blob: a5d9913008f2365fe61900e77d9e385395f3694c [file] [log] [blame]
#include "THCUNN.h"
#include "im2col.h"
void THNN_CudaSpatialFullConvolution_updateOutput(
THCState *state,
THCudaTensor *input,
THCudaTensor *output,
THCudaTensor *weight,
THCudaTensor *bias,
THCudaTensor *columns,
THCudaTensor *ones,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH)
{
int nInputPlane = THCudaTensor_size(state, weight, 0);
int nOutputPlane = THCudaTensor_size(state, weight, 1);
THCUNN_assertSameGPU(state, 6, input, output, weight,
bias, columns, ones);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
THArgCheck(input->size[0] == nInputPlane, 2, "input channels and nInputPlane dont match");
// Force batch
batch = 0;
THCudaTensor_resize4d(state, input, 1, input->size[0], input->size[1], input->size[2]);
} else {
THArgCheck(input->size[1] == nInputPlane, 2, "input channels and nInputPlane dont match");
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Resize output
THCudaTensor_resize4d(state, output, batchSize, nOutputPlane, outputHeight, outputWidth);
// Resize temporary columns
THCudaTensor_resize2d(state, columns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Define a buffer of ones, for bias accumulation
// Note: this buffer can be shared with other modules, it only ever gets increased,
// and always contains ones.
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
// Resize plane and fill with ones...
THCudaTensor_resize2d(state, ones, outputHeight, outputWidth);
THCudaTensor_fill(state, ones, 1);
}
// Helpers
THCudaTensor *input_n = THCudaTensor_new(state);
THCudaTensor *output_n = THCudaTensor_new(state);
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
THCudaTensor_select(state, input_n, input, 0, elt);
THCudaTensor_select(state, output_n, output, 0, elt);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m = weight->size[1] * weight->size[2] * weight->size[3];
long n = columns->size[1];
long k = weight->size[0];
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THCudaBlas_gemm(
state,
'n', 't',
n, m, k,
1,
THCudaTensor_data(state, input_n), n,
THCudaTensor_data(state, weight), m,
0,
THCudaTensor_data(state, columns), n
);
// Unpack columns back into input:
col2im(
THCState_getCurrentStream(state),
THCudaTensor_data(state, columns),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
THCudaTensor_data(state, output_n)
);
// Do Bias after:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m_ = nOutputPlane;
long n_ = outputHeight * outputWidth;
long k_ = 1;
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THCudaBlas_gemm(
state,
't', 'n',
n_, m_, k_,
1,
THCudaTensor_data(state, ones), k_,
THCudaTensor_data(state, bias), k_,
1,
THCudaTensor_data(state, output_n), n_
);
}
// Free
THCudaTensor_free(state, input_n);
THCudaTensor_free(state, output_n);
// Resize output
if (batch == 0) {
THCudaTensor_resize3d(state, output, nOutputPlane, outputHeight, outputWidth);
THCudaTensor_resize3d(state, input, nInputPlane, inputHeight, inputWidth);
}
}
void THNN_CudaSpatialFullConvolution_updateGradInput(
THCState *state,
THCudaTensor *input,
THCudaTensor *gradOutput,
THCudaTensor *gradInput,
THCudaTensor *weight,
THCudaTensor *gradColumns,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH)
{
int nInputPlane = THCudaTensor_size(state, weight, 0);
int nOutputPlane = THCudaTensor_size(state, weight, 1);
THCUNN_assertSameGPU(state, 5, input, gradOutput, weight,
gradColumns, gradInput);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
// Force batch
batch = 0;
THCudaTensor_resize4d(state, input, 1, input->size[0], input->size[1], input->size[2]);
THCudaTensor_resize4d(state, gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Resize output
THCudaTensor_resize4d(state, gradInput, batchSize, nInputPlane, inputHeight, inputWidth);
// Resize temporary columns
THCudaTensor_resize2d(state, gradColumns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Helpers
THCudaTensor *gradInput_n = THCudaTensor_new(state);
THCudaTensor *gradOutput_n = THCudaTensor_new(state);
