(double, torch.DoubleTensor().element_size())
self.assertGreater(byte, 0)
self.assertGreater(char, 0)
self.assertGreater(short, 0)
self.assertGreater(int, 0)
self.assertGreater(long, 0)
self.assertGreater(float, 0)
self.assertGreater(double, 0)
# These tests are portable, not necessarily strict for your system.
self.assertEqual(byte, 1)
self.assertEqual(char, 1)
self.assertGreaterEqual(short, 2)
self.assertGreaterEqual(int, 2)
self.assertGreaterEqual(int, short)
self.assertGreaterEqual(long, 4)
self.assertGreaterEqual(long, int)
self.assertGreaterEqual(double, float)
def test_split(self):
tensor = torch.rand(7, 4)
split_size = 3
dim = 0
target_sizes = ([3, 4], [3, 4], [1, 4])
splits = tensor.split(split_size, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
# Variable sections split
tensor = torch.randn(20, 10)
dim = 0
split_sizes = [5, 5, 10]
target_sizes = ([[5, 10], [5, 10], [10, 10]])
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
split_sizes = [2, 2, 6]
target_sizes = ([20, 2], [20, 2], [20, 6])
dim = 1
splits = tensor.split(split_sizes, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
def test_chunk(self):
tensor = torch.rand(4, 7)
num_chunks = 3
dim = 1
target_sizes = ([4, 3], [4, 3], [4, 1])
splits = tensor.chunk(num_chunks, dim)
start = 0
for target_size, split in zip(target_sizes, splits):
self.assertEqual(split.size(), target_size)
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
start = start + target_size[dim]
def test_tolist(self):
list0D = []
tensor0D = torch.Tensor(list0D)
self.assertEqual(tensor0D.tolist(), list0D)
table1D = [1, 2, 3]
tensor1D = torch.Tensor(table1D)
storage = torch.Storage(table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
self.assertEqual(tensor1D.tolist(), table1D)
self.assertEqual(storage.tolist(), table1D)
table2D = [[1, 2], [3, 4]]
tensor2D = torch.Tensor(table2D)
self.assertEqual(tensor2D.tolist(), table2D)
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
tensorNonContig = tensor3D.select(1, 1)
self.assertFalse(tensorNonContig.is_contiguous())
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
def test_permute(self):
orig = [1, 2, 3, 4, 5, 6, 7]
perm = torch.randperm(7).tolist()
x = torch.Tensor(*orig).fill_(0)
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
self.assertEqual(perm, new)
self.assertEqual(x.size(), orig)
def test_storage(self):
v = torch.randn(3, 5)
self.assertEqual(v.storage()[0], v.data[0][0])
self.assertEqual(v.storage()[14], v.data[2][4])
def test_storageview(self):
s1 = torch.LongStorage((3, 4, 5))
s2 = torch.LongStorage(s1, 1)
self.assertEqual(s2.size(), 2)
self.assertEqual(s2[0], s1[1])
self.assertEqual(s2[1], s1[2])
s2[1] = 13
self.assertEqual(13, s1[2])
def test_nonzero(self):
num_src = 12
types = [
'torch.ByteTensor',
'torch.CharTensor',
'torch.ShortTensor',
'torch.IntTensor',
'torch.FloatTensor',
'torch.DoubleTensor',
'torch.LongTensor',
]
shapes = [
torch.Size((12,)),
torch.Size((12, 1)),
torch.Size((1, 12)),
torch.Size((6, 2)),
torch.Size((3, 2, 2)),
]
for t in types:
while True:
tensor = torch.rand(num_src).mul(2).floor().type(t)
if tensor.sum() > 0:
break
for shape in shapes:
tensor = tensor.clone().resize_(shape)
dst1 = torch.nonzero(tensor)
dst2 = tensor.nonzero()
dst3 = torch.LongTensor()
torch.nonzero(tensor, out=dst3)
if len(shape) == 1:
dst = []
for i in range(num_src):
if tensor[i] != 0:
dst += [i]
self.assertEqual(dst1.select(1, 0), torch.LongTensor(dst), 0)
self.assertEqual(dst2.select(1, 0), torch.LongTensor(dst), 0)
self.assertEqual(dst3.select(1, 0), torch.LongTensor(dst), 0)
elif len(shape) == 2:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]].item(), 0)
elif len(shape) == 3:
