blob: 7dd1f6ff505c1d6ae01bdaf266f6be90efa75133 [file] [log] [blame]
import re
from dataclasses import dataclass
from typing import List, Dict, Optional, Iterator, Tuple, Set, NoReturn
from enum import Enum
import itertools
# A little trick from https://github.com/python/mypy/issues/6366
# for getting mypy to do exhaustiveness checking
# TODO: put this somewhere else, maybe
def assert_never(x: NoReturn) -> NoReturn:
raise AssertionError("Unhandled type: {}".format(type(x).__name__))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# DATA MODEL
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Some general principles for our data model.
#
# - Stop using C++ data types as the internal data representation
# format. Instead, the internal data structures are centered
# around JIT schema representation. This avoid a big problem
# with the old codegen where we read in all the types from
# native_functions.yaml and then immediately had to retranslate
# them into C++ types.
#
# - More semantic data representation. Instead of representing
# everything as dicts and strings, we define dataclasses for
# every interesting entity the code generation has to deal with.
# These dataclasses have strong semantic invariants: for example,
# we generally require them to roundtrip losslessly into the
# form they were parsed from. These structures are immutable
# and you're expected to populate information once during
# construction.
# Represent a source location; used for better error reporting
@dataclass(frozen=True)
class Location:
file: str
line: int
def __str__(self) -> str:
return "{}:{}".format(self.file, self.line)
# Valid values of the 'variants' field in native_functions.yaml
Variant = Enum('Variant', ('function', 'method'))
UseC10Dispatcher = Enum('UseC10Dispatcher', (
'full',
'with_codegenerated_unboxing_wrapper'
))
# The basic input to the code generation is native_functions.yaml.
# The name "native", BTW, comes from the distinction between native
# functions and legacy TH functions. The legacy TH functions are gone,
# but the "native" descriptor has stuck.
#
# NativeFunction models a single entry in native_functions.yaml. Its
# fields roughly correspond to what you would see in the YAML itself,
# but after canonicalization and parsing has occurred.
#
# You can see some of the overall design patterns for how we setup
# dataclasses in this class, but we will defer a complete discussion
# of this at FunctionSchema.
@dataclass(frozen=True)
class NativeFunction:
# The function schema of the operator in question. This schema
# has been parsed; see FunctionSchema for more about its structure.
# (This type is quoted as we are forward referencing a type
# defined later in the file. I opted for this ordering of the
# classes for expository clarity.)
func: 'FunctionSchema'
# Corresponds to the 'use_c10_dispatcher' field. The default
# is 'with_codegenerated_unboxing_wrapper'
use_c10_dispatcher: UseC10Dispatcher
# Whether or not to omit automatic generation of a DeviceGuard
device_guard: bool
# What python module to put the function in
python_module: Optional[str]
# TODO: figure out what this does
category_override: Optional[str]
# If no variants are specified in native_functions.yaml, this is
# assumed to be {'function'}.
variants: Set[Variant]
# Whether or not we should skip generating registrations for
# this kernel. This is a bit of a double-edged sword, as manual
# registrations don't participate in codegen-based selective build!
manual_kernel_registration: bool
# Distinguish between a missing dispatch dict (historically, this
# means to register a catch-all kernel) and a present but empty
# dispatch dict (this means register nothing; arguably, this should
# subsume manual_kernel_registration).
#
# TODO: str key could be replaced with more explicit enum
dispatch: Optional[Dict[str, str]]
# The location in the YAML file were this native function entry was
# defined. This is for conveniently reporting error messages!
loc: 'Location'
