blob: 480f6c39c97d813a632a1b6938a8b0f4eac7aa28 [file] [log] [blame]
# Owner(s): ["module: sparse"]
import torch
import warnings
import unittest
import random
import itertools
from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes, make_tensor
from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC
from torch.testing._internal.common_utils import \
(IS_MACOS, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoCusparseGeneric,
precisionOverride, skipMeta)
from torch.testing._internal.common_dtype import floating_types, get_all_dtypes
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
class TestSparseCSRSampler(TestCase):
def test_make_crow_indices(self):
# Here we test the correctness of the crow_indices algorithm
# and testing it on CPU and with int32 dtype will be
# sufficient.
device = torch.device('cpu')
index_dtype = torch.int32
for n_rows in range(1, 10):
for n_cols in range(1, 10):
for nnz in range(0, n_rows * n_cols + 1):
crow_indices = self._make_crow_indices(
n_rows, n_cols, nnz,
device=device, dtype=index_dtype)
self.assertEqual(len(crow_indices), n_rows + 1)
counts = crow_indices[1:] - crow_indices[:-1]
self.assertEqual(counts.sum(), nnz)
self.assertGreaterEqual(counts.min(), 0)
self.assertLessEqual(counts.max(), n_cols)
class TestSparseCSR(TestCase):
@onlyCPU
def test_csr_layout(self):
self.assertEqual(str(torch.sparse_csr), 'torch.sparse_csr')
self.assertEqual(type(torch.sparse_csr), torch.layout)
@dtypes(*get_all_dtypes())
def test_sparse_csr_constructor_shape_inference(self, device, dtype):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64),
torch.tensor(col_indices, dtype=torch.int64),
torch.tensor(values), dtype=dtype, device=device)
self.assertEqual(torch.tensor(crow_indices, dtype=torch.int64), sparse.crow_indices())
self.assertEqual((len(crow_indices) - 1, max(col_indices) + 1), sparse.shape)
self.assertEqual(dtype, sparse.dtype)
self.assertEqual(torch.device(device), sparse.device)
@dtypes(*get_all_dtypes())
def test_sparse_csr_constructor(self, device, dtype):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
for index_dtype in [torch.int32, torch.int64]:
sparse = torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=index_dtype),
torch.tensor(col_indices, dtype=index_dtype),
torch.tensor(values),
size=(2, 10),
dtype=dtype,
device=device)
self.assertEqual((2, 10), sparse.shape)
self.assertEqual(torch.tensor(crow_indices, dtype=index_dtype), sparse.crow_indices())
self.assertEqual(torch.tensor(col_indices, dtype=index_dtype), sparse.col_indices())
self.assertEqual(torch.tensor(values, dtype=dtype), sparse.values())
@dtypes(*get_all_dtypes())
def test_sparse_csr_constructor_from_lists(self, device, dtype):
# without size
sparse = torch.sparse_csr_tensor([0, 2, 4],
[0, 1, 0, 1],
[1, 2, 3, 4],
dtype=dtype,
device=device)
self.assertEqual((2, 2), sparse.shape)
self.assertEqual(4, sparse.numel())
self.assertEqual(torch.tensor([0, 2, 4], dtype=torch.int64, device=device), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0, 1], dtype=torch.int64, device=device), sparse.col_indices())
self.assertEqual(torch.tensor([1, 2, 3, 4], dtype=dtype, device=device), sparse.values())
# with size
for sparse_csr_tensor in [torch.sparse_csr_tensor, torch._sparse_csr_tensor_unsafe]:
sparse = sparse_csr_tensor([0, 2, 4],
[0, 1, 0, 1],
[1, 2, 3, 4],
size=(2, 10),
dtype=dtype,
device=device)
self.assertEqual((2, 10), sparse.shape)
self.assertEqual(torch.tensor([0, 2, 4], dtype=torch.int64, device=device), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0, 1], dtype=torch.int64, device=device), sparse.col_indices())
self.assertEqual(torch.tensor([1, 2, 3, 4], dtype=dtype, device=device), sparse.values())
@skipMeta
@dtypes(*get_all_dtypes())
def test_empty(self, device, dtype):
ns = [5, 2, 0]
for shape in itertools.product(ns, ns):
result = torch.empty(shape, dtype=dtype, device=device, layout=torch.sparse_csr)
self.assertEqual(result.shape, shape)
self.assertEqual(result.dtype, dtype)
self.assertEqual(result.device, torch.device(device))