# This test will allow through some False positives. It only checks
# that the elements flagged positive are indeed non-zero.
for i in range(dst1.size(0)):
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]].item(), 0)
def test_deepcopy(self):
from copy import deepcopy
a = torch.randn(5, 5)
b = torch.randn(5, 5)
c = a.view(25)
q = [a, [a.storage(), b.storage()], b, c]
w = deepcopy(q)
self.assertEqual(w[0], q[0], 0)
self.assertEqual(w[1][0], q[1][0], 0)
self.assertEqual(w[1][1], q[1][1], 0)
self.assertEqual(w[1], q[1], 0)
self.assertEqual(w[2], q[2], 0)
# Check that deepcopy preserves sharing
w[0].add_(1)
for i in range(a.numel()):
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
self.assertEqual(w[3], c + 1)
w[2].sub_(1)
for i in range(a.numel()):
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
def test_deepcopy_scalar(self):
from copy import deepcopy
a = torch.tensor(5)
self.assertEqual(a.size(), deepcopy(a).size())
self.assertEqual(a, deepcopy(a))
def test_copy(self):
from copy import copy
a = torch.randn(5, 5)
a_clone = a.clone()
b = copy(a)
b.fill_(1)
# copy is a shallow copy, only copies the tensor view,
# not the data
self.assertEqual(a, b)
def test_pickle(self):
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
a = torch.randn(5, 5)
serialized = pickle.dumps(a)
b = pickle.loads(serialized)
self.assertEqual(a, b)
def test_norm_fastpaths(self):
x = torch.randn(3, 5)
# slow path
result = torch.norm(x, 4.5, 1)
expected = torch.pow(x.abs().pow(4.5).sum(1), 1.0 / 4.5)
self.assertEqual(result, expected)
# fast 0-norm
result = torch.norm(x, 0, 1)
expected = (x != 0).type_as(x).sum(1)
self.assertEqual(result, expected)
# fast 1-norm
result = torch.norm(x, 1, 1)
expected = x.abs().sum(1)
self.assertEqual(result, expected)
# fast 2-norm
result = torch.norm(x, 2, 1)
expected = torch.sqrt(x.pow(2).sum(1))
self.assertEqual(result, expected)
# fast 3-norm
result = torch.norm(x, 3, 1)
expected = torch.pow(x.pow(3).abs().sum(1), 1.0 / 3.0)
self.assertEqual(result, expected)
def test_bernoulli(self):
t = torch.ByteTensor(10, 10)
def isBinary(t):
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum() == 0
p = 0.5
t.bernoulli_(p)
self.assertTrue(isBinary(t))
p = torch.rand(10, 10)
t.bernoulli_(p)
self.assertTrue(isBinary(t))
q = torch.rand(5, 5)
self.assertTrue(isBinary(q.bernoulli()))
def test_normal(self):
q = torch.Tensor(100, 100)
q.normal_()
self.assertEqual(q.mean(), 0, 0.2)
self.assertEqual(q.std(), 1, 0.2)
q.normal_(2, 3)
self.assertEqual(q.mean(), 2, 0.3)
self.assertEqual(q.std(), 3, 0.3)
mean = torch.Tensor(100, 100)
std = torch.Tensor(100, 100)
mean[:50] = 0
mean[50:] = 1
std[:, :50] = 4
std[:, 50:] = 1
r = torch.normal(mean)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 1, 0.2)
r = torch.normal(mean, 3)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r.std(), 3, 0.2)
r = torch.normal(2, std)
self.assertEqual(r.mean(), 2, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
r = torch.normal(mean, std)
self.assertEqual(r[:50].mean(), 0, 0.2)
self.assertEqual(r[50:].mean(), 1, 0.2)
self.assertEqual(r[:, :50].std(), 4, 0.3)
self.assertEqual(r[:, 50:].std(), 1, 0.2)
def _test_serialization(self, filecontext_lambda, test_use_filename=True):
a = [torch.randn(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].storage()[1:4]]
b += [torch.arange(1, 11).int()]
t1 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
t2 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
b += [(t1.storage(), t1.storage(), t2.storage())]
b += [a[0].storage()[0:2]]
if test_use_filename:
use_name_options = (False, True)
else:
use_name_options = (False,)
for use_name in use_name_options:
# Passing filename to torch.save(...) will cause the file to be opened twice,
# which is not supported on Windows
if sys.platform == "win32" and use_name:
continue
with filecontext_lambda() as f:
handle = f if not use_name else f.name
torch.save(b, handle)