# NB: The benefit of defining a dataclass is that we automatically get
# a constructor defined for all the fields we specify. No need
# to explicitly write it out.
@staticmethod
def from_yaml(ei: Dict[str, object], loc: 'Location') -> 'NativeFunction':
"""
Parse a NativeFunction from a dictionary as directly parsed
from native_functions.yaml
"""
e = ei.copy()
funcs = e.pop('func')
assert isinstance(funcs, str), f'not a str: {funcs}'
func = FunctionSchema.parse(funcs)
use_c10_dispatcher_s = e.pop('use_c10_dispatcher', None)
if use_c10_dispatcher_s is None:
use_c10_dispatcher = UseC10Dispatcher.with_codegenerated_unboxing_wrapper
elif use_c10_dispatcher_s == 'full':
use_c10_dispatcher = UseC10Dispatcher.full
else:
raise AssertionError(
f'use_c10_dispatcher must be unset or set to full, got {use_c10_dispatcher}')
variants_s = e.pop('variants', 'function')
assert isinstance(variants_s, str)
variants: Set[Variant] = set()
for v in variants_s.split(', '):
if v == 'function':
variants.add(Variant.function)
elif v == 'method':
variants.add(Variant.method)
else:
raise AssertionError(f'illegal variant {v}')
manual_kernel_registration = e.pop('manual_kernel_registration', False)
assert isinstance(manual_kernel_registration, bool), f'not a bool: {manual_kernel_registration}'
device_guard = e.pop('device_guard', True)
assert isinstance(device_guard, bool), f'not a bool: {device_guard}'
python_module = e.pop('python_module', None)
assert python_module is None or isinstance(python_module, str), f'not a str: {python_module}'
category_override = e.pop('category_override', None)
assert category_override is None or isinstance(category_override, str), f'not a str: {category_override}'
raw_dispatch = e.pop('dispatch', None)
assert raw_dispatch is None or isinstance(raw_dispatch, dict), e
dispatch: Optional[Dict[str, str]] = None
if raw_dispatch is not None:
dispatch = {}
for ks, v in raw_dispatch.items():
if ks == '__line__':
continue # not worth tracking line numbers for dispatch entries
assert isinstance(ks, str), e
assert isinstance(v, str), e
for k in ks.split(","):
dispatch[k.strip()] = v
e.pop('__line__')
assert not e, f"leftover entries: {e}"
return NativeFunction(
func=func,
use_c10_dispatcher=use_c10_dispatcher,
variants=variants,
manual_kernel_registration=manual_kernel_registration,
python_module=python_module,
category_override=category_override,
dispatch=dispatch,
device_guard=device_guard,
loc=loc,
)
# __post_init__ functions in dataclasses can be used to do extra
# validation after construction.
#
# Notice that we don't do any type validation here. In fact, we
# rely exclusively on mypy to check if you've done types correctly!
# Validation is for nontrivial invariants that cannot be (conveniently)
# encoded in the type system.
def __post_init__(self) -> None:
if self.func.out_arguments:
assert self.variants == {Variant.function}, "Native functions with out arguments MUST " \
"be declared with only function variant; e.g., variants: function; " \
"otherwise you will tickle a Python argument binding bug " \
"(which usually manifests itself as the result variable being undefined.)"
SchemaKind = Enum('SchemaKind', ('functional', 'inplace', 'out'))