self.assertEqual(result.layout, torch.sparse_csr)
self.assertEqual(result.crow_indices().shape, (shape[0] + 1,))
self.assertEqual(result.col_indices().shape, (0,))
self.assertEqual(result.values().shape, (0,))
self.assertEqual(result._nnz(), 0)
self.assertEqual(result.crow_indices().device, torch.device(device))
self.assertEqual(result.col_indices().device, torch.device(device))
self.assertEqual(result.values().device, torch.device(device))
self.assertEqual(result.crow_indices().dtype, torch.int64)
self.assertEqual(result.col_indices().dtype, torch.int64)
self.assertEqual(result.values().dtype, dtype)
@skipMeta
@dtypes(*get_all_dtypes())
def test_empty_errors(self, device, dtype):
with self.assertRaisesRegex(RuntimeError, "torch.empty: Only 2D sparse CSR tensors are supported."):
torch.empty((5,), dtype=dtype, device=device, layout=torch.sparse_csr)
with self.assertRaisesRegex(RuntimeError, "torch.empty: Only 2D sparse CSR tensors are supported."):
torch.empty((2, 3, 4), dtype=dtype, device=device, layout=torch.sparse_csr)
@skipMeta
@dtypes(*get_all_dtypes())
def test_copy(self, device, dtype):
def run_test(shape, nnz, index_type):
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
b = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
a.copy_(b)
self.assertEqual(a.crow_indices(), b.crow_indices())
self.assertEqual(a.col_indices(), b.col_indices())
self.assertEqual(a.values(), b.values())
ns = [5, 2, 0]
for shape, index_dtype in zip(itertools.product(ns, ns), [torch.int32, torch.int64]):
run_test(shape, 0, index_dtype)
run_test(shape, shape[0] * shape[1], index_dtype)
@skipMeta
@dtypes(*get_all_dtypes())
def test_copy_errors(self, device, dtype):
for index_dtype in [torch.int32, torch.int64]:
shape1 = (2, 3)
shape2 = (3, 2)
a = self.genSparseCSRTensor(shape1, 0, dtype=dtype, device=device, index_dtype=index_dtype)
b = self.genSparseCSRTensor(shape2, 0, dtype=dtype, device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError, "only same size tensors are supported."):
a.copy_(b)
with self.assertRaisesRegex(RuntimeError, "copy between different layouts is not supported."):
a.copy_(torch.empty(a.shape, dtype=dtype, device=device))
b = self.genSparseCSRTensor(shape1, 1, dtype=dtype, device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError, "only tensors with the same number of specified elements are supported."):
a.copy_(b)
@skipMeta
@dtypes(*get_all_dtypes())
def test_resize(self, device, dtype):
for index_dtype in [torch.int32, torch.int64]:
shape = (2, 3)
nnz = 6
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
new_shape = (4, 5)
a.resize_(new_shape)
self.assertEqual(a.shape, new_shape)
# resize to larger shape doesn't add specified elements
self.assertEqual(a._nnz(), nnz)
new_shape = (1, 5)
a.resize_(new_shape)
self.assertEqual(a.shape, new_shape)
# resize to smaller shape trims specified elements
self.assertEqual(a._nnz(), 5)
@skipMeta
@dtypes(*get_all_dtypes())
def test_resize_errors(self, device, dtype):
for index_dtype in [torch.int32, torch.int64]:
shape = (2, 3)
nnz = 6
a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only 2D sparse CSR tensors are supported."):
new_shape = (4,)
a.resize_(new_shape)
# resizing of columns to smaller size is not implemented
with self.assertRaisesRegex(
RuntimeError,
"torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.",
):
new_shape = (2, 2)
a.resize_(new_shape)
def test_factory_type_invariants_check(self, device):
with self.assertRaisesRegex(RuntimeError, "both crow_indices and col_indices should have the same type."):
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int64),
torch.tensor([0, 1, 0, 1], dtype=torch.int32),
torch.tensor([1, 2, 3, 4]),
device=device)
with self.assertRaisesRegex(RuntimeError, r"\"csr_construct_check\" not implemented for 'Short'"):
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=torch.int16),
torch.tensor([0, 1, 0, 1], dtype=torch.int16),
torch.tensor([1, 2, 3, 4]),
device=device)