f.seek(0)
c = torch.load(handle)
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
self.assertEqual(c[4][1:4], c[5], 0)
# check that serializing the same storage view object unpickles
# it as one object not two (and vice versa)
views = c[7]
self.assertEqual(views[0]._cdata, views[1]._cdata)
self.assertEqual(views[0], views[2])
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
rootview = c[8]
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
def test_serialization(self):
# Test serialization with a real file
self._test_serialization(tempfile.NamedTemporaryFile)
def test_serialization_filelike(self):
# Test serialization (load and save) with a filelike object
self._test_serialization(BytesIOContext, test_use_filename=False)
def _test_serialization_offset(self, filecontext_lambda):
a = torch.randn(5, 5)
i = 41
with tempfile.TemporaryFile() as f:
pickle.dump(i, f)
torch.save(a, f)
f.seek(0)
j = pickle.load(f)
b = torch.load(f)
self.assertTrue(torch.equal(a, b))
self.assertEqual(i, j)
def test_serialization_offset(self):
self._test_serialization_offset(tempfile.TemporaryFile)
def test_serialization_offset_filelike(self):
self._test_serialization_offset(BytesIOContext)
def test_half_tensor(self):
x = torch.randn(5, 5).float()
y = torch.randn(5, 5).float()
xh, yh = x.half(), y.half()
self.assertEqual(x.half().float(), x, 1e-3)
z = torch.Tensor(5, 5)
self.assertEqual(z.copy_(xh), x, 1e-3)
with tempfile.NamedTemporaryFile() as f:
torch.save(xh, f)
f.seek(0)
xh2 = torch.load(f)
self.assertEqual(xh.float(), xh2.float())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_half_tensor_cuda(self):
x = torch.randn(5, 5).half()
self.assertEqual(x.cuda(), x)
xc = x.cuda()
with tempfile.NamedTemporaryFile() as f:
torch.save(xc, f)
f.seek(0)
xc2 = torch.load(f)
self.assertIsInstance(xc2, type(xc))
self.assertEqual(xc.float(), xc2.float())
def _test_serialization_cuda(self, filecontext_lambda):
device_count = torch.cuda.device_count()
t0 = torch.cuda.FloatTensor(5).fill_(1)
torch.cuda.set_device(device_count - 1)
tn = torch.cuda.FloatTensor(3).fill_(2)
torch.cuda.set_device(0)
b = (t0, tn)
with filecontext_lambda() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self.assertEqual(b, c, 0)
u0, un = c
self.assertEqual(u0.get_device(), 0)
self.assertEqual(un.get_device(), device_count - 1)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_serialization_cuda(self):
self._test_serialization_cuda(tempfile.NamedTemporaryFile)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_serialization_cuda_filelike(self):
self._test_serialization_cuda(BytesIOContext)
def test_serialization_backwards_compat(self):
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].storage()[1:4]]
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
c = torch.load(path)
self.assertEqual(b, c, 0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.FloatStorage))
c[0].fill_(10)
self.assertEqual(c[0], c[2], 0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], 0)
self.assertEqual(c[4][1:4], c[5], 0)
# test some old tensor serialization mechanism
class OldTensorBase(object):
def __init__(self, new_tensor):
self.new_tensor = new_tensor
def __getstate__(self):
return (self.new_tensor.storage(),
self.new_tensor.storage_offset(),
tuple(self.new_tensor.size()),
self.new_tensor.stride())
class OldTensorV1(OldTensorBase):
def __reduce__(self):
return (torch.Tensor, (), self.__getstate__())
class OldTensorV2(OldTensorBase):
def __reduce__(self):
return (_rebuild_tensor, self.__getstate__())
x = torch.randn(30).as_strided([2, 3], [9, 3], 2)
for old_cls in [OldTensorV1, OldTensorV2]:
with tempfile.NamedTemporaryFile() as f:
old_x = old_cls(x)
torch.save(old_x, f)
f.seek(0)
load_x = torch.load(f)
self.assertEqual(x.storage(), load_x.storage())
self.assertEqual(x.storage_offset(), load_x.storage_offset())
self.assertEqual(x.size(), load_x.size())
self.assertEqual(x.stride(), load_x.stride())