# The function schema is undoubtedly the most important data structure
# in all of the codegen, as it defines the type signature for operators,
# and most of the code generation we do is type directed (e.g., look at
# the types, decide what to do. Think about how we code generate
# C++ function stubs!)
#
# We will also see in this class the general structure for how we model
# data in this code generation. A few notable properties to point out
# ahead of time:
#
# - These dataclasses are a *lossless* representation of the strings
# they are parsed from. In fact, we assert that given the
# information stored in the dataclass, we can exactly reconstruct
# the string we parsed from (and assert this inside the parse
# definition). There are a few reasons for this:
#
# - If you find that it is difficult to reconstruct the string
# given a dataclass, that is a clue that you are data
# representation is wrong.
#
# - It helps ensure that all relevant information is present
# in the dataclass, so that downstream users aren't tempted
# to reparse the original string to get some information
# that was omitted.
#
# - It forces you to represent the data in-memory in the same way
# it is recorded textually, which makes the dataclasses easier
# to understand for someone who is familiar with the
# textual format. (As a tradeoff, it means you have to model
# the syntax, even when it is inconvenient. But maybe that means
# the syntax is bad!) If you don't understand the internal
# representation, go look at the printing code to see how
# it maps onto the surface syntax!
#
# - It makes it easy to test the parsing code, as parsing code
# that is inconsistent with the string code will fail early
# and loudly. (As a tradeoff, it makes the parsing code a bit
# brittle (in particular, with trivial whitespace changes you
# are likely to trigger an assert error).
#
# In general, try to make the __str__ code as simple as possible
# (even at the cost of more complex parsing logic.) Additionally,
# try to minimize redundancy in data representation. (Precomputed
# fields are OK though: they are defined as a simple function on
# the canonical representation in question.)
#
# - These dataclasses are all frozen; once constructed their
# values never change. This makes it easy to tell where any
# given data came from: just look to the constructor. As a
# tradeoff, you can't easily "decorate" a schema with extra
# information from a post-facto analysis. We impose this
# restriction to make these structures more understandable.
#
@dataclass(frozen=True)
class FunctionSchema:
# The name of the operator this function schema describes.
name: 'OperatorName'
arguments: Tuple['Argument', ...]
kwarg_only_arguments: Tuple['Argument', ...] # but not including out args
# Unlike in the previous codegen, we have factored out 'out' arguments
# in the canonical representation, removing them from kwarg
# arguments. This choice is justified by numerous downstream
# transformations which treat out arguments specially; additionally,
# you can see that canonicity is not violated!
out_arguments: Tuple['Argument', ...] # these are also kwarg-only
# TODO: Need to handle collisions with argument names at some point
returns: Tuple['Return', ...]
def schema_order_arguments(self) -> Iterator['Argument']:
return itertools.chain(self.arguments, self.kwarg_only_arguments, self.out_arguments)
@staticmethod
def parse(func: str) -> 'FunctionSchema':
# We should probably get a proper parser here
assert ' -> ' in func, "function schema missing return type (spaces are mandatory)"
func_decl, return_decl = [x.strip() for x in func.split(' -> ')]
ops, args = func_decl.split('(', 1)
assert args[-1] == ")", "Expecting closing )"
args = args[:-1]
name = OperatorName.parse(ops)
arguments, kwarg_only_arguments, out_arguments = parse_arguments(args)
returns = parse_returns(return_decl)
r = FunctionSchema(
name=name,
arguments=arguments,
kwarg_only_arguments=kwarg_only_arguments,
out_arguments=out_arguments,
returns=returns
)
assert str(r) == func, f'{str(r)} != {func}'
return r
def __post_init__(self) -> None:
for arg, ret in zip(self.out_arguments, self.returns):
assert arg.annotation == ret.annotation, \
"Out arguments must have matching return Tensor; furthermore, " \
"the ith-argument needs to correspond to the ith return"
if self.out_arguments:
assert len(self.out_arguments) == len(self.returns), \
"Must return as many arguments as there are out arguments"
if self.name.name.inplace:
# TODO: fixme
if str(self.name) not in [
'_amp_foreach_non_finite_check_and_unscale_',
'_foreach_add_scalar_list_',
'_foreach_sub_scalar_list_',
'_foreach_mul_scalar_list_',
'_foreach_div_scalar_list_',
'_foreach_add_.Scalar',
'_foreach_sub_.Scalar',
'_foreach_mul_.Scalar',
'_foreach_div_.Scalar',
'_foreach_add_.List',
'_foreach_sub_.List',
'_foreach_mul_.List',
'_foreach_div_.List',
'_foreach_exp_',
'_foreach_sqrt_',
'_foreach_addcmul_',
'_foreach_addcdiv_']:
assert len(self.returns) == 1
def is_out_fn(self) -> bool:
