blob: 0659a7702a1498b82da4630c93b0ff43057ab73c [file] [log] [blame]
#include "THCUNN.h"
#include "common.h"
// kernels borrowed from Caffe
template <typename Dtype>
__global__ void MaxPoolForward(const int nthreads, const Dtype* bottom_data,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w, Dtype* top_data,
Dtype* top_mask) {
CUDA_KERNEL_LOOP(index, nthreads) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h - pad_h;
int wstart = pw * stride_w - pad_w;
int hend = min(hstart + kernel_h, height);
int wend = min(wstart + kernel_w, width);
hstart = max(hstart, 0);
wstart = max(wstart, 0);
Dtype maxval = -FLT_MAX;
int maxidx = -1;
bottom_data += (n * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (bottom_data[h * width + w] > maxval) {
maxidx = h * width + w;
maxval = bottom_data[maxidx];
}
}
}
top_data[index] = maxval;
top_mask[index] = maxidx + 1;
}
}
template <typename Dtype>
__global__ void MaxPoolBackward(const int nthreads, const Dtype* top_diff,
const Dtype* top_mask, const int num, const int channels,
const int height, const int width, const int pooled_height,
const int pooled_width, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_h, const int pad_w,
Dtype* bottom_diff) {
CUDA_KERNEL_LOOP(index, nthreads) {
// find out the local index
// find out the local offset
int w = index % width;
int h = (index / width) % height;
int c = (index / width / height) % channels;
int n = index / width / height / channels;
int phstart =
(h + pad_h < kernel_h) ? 0 : (h + pad_h - kernel_h) / stride_h + 1;
int phend = min((h + pad_h) / stride_h + 1, pooled_height);
int pwstart =
(w + pad_w < kernel_w) ? 0 : (w + pad_w - kernel_w) / stride_w + 1;
int pwend = min((w + pad_w) / stride_w + 1, pooled_width);
Dtype gradient = 0;
int offset = (n * channels + c) * pooled_height * pooled_width;
top_diff += offset;
top_mask += offset;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (top_mask[ph * pooled_width + pw] - 1 == h * width + w) {
gradient += top_diff[ph * pooled_width + pw];
}
}
}
bottom_diff[index] = gradient;
}
}
void THNN_CudaSpatialMaxPooling_updateOutput(THCState *state, THCudaTensor *input, THCudaTensor *output, THCudaTensor *indices, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode)
{
THCUNN_assertSameGPU(state, 3, input, output, indices);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch) tensor expected");
long nInputCols, nInputRows, nInputPlane, batchSize;
long nOutputCols, nOutputRows;
if (input->nDimension == 3) {
nInputCols = input->size[2];
nInputRows = input->size[1];
nInputPlane = input->size[0];
batchSize = 1;
}
else
{
nInputCols = input->size[3];
nInputRows = input->size[2];
nInputPlane = input->size[1];
batchSize = input->size[0];
}
THArgCheck(nInputCols >= kW - padW && nInputRows >= kH - padH, 2, "input image smaller than kernel size");
THArgCheck(kW/2 >= padW && kH/2 >= padH, 2, "pad should be smaller than half of kernel size");
if(ceil_mode) {
nOutputCols = ceil(float(nInputCols - kW + 2*padW) / float(dW)) + 1;
nOutputRows = ceil(float(nInputRows - kH + 2*padH) / float(dH)) + 1;
}
else {
nOutputCols = floor(float(nInputCols - kW + 2*padW) / float(dW)) + 1;
nOutputRows = floor(float(nInputRows - kH + 2*padH) / float(dH)) + 1;
}
if (padW || padH)
{
// ensure that the last pooling starts inside the image
if ((nOutputRows - 1)*dH >= nInputRows + padH)
--nOutputRows;
if ((nOutputCols - 1)*dW >= nInputCols + padW)
--nOutputCols;
}
input = THCudaTensor_newContiguous(state, input);
float* input_data = THCudaTensor_data(state, input);
THCudaTensor_resize4d(state, output, batchSize, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_resizeAs(state, indices, output);
float* indices_data = THCudaTensor_data(state, indices);
float* output_data = THCudaTensor_data(state, output);
int count = THCudaTensor_nElement(state, output);
MaxPoolForward <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>
(count, input_data,
batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
kH, kW, dH, dW, padH, padW, output_data, indices_data);
if(input->nDimension == 3)
THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_free(state, input);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialMaxPooling.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
}
void THNN_CudaSpatialMaxPooling_updateGradInput(THCState *state, THCudaTensor *input, THCudaTensor *gradOutput, THCudaTensor *gradInput, THCudaTensor *indices, int kW, int kH, int dW, int dH, int padW, int padH, bool ceil_mode)
{
THCUNN_assertSameGPU(state, 4, input, gradOutput, indices, gradInput);
input = THCudaTensor_newContiguous(state, input);
gradOutput = THCudaTensor_newContiguous(state, gradOutput);
long nInputCols, nInputRows, nInputPlane, batchSize;
long nOutputCols, nOutputRows;
if (input->nDimension == 3) {
nInputCols = input->size[2];
nInputRows = input->size[1];
nInputPlane = input->size[0];
batchSize = 1;
}
else
{
nInputCols = input->size[3];
nInputRows = input->size[2];
nInputPlane = input->size[1];
batchSize = input->size[0];
}
if(ceil_mode) {
nOutputCols = ceil(float(nInputCols - kW + 2*padW) / float(dW)) + 1;
nOutputRows = ceil(float(nInputRows - kH + 2*padH) / float(dH)) + 1;
}
else {
nOutputCols = floor(float(nInputCols - kW + 2*padW) / float(dW)) + 1;
nOutputRows = floor(float(nInputRows - kH + 2*padH) / float(dH)) + 1;
}
gradOutput = THCudaTensor_newContiguous(state, gradOutput);
THCudaTensor_resizeAs(state, gradInput, input);
int count = THCudaTensor_nElement(state, input);
MaxPoolBackward <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>
(count,
THCudaTensor_data(state, gradOutput),
THCudaTensor_data(state, indices),
batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
kH, kW, dH, dW, padH, padW,
THCudaTensor_data(state, gradInput));
THCudaTensor_free(state, gradOutput);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialMaxPooling.updateGradInput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
// clean
THCudaTensor_free(state, input);
THCudaTensor_free(state, gradOutput);
}