# unique_key is necessary because on Python 2.7, if a warning passed to
# the warning module is the same, it is not raised again.
def _test_serialization_container(self, unique_key, filecontext_lambda):
tmpmodule_name = 'tmpmodule{}'.format(unique_key)
def import_module(name, filename):
if sys.version_info >= (3, 5):
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
else:
import imp
module = imp.load_source(name, filename)
sys.modules[module.__name__] = module
return module
with filecontext_lambda() as checkpoint:
fname = os.path.join(os.path.dirname(__file__), 'data/network1.py')
module = import_module(tmpmodule_name, fname)
torch.save(module.Net(), checkpoint)
# First check that the checkpoint can be loaded without warnings
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEquals(len(w), 0)
# Replace the module with different source
fname = os.path.join(os.path.dirname(__file__), 'data/network2.py')
module = import_module(tmpmodule_name, fname)
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEquals(len(w), 1)
self.assertTrue(w[0].category, 'SourceChangeWarning')
def test_serialization_container(self):
self._test_serialization_container('file', tempfile.NamedTemporaryFile)
def test_serialization_container_filelike(self):
self._test_serialization_container('filelike', BytesIOContext)
def test_serialization_map_location(self):
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
def map_location(storage, loc):
return storage
def load_bytes():
with open(test_file_path, 'rb') as f:
data = io.BytesIO(f.read())
return data
fileobject_lambdas = [lambda: test_file_path, load_bytes]
map_locations = [map_location, {'cuda:0': 'cpu'}, 'cpu']
for fileobject_lambda in fileobject_lambdas:
for map_location in map_locations:
tensor = torch.load(fileobject_lambda(), map_location=map_location)
self.assertIsInstance(tensor, torch.FloatTensor)
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
def test_serialization_filelike_api_requirements(self):
filemock = FilelikeMock(b'', has_readinto=False)
tensor = torch.randn(3, 5)
torch.save(tensor, filemock)
expected_superset = set(['write', 'flush'])
self.assertTrue(expected_superset.issuperset(filemock.calls))
# Reset between save and load
filemock.seek(0)
filemock.calls.clear()
_ = torch.load(filemock)
expected_superset = set(['read', 'readline', 'seek', 'tell'])
self.assertTrue(expected_superset.issuperset(filemock.calls))
def _test_serialization_filelike(self, tensor, mock, desc):
f = mock(b'')
torch.save(tensor, f)
f.seek(0)
data = mock(f.read())
msg = 'filelike serialization with {}'
b = torch.load(data)
self.assertTrue(torch.equal(tensor, b), msg.format(desc))
def test_serialization_filelike_missing_attrs(self):
# Test edge cases where filelike objects are missing attributes.
# The Python io docs suggests that these attributes should really exist
# and throw io.UnsupportedOperation, but that isn't always the case.
mocks = [
('no readinto', lambda x: FilelikeMock(x)),
('has readinto', lambda x: FilelikeMock(x, has_readinto=True)),
('no fileno', lambda x: FilelikeMock(x, has_fileno=False)),
]
to_serialize = torch.randn(3, 10)
for desc, mock in mocks:
self._test_serialization_filelike(to_serialize, mock, desc)
def test_serialization_filelike_stress(self):
a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9))
# This one should call python read multiple times
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False),
'read() stress test')
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True),
'readinto() stress test')
def test_serialization_filelike_uses_readinto(self):
# For maximum effiency, when reading a file-like object,
# ensure the C API calls readinto instead of read.
a = torch.randn(5, 4)
f = io.BytesIO()
torch.save(a, f)
f.seek(0)
data = FilelikeMock(f.read(), has_readinto=True)
b = torch.load(data)
self.assertTrue(data.was_called('readinto'))
def test_from_buffer(self):
a = bytearray([1, 2, 3, 4])
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
shorts = torch.ShortStorage.from_buffer(a, 'big')
self.assertEqual(shorts.size(), 2)
self.assertEqual(shorts.tolist(), [258, 772])
ints = torch.IntStorage.from_buffer(a, 'little')
self.assertEqual(ints.size(), 1)
self.assertEqual(ints[0], 67305985)
f = bytearray([0x40, 0x10, 0x00, 0x00])
floats = torch.FloatStorage.from_buffer(f, 'big')
self.assertEqual(floats.size(), 1)
self.assertEqual(floats[0], 2.25)
@unittest.skipIf(IS_WINDOWS, "TODO: need to fix this test case for Windows")
def test_from_file(self):
size = 10000
with tempfile.NamedTemporaryFile() as f:
s1 = torch.FloatStorage.from_file(f.name, True, size)
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
# check mapping
s2 = torch.FloatStorage.from_file(f.name, True, size)
t2 = torch.FloatTensor(s2)
self.assertEqual(t1, t2, 0)
# check changes to t1 from t2
rnum = random.uniform(-1, 1)
t1.fill_(rnum)
