blob: 4dfb5dc89bef7d906b3a0df0b300d90c0e33e300 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import unittest
import torch
import torch.jit
import torch.nn.functional as F
from hypothesis import assume, given
from hypothesis import strategies as st
from hypothesis_utils import qtensor, array_shapes
from common_utils import TEST_WITH_UBSAN, TestCase, run_tests
from common_utils import skipIfNotRegistered
from common_utils import _quantize, _dequantize, _requantize
def canonical(graph):
return str(torch._C._jit_pass_canonicalize(graph))
# Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM.
# On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction
# for the 8-bit int multiplication. This instruction vertically multiplies each
# unsigned 8-bit integer from a with the corresponding signed 8-bit integer from
# b, producing intermediate signed 16-bit integers. This function modifies the
# weights to eliminate the overflow on the signed 16-bit integers.
def avoid_vpmaddubsw_overflow_linear(
batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max
):
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
if x0 * w0 + x1 * w1 < -(1 << 15):
w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
elif x0 * w0 + x1 * w1 > (1 << 15) - 1:
w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
# Go through the same loop again to double check we don't have any overflow
for i, j in np.ndindex((batch_size, output_channels)):
for k in range(0, input_channels // 2 * 2, 2):
x0 = X[i, k] - X_min
x1 = X[i, k + 1] - X_min
w0 = W[j, k] - 128 - W_min
w1 = W[j, k + 1] - 128 - W_min
assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15)
# Reference quantized Linear operator
def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp):
row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1))
col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1))
assert X_q.ndim == 2
batch_size, input_channels = X_q.shape
Prod_XqWq_ref = (
np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T)
- W_zp * row_offsets_ref
- X_zp * col_offsets_ref
+ input_channels * X_zp * W_zp
)
Y_q_ref = _quantize(Prod_XqWq_ref + b_q, Y_scale / (X_scale * W_scale), Y_zp)
return Y_q_ref
@skipIfNotRegistered("Relu_ENGINE_FBGEMM",
"fbgemm-based Caffe2 ops are not linked")
class TestQuantized(TestCase):
def test_relu(self):
a = (torch.tensor([4, 6, 1, 10], dtype=torch.uint8), 0.01, 5)
r = torch.ops.c10.quantized_relu(a)
np.testing.assert_equal(
r[0].numpy(), torch.tensor([5, 6, 5, 10], dtype=torch.uint8).numpy()
)
np.testing.assert_almost_equal(0.01, r[1])
self.assertEqual(5, r[2])
def test_quantize(self):
a = (torch.tensor([4, 6, 1, 10], dtype=torch.uint8), 0.01, 5)
r = torch.ops.c10.dequantize(a)
np.testing.assert_almost_equal(r.numpy(), [-0.01, 0.01, -0.04, 0.05])
# default args
q_def = torch.ops.c10.quantize(r)
# specified
q = torch.ops.c10.quantize(r, scale=0.01, zero_point=5)
np.testing.assert_equal(q[0].numpy(), a[0].numpy())
np.testing.assert_almost_equal(q[1], a[1])
self.assertEqual(q[2], a[2])
def test_script(self):
@torch.jit.script
def foo(x):
# type: (Tuple[Tensor, float, int]) -> Tuple[Tensor, float, int]
return torch.ops.c10.quantized_relu(x)
self.assertExpectedInline(
canonical(foo.graph),
"""\
graph(%x : (Tensor, float, int)):
%1 : (Tensor, float, int) = c10::quantized_relu(%x)
return (%1)
""",
)
def test_set_data_tensorimpl_type(self):
# Dense tensor has impl of type `TensorImpl`, while quantized tensor has impl
# of type `QTensorImpl`.
x = torch.randn(1, 2)
x_q = torch.ops.c10.quantize(torch.randn(1, 2))
with self.assertRaisesRegex(RuntimeError, 'different types of TensorImpl'):
x.data = x_q
class TestQuantizedOps(TestCase):
"""Computes the output shape given pooling parameters."""
def _pool_output_shape(self, input_size, kernel_size, padding, stride,
dilation, ceiling_mode=False):
output_size = (
(input_size + 2 * padding - dilation * (kernel_size - 1) - 1
+ (stride - 1 if ceiling_mode else 0)) / stride + 1)
if (padding > 0 and
((output_size - 1) * stride >= input_size + padding)):
output_size += 1
return output_size
"""Tests the correctness of the quantized::relu op."""