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per sample:
THCudaTensor_select(state, gradInput_n, gradInput, 0, elt);
THCudaTensor_select(state, gradOutput_n, gradOutput, 0, elt);
// Extract columns:
im2col(
THCState_getCurrentStream(state),
THCudaTensor_data(state, gradOutput_n),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
THCudaTensor_data(state, gradColumns)
);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m = weight->size[0];
long n = gradColumns->size[1];
long k = weight->size[1] * weight->size[2] * weight->size[3];
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THCudaBlas_gemm(
state,
'n', 'n',
n, m, k,
1,
THCudaTensor_data(state, gradColumns), n,
THCudaTensor_data(state, weight), k,
0,
THCudaTensor_data(state, gradInput_n), n
);
}
// Free
THCudaTensor_free(state, gradInput_n);
THCudaTensor_free(state, gradOutput_n);
// Resize output
if (batch == 0) {
THCudaTensor_resize3d(state, gradOutput, nOutputPlane, outputHeight, outputWidth);
THCudaTensor_resize3d(state, input, nInputPlane, inputHeight, inputWidth);
THCudaTensor_resize3d(state, gradInput, nInputPlane, inputHeight, inputWidth);
}
}
void THNN_CudaSpatialFullConvolution_accGradParameters(
THCState *state,
THCudaTensor *input,
THCudaTensor *gradOutput,
THCudaTensor *gradWeight,
THCudaTensor *gradBias,
THCudaTensor *columns,
THCudaTensor *ones,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int adjW, int adjH,
float scale)
{
int nInputPlane = THCudaTensor_size(state, gradWeight, 0);
int nOutputPlane = THCudaTensor_size(state, gradWeight, 1);
THCUNN_assertSameGPU(state, 6, input, gradOutput, gradWeight,
gradBias, columns, ones);
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
int batch = 1;
if (input->nDimension == 3) {
// Force batch
batch = 0;
THCudaTensor_resize4d(state, input, 1, input->size[0], input->size[1], input->size[2]);
THCudaTensor_resize4d(state, gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
}
long inputWidth = input->size[3];
long inputHeight = input->size[2];
long outputWidth = (inputWidth - 1) * dW - 2*padW + kW + adjW;
long outputHeight = (inputHeight - 1) * dH - 2*padH + kH + adjH;
// Batch size + input planes
long batchSize = input->size[0];
// Define a buffer of ones, for bias accumulation
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
// Resize plane and fill with ones...
THCudaTensor_resize2d(state, ones, outputHeight, outputWidth);
THCudaTensor_fill(state, ones, 1);
}
// Resize temporary columns
THCudaTensor_resize2d(state, columns, nOutputPlane*kW*kH, inputHeight*inputWidth);
// Helpers
THCudaTensor *input_n = THCudaTensor_new(state);
THCudaTensor *gradOutput_n = THCudaTensor_new(state);
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
THCudaTensor_select(state, input_n, input, 0, elt);
THCudaTensor_select(state, gradOutput_n, gradOutput, 0, elt);
// Extract columns:
im2col(
THCState_getCurrentStream(state),
THCudaTensor_data(state, gradOutput_n),
nOutputPlane, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
THCudaTensor_data(state, columns)
);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long n = columns->size[0]; // nOutputPlane * kh * kw
long m = input_n->size[0]; // nInputPlane
long k = columns->size[1]; // inputHeight * inputWidth
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
THCudaBlas_gemm(
state,
't', 'n',
n, m, k,
scale,
THCudaTensor_data(state, columns), k,
THCudaTensor_data(state, input_n), k,
1,
THCudaTensor_data(state, gradWeight), n
);
// Do Bias:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
long m_ = nOutputPlane;
long k_ = outputHeight * outputWidth;
// Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices)
THCudaBlas_gemv(
state,
't',
k_, m_,
scale,
THCudaTensor_data(state, gradOutput_n), k_,
THCudaTensor_data(state, ones), 1,
1,
THCudaTensor_data(state, gradBias), 1
);
}
// Free
THCudaTensor_free(state, input_n);
THCudaTensor_free(state, gradOutput_n);
// Resize
if (batch == 0) {
THCudaTensor_resize3d(state, gradOutput, nOutputPlane, outputHeight, outputWidth);
THCudaTensor_resize3d(state, input, nInputPlane, inputHeight, inputWidth);
}
}