self.assertEqual(t1, t2, 0)
# check changes to t2 from t1
rnum = random.uniform(-1, 1)
t2.fill_(rnum)
self.assertEqual(t1, t2, 0)
def test_print(self):
for t in torch._tensor_classes:
if t == torch.HalfTensor:
continue # HalfTensor does not support fill
if t.is_sparse:
continue
if t.is_cuda and not torch.cuda.is_available():
continue
obj = t(100, 100).fill_(1)
obj.__repr__()
str(obj)
for t in torch._storage_classes:
if t.is_cuda and not torch.cuda.is_available():
continue
obj = t(100).fill_(1)
obj.__repr__()
str(obj)
x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1])
x.__repr__()
str(x)
x = torch.DoubleTensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309])
x.__repr__()
str(x),
def test_sizeof(self):
sizeof_empty = torch.randn(0).storage().__sizeof__()
sizeof_10 = torch.randn(10).storage().__sizeof__()
sizeof_100 = torch.randn(100).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
def test_unsqueeze(self):
x = torch.randn(2, 3, 4)
y = x.unsqueeze(1)
self.assertEqual(y, x.view(2, 1, 3, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.view(2, 3, 1, 4))
x = x[:, 1]
self.assertFalse(x.is_contiguous())
y = x.unsqueeze(1)
self.assertEqual(y, x.contiguous().view(2, 1, 4))
y = x.clone().unsqueeze_(2)
self.assertEqual(y, x.contiguous().view(2, 4, 1))
self.assertRaises(RuntimeError, lambda: torch.Tensor().unsqueeze(0))
def test_iter(self):
x = torch.randn(5, 5)
for i, sub in enumerate(x):
self.assertEqual(sub, x[i])
x = torch.Tensor()
self.assertEqual(list(x), [])
def test_accreal_type(self):
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_assertEqual(self):
x = torch.FloatTensor([0])
self.assertEqual(x, 0)
xv = torch.autograd.Variable(x)
self.assertEqual(xv, 0)
self.assertEqual(x, xv)
self.assertEqual(xv, x)
def test_new(self):
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
self.assertEqual(x.new().shape, [0])
self.assertEqual(x.new(), x)
self.assertEqual(x.new(1, 2).shape, [1, 2])
self.assertEqual(x.new(torch.Size([3, 4])).shape, [3, 4])
self.assertEqual(x.new([3, 4]).shape, [2])
self.assertEqual(x.new([3, 4]).tolist(), [3, 4])
self.assertEqual(x.new((3, 4)).tolist(), [3, 4])
if TEST_NUMPY:
self.assertEqual(x.new([np.int32(3), np.float64(4)]).tolist(), [3, 4])
self.assertEqual(x.new(np.array((3, 4))).tolist(), [3, 4])
self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
self.assertEqual(x.new(size=(3, 4)).shape, [3, 4])
self.assertEqual(x.new(tuple()).shape, [0])
self.assertEqual(x.new(y.storage()).data_ptr(), y.data_ptr())
self.assertEqual(x.new(y).data_ptr(), y.data_ptr())
self.assertIsNot(x.new(y), y)
self.assertRaises(TypeError, lambda: x.new(z))
# TypeError would be better
self.assertRaises(RuntimeError, lambda: x.new(z.storage()))
def test_empty_like(self):
x = torch.autograd.Variable(torch.Tensor())
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
for a in (x, y, z):
self.assertEqual(torch.empty_like(a).shape, a.shape)
self.assertEqual(torch.empty_like(a).type(), a.type())
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_pin_memory(self):
x = torch.randn(3, 5)
self.assertFalse(x.is_pinned())
pinned = x.pin_memory()
self.assertTrue(pinned.is_pinned())
self.assertEqual(pinned, x)
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_unresizable(self):
x = np.zeros((2, 2))
y = torch.from_numpy(x)
with self.assertRaises(ValueError):
x.resize((5, 5))
z = torch.randn(5, 5)
w = z.numpy()
with self.assertRaises(RuntimeError):
z.resize_(10, 10)
with self.assertRaises(ValueError):
w.resize((10, 10))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_toNumpy(self):
types = [
'torch.ByteTensor',
'torch.IntTensor',
'torch.HalfTensor',
'torch.FloatTensor',
'torch.DoubleTensor',
'torch.LongTensor',
]
for tp in types:
# 1D
sz = 10
x = torch.randn(sz).mul(255).type(tp)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
# 1D > 0 storage offset
xm = torch.randn(sz * 2).mul(255).type(tp)
x = xm.narrow(0, sz - 1, sz)
self.assertTrue(x.storage_offset() > 0)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
def check2d(x, y):
for i in range(sz1):
for j in range(sz2):
self.assertEqual(x[i][j], y[i][j])
# empty
x = torch.Tensor().type(tp)
y = x.numpy()
self.assertEqual(y.size, 0)
# contiguous 2D
sz1 = 3
sz2 = 5
x = torch.randn(sz1, sz2).mul(255).type(tp)
y = x.numpy()
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = torch.randn(sz1 * 2, sz2).mul(255).type(tp)
x = xm.narrow(0, sz1 - 1, sz1)
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# non-contiguous 2D
x = torch.randn(sz2, sz1).mul(255).type(tp).t()
y = x.numpy()
check2d(x, y)
self.assertFalse(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = torch.randn(sz2 * 2, sz1).mul(255).type(tp)
x = xm.narrow(0, sz2 - 1, sz2).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# non-contiguous 2D with holes
xm = torch.randn(sz2 * 2, sz1 * 2).mul(255).type(tp)