# Note [is_out_fn]
#
# out functions are the variants which take an explicit out= argument
# to populate into. We need to know if a schema corresponds to an
# out function for several reasons:
#
# - They codegen differently in C++ API
# - codegen to at::add_out rather than at::add
# - out argument is moved to front of C++ argument list
#
# out functions are DEFINED to be any function with a keyword-only
# argument that is mutable. In principle, this could lead to a
# false positive if you define a function that mutates a
# kwarg only argument, but this isn't the "true" output of this
# function. A more robust definition that would work in this
# case would also look at:
#
# - The output types. Out functions take in the arguments
# they mutate and then return them again; this is sort
# of "definitionally" what makes something an out function.
# Historically, we DO check this for consistency.
# - Correspondence with pure variant. An out function
# should have a signature equivalent to its pure variant,
# but just with extra kwargs for the output elements. This
# is difficult to actually check for and historically
# we only do this check in tools/
return bool(self.out_arguments)
def kind(self) -> SchemaKind:
"""
What kind of schema is this? A functional schema is one
that returns a newly allocated output; an inplace schema
modifies the self argument inplace; an out schema writes
the result into an explicitly provided out argument.
"""
is_inplace = self.name.name.inplace
is_out = bool(self.out_arguments)
assert not (is_inplace and is_out)
if is_inplace:
return SchemaKind.inplace
elif is_out:
return SchemaKind.out
else:
return SchemaKind.functional
# WARNING: This method is not currently tested in any meaningful way
def signature(self) -> 'FunctionSchema':
"""
Certain schemas are 'related', in that they are simply
inplace/out/functional versions of the same function. This method
factors these schemas into the "core" functional signature which
is equal across all versions.
Here is what normalization happens to the schema to convert
it to a signature:
- The overload name is stripped (name is retained, since
it expresses semantic content about what the function does)
- Inplace is set False
- Out arguments are stripped
- Mutability annotations are stripped (this is sound
because you cannot overload on mutability annotation)
This function is based off of get_signature in
tools.autograd.load_derivatives
"""
# dataclasses.replace could be used here, but it is less
# type safe so for now I've opted to type everything out
def strip_arg_annotation(a: Argument) -> Argument:
return Argument(
name=a.name,
type=a.type,
default=a.default, # hmmm
annotation=None,
)
def strip_ret_annotation(r: Return) -> Return:
return Return(
name=r.name,
type=r.type,
annotation=None,
)
return FunctionSchema(
name=OperatorName(
name=BaseOperatorName(
base=self.name.name.base,
inplace=False,
dunder_method=self.name.name.dunder_method,
),
overload_name="", # stripped
),
arguments=tuple(map(strip_arg_annotation, self.arguments)),
kwarg_only_arguments=tuple(map(strip_arg_annotation, self.kwarg_only_arguments)),
out_arguments=(), # stripped
returns=tuple(map(strip_ret_annotation, self.returns)),
)
def __str__(self) -> str:
all_arguments: List[str] = []
all_arguments.extend(map(str, self.arguments))
if self.kwarg_only_arguments or self.out_arguments:
all_arguments.append('*')
all_arguments.extend(map(str, self.kwarg_only_arguments))
all_arguments.extend(map(str, self.out_arguments))
all_arguments_str = ', '.join(all_arguments)
if len(self.returns) == 1:
returns = str(self.returns[0]) # omit parentheses
else:
returns = '(' + ', '.join(map(str, self.returns)) + ')'
return f'{self.name}({all_arguments_str}) -> {returns}'
# Here is the rest of the data model, described more briefly.
# Simplified version for what actually shows up in built-ins.
# Look at alias_info.h for expanded syntax. If you need the structure,
# you also need to make this structure recursive so it can be lined
# up with the type components too. For primitives this isn't really
# necessary
@dataclass(frozen=True)
class Annotation:
# Typically only has one element. Not actually a set so
# we can conveniently assume it is canonically ordered
alias_set: Tuple[str, ...]
is_write: bool
@staticmethod
def parse(ann: str) -> 'Annotation':
m = re.match(r'^([a-z])(!?)$', ann)
assert m is not None, f'unrecognized alias annotation {ann}'
alias_set = (m.group(1),)
is_write = m.group(2) == '!'