@given(Q=qtensor(shapes=array_shapes(1, 5, 1, 5)))
def test_qrelu(self, Q):
X, (scale, zero_point), (qmin, qmax), (torch_type, np_type) = Q
relu = torch.ops.quantized.relu
Y = X.copy()
X = torch.from_numpy(X)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch_type)
qY_hat = relu(qX)
Y[Y < 0] = 0
qY = torch.quantize_linear(torch.from_numpy(Y), scale=scale, zero_point=zero_point, dtype=torch_type)
self.assertEqual(qY.int_repr(), qY_hat.int_repr())
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_same_qparams(self):
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale = 2.0
zero_point = 127
qA = torch.quantize_linear(A, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
qB = torch.quantize_linear(B, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
# Add ReLU ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
qC = _quantize(C, scale, zero_point)
qC_hat = add(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale, zero_point)
qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
"""Tests the correctness of the add and add_relu op."""
def test_qadd_relu_different_qparams(self):
add_relu = torch.ops.quantized.add_relu
add = torch.ops.quantized.add
A = torch.arange(-25, 25, dtype=torch.float)
B = torch.arange(-25, 25, dtype=torch.float)
scale_A = 3.0
zero_point_A = 7
scale_B = 5.0
zero_point_B = 127
scale_C = 0.5
zero_point_C = 5
qA = torch.quantize_linear(A, scale=scale_A, zero_point=zero_point_A,
dtype=torch.quint8)
qB = torch.quantize_linear(B, scale=scale_B, zero_point=zero_point_B,
dtype=torch.quint8)
# Add ground truth
C = (qA.dequantize() + qB.dequantize()).numpy()
qC = _quantize(C, scale_C, zero_point_C)
qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qC, qC_hat.int_repr(),
"Quantized addition failed.")
# Add + ReLU ground truth
Crelu = C.copy()
Crelu[C < 0] = 0
qCrelu = _quantize(Crelu, scale_C, zero_point_C)
qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
"Quantized addition with ReLU failed.")
"""Tests max pool operation on quantized tensors."""
@given(Q=qtensor(shapes=array_shapes(min_dims=3, max_dims=4,
min_side=1, max_side=10)),
kernel=st.sampled_from((3, 5, 7)),
stride=st.integers(1, 2),
dilation=st.integers(1, 2),
padding=st.integers(0, 2))
def test_max_pool2d(self, Q, kernel, stride, dilation, padding):
import torch.nn.functional as F
X, (scale, zero_point), (qmin, qmax), (torch_type, np_type) = Q
# Check constraints
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
iH, iW = X.shape[-2:]
oH = self._pool_output_shape(iH, kernel, padding, stride, dilation)
assume(oH > 0)
oW = self._pool_output_shape(iW, kernel, padding, stride, dilation)
assume(oW > 0)
k = (kernel, kernel)
s = (stride, stride)
d = (dilation, dilation)
p = (padding, padding)
q_max_pool = torch.ops.quantized.max_pool2d
a = torch.from_numpy(X)
qa = torch.quantize_linear(a, scale=scale, zero_point=zero_point,
dtype=torch_type)
a_hat = qa.dequantize()
a_pool = F.max_pool2d(a_hat, kernel_size=k, stride=s, padding=p,
dilation=d)
qa_pool_hat = q_max_pool(qa, kernel_size=k, stride=s, padding=p,
dilation=d)
a_pool_hat = qa_pool_hat.dequantize()
np.testing.assert_equal(a_pool.numpy(), a_pool_hat.numpy())
@unittest.skipIf(
TEST_WITH_UBSAN or not torch.fbgemm_is_cpu_supported(),
" Quantized Linear requires FBGEMM. FBGEMM does not play"
" well with UBSAN at the moment, so we skip the test if"
" we are in a UBSAN environment.",
)
class TestQuantizedLinear(unittest.TestCase):
"""Tests the correctness of the quantized::fbgemm_linear op."""
def test_qlinear(self):
qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack
qlinear = torch.ops.quantized.fbgemm_linear
batch_size = 4
input_channels = 16
output_channels = 8
X_scale = 1.5
X_zp = 5
X_value_min = 0
X_value_max = 225
X_q0 = np.round(
np.random.rand(batch_size, input_channels) * (X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
W_scale = 0.4
W_zp = 2
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) * (b_value_max - b_value_min) + b_value_min
).astype(np.int32)
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
W = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float)
b = torch.from_numpy(_dequantize(b_q0, X_scale * W_scale, 0)).to(dtype=torch.float)
X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch.qint8)
b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32)
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
# Y_scale * 255 (max for uint8).
Y_scale = 125.1234
Y_zp = 5
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, W_scale, W_zp, b_q0, Y_scale, Y_zp)
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Quantized Linear operator with prepacked weight
Y_q = qlinear(X_q, W_prepack, b_q, Y_scale, Y_zp)
# Y_q_ref_real = _dequantize(Y_q_ref, Y_scale, Y_zp)
# Y_q_real = Y_q.dequantize()
# Assert equal
np.testing.assert_equal(Y_q_ref, Y_q.int_repr().numpy())
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float)
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
Y_q_ref2 = torch.quantize_linear(Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_equal(Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy())
"""Tests the correctness of the quantized::fbgemm_linear_relu op."""