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
if tp != 'torch.HalfTensor':
# check writeable
x = torch.randn(3, 4).mul(255).type(tp)
y = x.numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
y = x.t().numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
def test_dlpack_conversion(self):
x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor')
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@unittest.skipIf(not torch.cuda.is_available(), "No CUDA")
def test_dlpack_cuda(self):
x = torch.randn(1, 2, 3, 4).cuda()
z = from_dlpack(to_dlpack(x))
self.assertEqual(z, x)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_from_numpy(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
np.longlong,
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
tensor_from_array = torch.from_numpy(array)
# TODO: change to tensor equality check once HalfTensor
# implements `==`
for i in range(len(array)):
self.assertEqual(tensor_from_array[i], array[i])
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
# check zero dimensional
x = np.zeros((0, 2))
self.assertEqual(torch.from_numpy(x).shape, (0,))
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_ctor_with_numpy_array(self):
dtypes = [
np.double,
np.float,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
# Upcast
tensor = torch.DoubleTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
if torch.cuda.is_available():
tensor = torch.cuda.DoubleTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
# Downcast (sometimes)
tensor = torch.FloatTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.HalfTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
if torch.cuda.is_available():
tensor = torch.cuda.FloatTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.cuda.HalfTensor(array)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_index(self):
i = np.int32([0, 1, 2])
x = torch.randn(5, 5)
for idx in i:
self.assertFalse(isinstance(idx, int))
self.assertEqual(x[idx], x[int(idx)])
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_numpy_array_interface(self):
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.ByteTensor,
]
dtypes = [
np.float64,
np.float32,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
]
for tp, dtype in zip(types, dtypes):
if np.dtype(dtype).kind == 'u':
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
else:
x = torch.Tensor([1, -2, 3, -4]).type(tp)
array = np.array([1, -2, 3, -4], dtype=dtype)
# Test __array__ w/o dtype argument
asarray = np.asarray(x)
self.assertIsInstance(asarray, np.ndarray)
self.assertEqual(asarray.dtype, dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test __array_wrap__, same dtype
abs_x = np.abs(x)
abs_array = np.abs(array)
self.assertIsInstance(abs_x, tp)
for i in range(len(x)):
self.assertEqual(abs_x[i], abs_array[i])
# Test __array__ with dtype argument
for dtype in dtypes:
x = torch.IntTensor([1, -2, 3, -4])
asarray = np.asarray(x, dtype=dtype)
self.assertEqual(asarray.dtype, dtype)
if np.dtype(dtype).kind == 'u':
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], wrapped_x[i])
else:
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test some math functions with float types
float_types = [torch.DoubleTensor, torch.FloatTensor]
float_dtypes = [np.float64, np.float32]
for tp, dtype in zip(float_types, float_dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
for func in ['sin', 'sqrt', 'ceil']:
ufunc = getattr(np, func)
res_x = ufunc(x)
res_array = ufunc(array)
self.assertIsInstance(res_x, tp)
for i in range(len(x)):
self.assertEqual(res_x[i], res_array[i])
# Test functions with boolean return value
for tp, dtype in zip(types, dtypes):
x = torch.Tensor([1, 2, 3, 4]).type(tp)
array = np.array([1, 2, 3, 4], dtype=dtype)
geq2_x = np.greater_equal(x, 2)
geq2_array = np.greater_equal(array, 2).astype('uint8')
self.assertIsInstance(geq2_x, torch.ByteTensor)
for i in range(len(x)):
self.assertEqual(geq2_x[i], geq2_array[i])
def test_error_msg_type_translation(self):
with self.assertRaisesRegex(
RuntimeError,
# message includes both torch.DoubleTensor and torch.LongTensor
'(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'):
# Calls model with a DoubleTensor input but LongTensor weights
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
weight = torch.zeros(1, 1, 1, 3).long()
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
model.weight.data = weight
out = model(input)
def test_comparison_ops(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
eq = x == y
for idx in iter_indices(x):
self.assertEqual(x[idx] == y[idx], eq[idx] == 1)
ne = x != y
for idx in iter_indices(x):
self.assertEqual(x[idx] != y[idx], ne[idx] == 1)
lt = x < y
for idx in iter_indices(x):
self.assertEqual(x[idx] < y[idx], lt[idx] == 1)
le = x <= y
for idx in iter_indices(x):
self.assertEqual(x[idx] <= y[idx], le[idx] == 1)
gt = x > y
for idx in iter_indices(x):