r = Annotation(alias_set=alias_set, is_write=is_write)
assert str(r) == ann, f'{r} != {ann}'
return r
def __str__(self) -> str:
alias_set = '|'.join(self.alias_set)
is_write = '!' if self.is_write else ''
return f'{alias_set}{is_write}'
# The base class for the type system. This is also loosely modeled
# off of jit_type.h, but we've simplified the hierarchy to focus
# in on the aspects of the type system that matter for code generation
# (for example, there's no SingleElementType subclass anymore).
# You never actually construct a Type; usually it's going to be one
# of the subclasses. If Python had ADTs this would be one!
@dataclass(frozen=True)
class Type:
@staticmethod
def parse(t: str) -> 'Type':
r = Type._parse(t)
assert str(r) == t, f'{r} != {t}'
return r
@staticmethod
def _parse(t: str) -> 'Type':
m = re.match(r'^(.+)\?$', t)
if m is not None:
return OptionalType(Type.parse(m.group(1)))
m = re.match(r'^(.+)\[([0-9]+)?\]$', t)
if m is not None:
size = int(m.group(2)) if m.group(2) is not None else None
return ListType(elem=Type.parse(m.group(1)), size=size)
try:
return BaseType(BaseTy[t])
except KeyError:
raise RuntimeError(f"unrecognized type {t}")
def __str__(self) -> str:
raise NotImplementedError
# WARNING: These concepts are not very well-defined. For example,
# is "int?" nullable? How about "int?[]". They are defined
# so we can conveniently generate legacy Declarations.yaml but
# really we should probably just remove these at some point
def is_tensor_like(self) -> bool:
raise NotImplementedError
def is_nullable(self) -> bool:
raise NotImplementedError
def is_list_like(self) -> Optional['ListType']:
raise NotImplementedError
# Base types are simple, atomic types with no further structure
BaseTy = Enum('BaseTy', (
'Generator',
'ScalarType',
'Tensor',
'int',
'Dimname',
'float',
'str',
'bool',
'Layout',
'Device',
'Scalar',
'MemoryFormat',
'QScheme',
'Storage',
'ConstQuantizerPtr', # TODO: rename
))
@dataclass(frozen=True)
class BaseType(Type):
name: BaseTy
def __str__(self) -> str:
return f'{self.name.name}'
def is_tensor_like(self) -> bool:
return self.name == BaseTy.Tensor
def is_nullable(self) -> bool:
return False
def is_list_like(self) -> Optional['ListType']:
return None
# Optional types may be specified, or may also be validly given None
@dataclass(frozen=True)
class OptionalType(Type):
elem: Type
def __str__(self) -> str:
return f'{self.elem}?'
def is_tensor_like(self) -> bool:
return self.elem.is_tensor_like()
def is_nullable(self) -> bool:
return True
def is_list_like(self) -> Optional['ListType']:
return self.elem.is_list_like()
# List types specify that we may have multiples of an element. We
# also support explicit sizes on list types, but these have
# some nontrivial semantics! (However, for C++ API purposes, explicit
# sizes are mostly erased from the type system.)
#
# DANGER WILL ROBINSON: C++ elaboration depends on elem type; e.g.,
# int[] elaborates differently than bool[3]!
@dataclass(frozen=True)
class ListType(Type):
elem: Type
size: Optional[int]
def __str__(self) -> str:
size = f'{self.size}' if self.size else ''
return f'{self.elem}[{size}]'
def is_tensor_like(self) -> bool:
return self.elem.is_tensor_like()
def is_nullable(self) -> bool:
return self.elem.is_nullable()
def is_list_like(self) -> Optional['ListType']:
return self
@dataclass(frozen=True)
class Argument:
# NB: I didn't put kwarg_only as a boolean field here, unlike
# c10::Argument, so that printing works correctly
name: str
type: Type
default: Optional[str]