def test_qlinear_relu(self):
qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack
qlinear_relu = torch.ops.quantized.fbgemm_linear_relu
batch_size = 4
input_channels = 16
output_channels = 8
X_scale = 1.5
X_zp = 5
X_value_min = 0
X_value_max = 225
X_q0 = np.round(
np.random.rand(batch_size, input_channels) * (X_value_max - X_value_min)
+ X_value_min
).astype(np.uint8)
W_scale = 0.4
W_zp = 2
W_value_min = -128
W_value_max = 127
W_q0 = np.round(
np.random.rand(output_channels, input_channels)
* (W_value_max - W_value_min)
+ W_value_min
).astype(np.int8)
b_value_min = -10
b_value_max = 10
b_q0 = np.round(
np.random.rand(output_channels) * (b_value_max - b_value_min) + b_value_min
).astype(np.int32)
avoid_vpmaddubsw_overflow_linear(
batch_size,
input_channels,
output_channels,
X_q0,
X_value_min,
X_value_max,
W_q0,
W_value_min,
W_value_max,
)
X = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
W = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float)
b = torch.from_numpy(_dequantize(b_q0, X_scale * W_scale, 0)).to(dtype=torch.float)
X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch.qint8)
b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32)
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
# Y_scale * 255 (max for uint8).
Y_scale = 125.1234
Y_zp = 5
# Reference quantized Linear operator
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0, W_scale, W_zp, b_q0, Y_scale, Y_zp)
Y_q_ref[Y_q_ref < Y_zp] = Y_zp
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Quantized Linear operator with prepacked weight
Y_q = qlinear_relu(X_q, W_prepack, b_q, Y_scale, Y_zp)
# Y_q_ref_real = _dequantize(Y_q_ref, Y_scale, Y_zp)
# Y_q_real = Y_q.dequantize()
# Assert equal
np.testing.assert_equal(Y_q_ref, Y_q.int_repr().numpy())
# Reference quantized result from PyTorch Linear operator
W_fp32 = W_q.dequantize().to(dtype=torch.float)
X_fp32 = X_q.dequantize().to(dtype=torch.float)
b_fp32 = b_q.dequantize().to(dtype=torch.float)
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
Y_q_ref2 = torch.quantize_linear(Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
# Assert equal
np.testing.assert_equal(Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy())
"""Tests the correctness of the quantized::fbgemm_linear_unpack op."""
@given(Q=qtensor(shapes=array_shapes(2, 2,), dtypes=((torch.qint8, np.int8, None),)))
def test_qlinear_unpack(self, Q):
W, (W_scale, W_zp), (qmin, qmax), (torch_type, np_type) = Q
qlinear_prepack = torch.ops.quantized.fbgemm_linear_prepack
qlinear_unpack = torch.ops.quantized.fbgemm_linear_unpack
W = torch.from_numpy(W)
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zp, dtype=torch_type)
# Weight prepacking operator for quantized Linear
W_prepack = qlinear_prepack(W_q)
# Weight unpack operator for quantized Linear (Used for serialization)
W_q_origin = qlinear_unpack(W_prepack)
# Assert equal
np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy())
np.testing.assert_equal(W_q.q_scale(), W_q_origin.q_scale())
np.testing.assert_equal(W_q.q_zero_point(), W_q_origin.q_zero_point())
@unittest.skipIf(
TEST_WITH_UBSAN or not torch.fbgemm_is_cpu_supported(),
" Quantized convolution requires FBGEMM. FBGEMM does not play"
" well with UBSAN at the moment, so we skip the test if"
" we are in a UBSAN environment.",
)
class TestQuantizedConv(unittest.TestCase):
"""Tests the correctness of quantized convolution op."""