self.assertEqual(x[idx] > y[idx], gt[idx] == 1)
ge = x >= y
for idx in iter_indices(x):
self.assertEqual(x[idx] >= y[idx], ge[idx] == 1)
def test_bitwise_ops(self):
x = torch.randn(5, 5).gt(0)
y = torch.randn(5, 5).gt(0)
and_result = x & y
for idx in iter_indices(x):
if and_result[idx]:
self.assertTrue(x[idx] and y[idx])
else:
self.assertFalse(x[idx] and y[idx])
or_result = x | y
for idx in iter_indices(x):
if or_result[idx]:
self.assertTrue(x[idx] or y[idx])
else:
self.assertFalse(x[idx] or y[idx])
xor_result = x ^ y
for idx in iter_indices(x):
if xor_result[idx]:
self.assertTrue(x[idx] ^ y[idx])
else:
self.assertFalse(x[idx] ^ y[idx])
invert_result = ~x
for idx in iter_indices(x):
self.assertEqual(1 - x[idx], invert_result[idx])
x_clone = x.clone()
x_clone &= y
self.assertEqual(x_clone, and_result)
x_clone = x.clone()
x_clone |= y
self.assertEqual(x_clone, or_result)
x_clone = x.clone()
x_clone ^= y
self.assertEqual(x_clone, xor_result)
def test_invert(self):
x = torch.ByteTensor([0, 1, 1])
self.assertEqual((~x).tolist(), [1, 0, 0])
def test_apply(self):
x = torch.arange(1, 6)
res = x.clone().apply_(lambda k: k + k)
self.assertEqual(res, x * 2)
self.assertRaises(TypeError, lambda: x.apply_(lambda k: "str"))
def test_map(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
res = x.clone()
res.map_(y, lambda a, b: a + b)
self.assertEqual(res, x + y)
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
def test_map2(self):
x = torch.autograd.Variable(torch.randn(3, 3))
y = torch.autograd.Variable(torch.randn(3))
z = torch.autograd.Variable(torch.randn(1, 3))
res = x.clone()
res.map2_(y, z, lambda a, b, c: a + b * c)
self.assertEqual(res, x + y * z)
z.requires_grad = True
self.assertRaisesRegex(
RuntimeError, "requires grad",
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
def test_Size(self):
x = torch.Size([1, 2, 3])
self.assertIsInstance(x, tuple)
self.assertEqual(x[0], 1)
self.assertEqual(x[1], 2)
self.assertEqual(x[2], 3)
self.assertEqual(len(x), 3)
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
self.assertIsInstance(x * 2, torch.Size)
self.assertIsInstance(x[:-1], torch.Size)
self.assertIsInstance(x + x, torch.Size)
# unit test for THTensor_(copyTranspose)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_big_transpose(self):
t = torch.rand(456, 789)
t1 = t.t().contiguous()
t2 = torch.from_numpy(t.numpy().transpose())
self.assertEqual(t1, t2)
def test_inplace_division(self):
t = torch.rand(5, 5)
id_before = id(t)
t /= 2
id_after = id(t)
self.assertEqual(id_before, id_after)
def test_simple_scalar_cast(self):
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
ok_values = [1.5, 0]
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
for tensor, value in zip(ok, ok_values):
self.assertEqual(int(tensor), int(value))
self.assertEqual(float(tensor), float(value))
if sys.version_info[0] < 3:
self.assertEqual(long(tensor), long(value))
for tensor in not_ok:
self.assertRaises(ValueError, lambda: int(tensor))
self.assertRaises(ValueError, lambda: float(tensor))
if sys.version_info[0] < 3:
self.assertRaises(ValueError, lambda: long(tensor))
def test_offset_scalar_cast(self):
x = torch.Tensor([1, 2, 3])
y = x[2:]
self.assertEqual(int(y), 3)
# skip this test for now as it affects all tests
@unittest.skipIf(True, "flush_denormal not supported")
def test_set_flush_denormal(self):
tiny_float = 1e-42
tiny_double = 1e-320
float_tensor = torch.FloatTensor([1.0, tiny_float])
double_tensor = torch.DoubleTensor([1.0, tiny_float, tiny_double])
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
self.assertEqual(float_tensor[1], tiny_float, prec=tiny_float / 16)
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
self.assertEqual(double_tensor[2], tiny_double, prec=0.0)
torch.set_flush_denormal(True)
self.assertEqual(float_tensor[0], 1.0, prec=0.0)
self.assertEqual(float_tensor[1], 0.0, prec=0.0) # tiny_float to zero
self.assertEqual(double_tensor[0], 1.0, prec=0.0)
# tiny_float is not converted to zero in double type
self.assertEqual(double_tensor[1], tiny_float, prec=0.0)
self.assertEqual(double_tensor[2], 0.0, prec=0.0) # tiny_double to zero
torch.set_flush_denormal(False)
def test_unique_cpu(self):
x = torch.LongTensor([1, 2, 3, 2, 8, 5, 2, 3])
expected_unique = torch.LongTensor([1, 2, 3, 5, 8])
expected_inverse = torch.LongTensor([0, 1, 2, 1, 4, 3, 1, 2])
x_unique = torch.unique(x)
self.assertEqual(
expected_unique.tolist(), sorted(x_unique.tolist()))
x_unique, x_inverse = x.unique(return_inverse=True)
self.assertEqual(
expected_unique.tolist(), sorted(x_unique.tolist()))
self.assertEqual(expected_inverse.numel(), x_inverse.numel())
x_unique = x.unique(sorted=True)
self.assertEqual(expected_unique, x_unique)
x_unique, x_inverse = torch.unique(
x, sorted=True, return_inverse=True)
self.assertEqual(expected_unique, x_unique)
self.assertEqual(expected_inverse, x_inverse)