# The semantics of the annotation field are a little strange.
#
# Alias annotations parametrize Tensors (since Tensors are the only things
# that can alias.) This motivates why I write Tensor(a!)? (and not, for
# example, Tensor?(a!)), because the (a!) describes aliasing on the tensor,
# which may be optional (i.e., the alias annotation should bind first to
# Tensor, before the optional postfix annotation).
#
# However, despite being a property of Tensor, we (and c10::Argument)
# store the annotation at the top level of the Argument, rather than
# inside the embedded Tensor type. In the C++ version of this
# class, we then go through great lengths to mimic the type
# structure in the annotation structure so we can correlate
# annotations with types.
#
# Now, it turns out, in all applications in code generation, the
# structure of annotated types is very simple. So we just hard
# code it here. But if we ever do get anything more complex, this
# model will have to change!
annotation: Optional[Annotation]
@staticmethod
def parse(arg: str) -> 'Argument':
name: str
default: Optional[str]
type_and_annot, name_and_default = arg.rsplit(' ', 1)
if '=' in name_and_default:
name, default = name_and_default.split('=')
else:
name = name_and_default
default = None
# TODO: deduplicate annotation matching with Return
match = re.match(r'Tensor\((.+)\)(.*)', type_and_annot)
annotation: Optional[Annotation]
if match:
# If you update this, make sure the __str__ still works too
assert match.group(2) in ['', '?', '[]'], 'unrecognized alias analysis form with Tensor'
type_s = 'Tensor' + match.group(2)
annotation = Annotation.parse(match.group(1))
else:
type_s = type_and_annot
annotation = None
type = Type.parse(type_s)
r = Argument(
name=name,
type=type,
default=default,
annotation=annotation,
)
assert str(r) == arg, f'{str(r)} != {arg}'
return r
@property
def is_write(self) -> bool:
return self.annotation is not None and self.annotation.is_write
def __str__(self) -> str:
type = f'{self.type}'
if self.annotation:
assert type in ['Tensor', 'Tensor?', 'Tensor[]']
type = type.replace('Tensor', f'Tensor({self.annotation})')
if self.name is None:
return type
else:
mb_default = ''
if self.default:
mb_default = f'={self.default}'
return f"{type} {self.name}{mb_default}"
@dataclass(frozen=True)
class Return:
name: Optional[str]
type: Type
annotation: Optional[Annotation]
@staticmethod
def parse(arg: str) -> 'Return':
name: Optional[str]
if ' ' in arg:
type_and_annot, name = arg.rsplit(' ', 1)
else:
type_and_annot = arg
name = None
match = re.match(r'Tensor\((.+)\)(.*)', type_and_annot)
annotation: Optional[Annotation]
if match:
# If you update this, make sure the __str__ still works too
assert match.group(2) in ['', '?', '[]'], 'unrecognized alias analysis form with Tensor'
type_s = 'Tensor' + match.group(2)
annotation = Annotation.parse(match.group(1))
else:
type_s = type_and_annot
annotation = None
type = Type.parse(type_s)
r = Return(
name=name,
type=type,
annotation=annotation,
)
assert str(r) == arg, f'{str(r)} != {arg}'
return r
@property
def is_write(self) -> bool:
return self.annotation is not None and self.annotation.is_write
def __str__(self) -> str:
type = f'{self.type}'
if self.annotation:
assert type in ['Tensor', 'Tensor?', 'Tensor[]']
type = type.replace('Tensor', f'Tensor({self.annotation})')
if self.name is None:
return type
else:
return f"{type} {self.name}"
# Names that validly are __iXXX__ indicating inplace operations.
# Taken from https://www.python.org/dev/peps/pep-0203/#new-methods
# NB: PyTorch hasn't actually implemented all of these
AUGMENTED_ASSIGNMENT_NAMES = ['add', 'sub', 'mul', 'div', 'mod', 'pow', 'lshift', 'rshift', 'and', 'xor', 'or']
# A BaseOperatorName is what we think of the operator name, without
# the overload name. Unusually, we don't represent this as just a
# string; instead, we directly represent a few important semantic
# bits of information we derive from the string: namely whether
# or not it's inplace (add_) and whether or not it's a double-underscore
# method (__add__)
@dataclass(frozen=True)
class BaseOperatorName:
base: str
inplace: bool
dunder_method: bool
@staticmethod
def parse(op: str) -> 'BaseOperatorName':
assert op != ''
assert not op.endswith('_out'), \
"_out suffix is reserved and not permitted for operator names; " \
"did you mean to specify an out overload name instead?"