@given(
batch_size=st.integers(1, 3),
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
height=st.integers(10, 16),
width=st.integers(7, 14),
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 3),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 1),
)
def test_qconv(
self,
batch_size,
input_channels_per_group,
height,
width,
output_channels_per_group,
groups,
kernel_h,
kernel_w,
stride_h,
stride_w,
pad_h,
pad_w,
dilation
):
qconv = torch.ops.quantized.fbgemm_conv2d
qconv_prepack = torch.ops.quantized.fbgemm_conv_prepack
# C
input_channels = input_channels_per_group * groups
# K
output_channels = output_channels_per_group * groups
dilation_h = dilation_w = dilation
# For testing, we use small values for weights and for activations so that no overflow occurs
# in vpmaddubsw instruction. If the overflow occurs in qconv implementation and if there is no overflow
# in reference we can't exactly match the results with reference.
# Please see the comment in qconv implementation file (aten/src/ATen/native/quantized/cpu/qconv.cpp)
# for more details.
W_value_min = -5
W_value_max = 5
# the operator expects them in the format (output_channels, input_channels/groups, kernel_h, kernel_w)
W_init = torch.from_numpy(
np.random.randint(
W_value_min,
W_value_max,
(output_channels, int(input_channels / groups), kernel_h, kernel_w)),
)
b_init = torch.from_numpy(np.random.randint(0, 10, (output_channels,)))
# Existing floating point conv operator
conv_op = torch.nn.Conv2d(
input_channels,
output_channels,
(kernel_h, kernel_w),
(stride_h, stride_w),
(pad_h, pad_w),
(dilation_h, dilation_w),
groups,
)
# assign the weights
conv_op.weight = torch.nn.Parameter(
W_init.to(dtype=torch.float), requires_grad=False
)
conv_op.bias = torch.nn.Parameter(
b_init.to(dtype=torch.float), requires_grad=False
)
X_value_min = 0
X_value_max = 4
X_init = torch.from_numpy(np.random.randint(
X_value_min, X_value_max, (batch_size, input_channels, height, width)))
# run on an input tensor
result_ref = conv_op(X_init.to(dtype=torch.float))
# reformat X_init and W_init in the required format by conv operator
# NCHW -> NHWC
X_NHWC = X_init.permute([0, 2, 3, 1]).contiguous()
# K(C/G)RS -> KRS(C/G)
W_KRSC = W_init.permute([0, 2, 3, 1]).contiguous()
X_scale = 1.5
# Currently only 0 as zero point is supported.
X_zero_point = 0
X = X_scale * (X_NHWC - X_zero_point).to(dtype=torch.float)
W_scale = 2.5
W_zero_point = 0
W = W_scale * (W_KRSC - W_zero_point).to(dtype=torch.float)
b = X_scale * W_scale * (b_init - 0).to(dtype=torch.float)
X_q = torch.quantize_linear(X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
W_q = torch.quantize_linear(W, scale=W_scale, zero_point=W_zero_point, dtype=torch.qint8)
b_q = torch.quantize_linear(b, scale=X_scale * W_scale, zero_point=0, dtype=torch.qint32)
W_prepack = qconv_prepack(W_q, groups)
Y_scale = 7.3
Y_zero_point = 5
Y_q = qconv(
X_q,
W_prepack,
b_q,
[stride_h, stride_w], # stride
[pad_h, pad_w], # padding
[dilation_h, dilation_w], # dilation
groups, # groups
Y_scale,
Y_zero_point,
)
result_NHWK = result_ref.permute([0, 2, 3, 1])
result_q = _requantize(
result_NHWK.numpy(), X_scale * W_scale / Y_scale, Y_zero_point
)
# Make sure the results match
np.testing.assert_equal(result_q, Y_q.int_repr().numpy())
"""Tests the correctness of the quantized::fbgemm_qconv_unpack op."""
@given(Q=qtensor(shapes=array_shapes(4, 4,), dtypes=((torch.qint8, np.int8, 0),)))
def test_qconv_unpack(self, Q):
W, (W_scale, W_zp), (qmin, qmax), (torch_type, np_type) = Q
qconv_prepack = torch.ops.quantized.fbgemm_conv_prepack
qconv_unpack = torch.ops.quantized.fbgemm_conv_unpack
# Orig tensor is assumed to be in K(C/G)RS format
W = torch.from_numpy(W)
# K(C/G)RS -> KRS(C/G)
W_KRSC = W.permute([0, 2, 3, 1]).contiguous()
W_q = torch.quantize_linear(W_KRSC, scale=W_scale, zero_point=W_zp, dtype=torch_type)
# Pack weights using weight packing operator
W_packed = qconv_prepack(W_q, 1)
# Unpack weights weight unpacking operator (Used for serialization)
W_unpacked = qconv_unpack(W_packed)
# Assert equal
np.testing.assert_equal(W_q.int_repr().numpy(), W_unpacked.int_repr().numpy())
np.testing.assert_equal(W_q.q_scale(), W_unpacked.q_scale())
np.testing.assert_equal(W_q.q_zero_point(), W_unpacked.q_zero_point())
if __name__ == "__main__":
run_tests()