# Tests per-element unique on a higher rank tensor.
y = x.view(2, 2, 2)
y_unique, y_inverse = y.unique(sorted=True, return_inverse=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(y.size()), y_inverse)
# Tests unique on other types.
int_unique, int_inverse = torch.unique(
torch.IntTensor([2, 1, 2]), sorted=True, return_inverse=True)
self.assertEqual(torch.IntTensor([1, 2]), int_unique)
self.assertEqual(torch.LongTensor([1, 0, 1]), int_inverse)
double_unique, double_inverse = torch.unique(
torch.DoubleTensor([2., 1.5, 2.1, 2.]),
sorted=True,
return_inverse=True,
)
self.assertEqual(torch.DoubleTensor([1.5, 2., 2.1]), double_unique)
self.assertEqual(torch.LongTensor([1, 0, 2, 1]), double_inverse)
byte_unique, byte_inverse = torch.unique(
torch.ByteTensor([133, 7, 7, 7, 42, 128]),
sorted=True,
return_inverse=True,
)
self.assertEqual(torch.ByteTensor([7, 42, 128, 133]), byte_unique)
self.assertEqual(torch.LongTensor([3, 0, 0, 0, 1, 2]), byte_inverse)
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
def test_unique_cuda(self):
# unique currently does not support CUDA.
self.assertRaises(
RuntimeError, lambda: torch.cuda.LongTensor([0, 1]).unique())
self.assertRaises(
RuntimeError,
lambda: torch.unique(torch.cuda.FloatTensor([0., 1.])),
)
# Functions to test negative dimension wrapping
METHOD = 1
INPLACE_METHOD = 2
FUNCTIONAL = 4
DIM_ARG = None
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
def neg_dim_test(self):
if isinstance(tensor_arg, list):
assert METHOD not in types and INPLACE_METHOD not in types
x = [torch.randn(arg) for arg in tensor_arg]
ndim = len(tensor_arg[-1])
else:
x = torch.randn(*tensor_arg)
ndim = len(tensor_arg)
ndim += extra_dim
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
for dims_val in combinations(range(ndim), n_dim_to_test):
arg = arg_constr()
arg_neg = copy.deepcopy(arg)
idx = 0
for i, v in enumerate(arg):
if v is DIM_ARG:
arg[i] = dims_val[idx]
arg_neg[i] = dims_val[idx] - ndim
idx += 1
if METHOD in types:
a = getattr(x, name)(*arg)
b = getattr(x, name)(*arg_neg)
self.assertEqual(a, b)
if INPLACE_METHOD in types:
a = x.clone()
getattr(a, name + '_')(*arg)
b = x.clone()
getattr(b, name + '_')(*arg_neg)
self.assertEqual(a, b)
if FUNCTIONAL in types:
a = getattr(torch, name)(x, *arg)
b = getattr(torch, name)(x, *arg_neg)
self.assertEqual(a, b)
return neg_dim_test
def idx_tensor(size, max_val):
return torch.LongTensor(*size).random_(0, max_val - 1)
neg_dim_tests = [
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
]
for decl in neg_dim_tests:
if len(decl) == 4:
name, tensor_arg, arg_constr, types = decl
extra_dim = 0
elif len(decl) == 5:
name, tensor_arg, arg_constr, types, extra_dim = decl
test_name = 'test_' + name + '_neg_dim'
assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name
setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
if __name__ == '__main__':
run_tests()