m = re.match(r'^__([^_]+)__$', op)
if m is not None:
dunder_method = True
base = m.group(1)
if any(base == f'i{n}' for n in AUGMENTED_ASSIGNMENT_NAMES):
inplace = True
base = base[1:]
else:
inplace = False
# temporary, this is not intrinsically true but
# has been historically true for dunder methods
# we support (but, if we ever got, say, __int__, this would
# be wrong!)
assert base[0] != 'i'
else:
dunder_method = False
base = op
if base[-1] == '_':
inplace = True
base = base[:-1]
else:
inplace = False
r = BaseOperatorName(base=base, inplace=inplace, dunder_method=dunder_method)
assert str(r) == op, f'{str(r)} != {op}'
return r
def __str__(self) -> str:
if self.dunder_method:
i = 'i' if self.inplace else ''
return f'__{i}{self.base}__'
else:
i = '_' if self.inplace else ''
return f'{self.base}{i}'
# Operator name is the base operator name along with the (typically not
# user visible) overload string.
@dataclass(frozen=True)
class OperatorName:
name: BaseOperatorName
overload_name: str
@staticmethod
def parse(op_name: str) -> 'OperatorName':
if '.' in op_name:
name, overload_name = op_name.split('.', 1)
else:
name = op_name
overload_name = ''
r = OperatorName(
name=BaseOperatorName.parse(name),
overload_name=overload_name
)
assert str(r) == op_name, f'{str(r)} != {op_name}'
return r
def __str__(self) -> str:
if self.overload_name:
return f"{self.name}.{self.overload_name}"
else:
return f"{self.name}"
# Helper functions for parsing argument lists (both inputs and returns)
def parse_returns(return_decl: str) -> Tuple[Return, ...]:
"""
Input: '()'
Output: []
"""
if return_decl == '()':
return ()
if return_decl[0] == '(' and return_decl[-1] == ')':
return_decl = return_decl[1:-1]
return tuple(Return.parse(arg) for arg in return_decl.split(', '))
def parse_arguments(args: str) -> Tuple[Tuple[Argument, ...], Tuple[Argument, ...], Tuple[Argument, ...]]:
"""
Input: 'int x, int y, int z'
Output: positional args, kwarg only args
"""
arguments: List[Argument] = []
kwarg_only_arguments: List[Argument] = []
out_arguments: List[Argument] = []
arguments_acc = arguments
# TODO: Use a real parser here; this will get bamboozled
# by signatures that contain things like std::array<bool, 2> (note the space)
for arg in args.split(', '):
if not arg:
continue
if arg == '*':
assert arguments_acc is arguments, "invalid syntax: kwarg-only specifier * can only occur once"
arguments_acc = kwarg_only_arguments
continue
parg = Argument.parse(arg)
# Currently, we rely directly on the invariant that there are NO
# kwarg-only mutating arguments. If you want to relax this,
# we will need a more semantic way of matching that takes
# into account return arguments. In that case, you will have
# to manage out_arguments computation a level up, in
# FunctionSchema. See Note [is_out_fn]
if parg.annotation is not None and parg.annotation.is_write:
if arguments_acc is arguments:
pass # do nothing
elif arguments_acc is kwarg_only_arguments:
arguments_acc = out_arguments
else:
assert arguments_acc is not out_arguments
arguments_acc.append(parg)
return tuple(arguments), tuple(kwarg_only_arguments), tuple(out_arguments)