def test_factory_layout_invariants_check(self, device):
with self.assertRaisesRegex(RuntimeError, "expected values to be a strided and contiguous tensor"):
values = torch.tensor([1.], device=device).expand(4,)
torch.sparse_csr_tensor(torch.tensor([0, 2, 4], device=device),
torch.tensor([0, 1, 0, 1], device=device),
values)
with self.assertRaisesRegex(RuntimeError, "expected col_indices to be a strided and contiguous tensor"):
col_indices = torch.tensor([0], device=device).expand(4,)
torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
col_indices,
torch.tensor([1, 2, 3, 4]))
with self.assertRaisesRegex(RuntimeError, "expected crow_indices to be a strided and contiguous tensor"):
crow_indices = torch.arange(6, device=device)
torch.sparse_csr_tensor(crow_indices[::2],
torch.tensor([0, 1, 0, 1], device=device),
torch.tensor([1, 2, 3, 4]))
def test_factory_shape_invariants_check(self, device):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
size = (2, 10)
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), size,
device=device)
with self.assertRaisesRegex(RuntimeError, r"size of a CSR tensor must be of length 2, but got: 3"):
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values),
size=(2, 10, 2),
device=device)
with self.assertRaisesRegex(RuntimeError, r"crow_indices must have dim\=1 but got crow_indices\.dim\(\)\=2"):
torch.sparse_csr_tensor(torch.tensor(crow_indices).repeat(2, 1),
torch.tensor(col_indices),
torch.tensor(values),
size,
device=device)
with self.assertRaisesRegex(RuntimeError, r"col_indices must have dim\=1 but got col_indices\.dim\(\)\=2"):
torch.sparse_csr_tensor(torch.tensor(crow_indices),
torch.tensor(col_indices).repeat(2, 1),
torch.tensor(values),
size,
device=device)
with self.assertRaisesRegex(RuntimeError, r"values must have dim\=1 but got values\.dim\(\)\=2"):
torch.sparse_csr_tensor(torch.tensor(crow_indices),
torch.tensor(col_indices),
torch.tensor(values).repeat(2, 1),
size,
device=device)
with self.assertRaisesRegex(RuntimeError,
r"crow_indices\.numel\(\) must be size\(0\) \+ 1, but got: 3"):
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor(col_indices), torch.tensor(values), (1, 1),
device=device)
with self.assertRaisesRegex(RuntimeError,
r"col_indices and values must have equal sizes, " +
r"but got col_indices\.numel\(\): 3, values\.numel\(\): 4"):
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 1, 0]), torch.tensor(values), size,
device=device)
def test_factory_indices_invariants_check(self, device):
crow_indices = [0, 2, 4]
col_indices = [0, 1, 0, 1]
values = [1, 2, 3, 4]
size = (2, 10)
with self.assertRaisesRegex(RuntimeError, "0th value of crow_indices must be 0."):
torch.sparse_csr_tensor(torch.tensor([-1, 0, 4]), torch.tensor(col_indices), torch.tensor(values), size,
device=device)
with self.assertRaisesRegex(RuntimeError,
"last value of crow_indices should be equal to the length of col_indices."):
torch.sparse_csr_tensor(torch.tensor([0, 2, 5]), torch.tensor(col_indices), torch.tensor(values), size,
device=device)
with self.assertRaisesRegex(RuntimeError,
r"at position i \= 2," +
r" this condition crow_indices\[i - 1\] <\= crow_indices\[i\] fails"):
torch.sparse_csr_tensor(torch.tensor([0, 5, 4]), torch.tensor(col_indices), torch.tensor(values), size,
device=device)
with self.assertRaisesRegex(RuntimeError, r"col_indices\.min\(\) should be greater or equal to zero"):
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, -1, 0, 1]), torch.tensor(values), size,
device=device)
with self.assertRaisesRegex(RuntimeError, r"size\(1\) should be greater than col_indices\.max\(\)"):
torch.sparse_csr_tensor(torch.tensor(crow_indices), torch.tensor([0, 11, 0, 1]), torch.tensor(values), size,
device=device)
@onlyCUDA
@dtypes(*get_all_dtypes())
def test_factory_device_type_inference(self, device, dtype):
cpu_cuda = ('cpu', 'cuda')
cpu_cuda_none = cpu_cuda + (None,)
for crow_indices_device, col_indices_device, values_device, device in itertools.product(cpu_cuda,
cpu_cuda,
cpu_cuda,
cpu_cuda_none):
for index_dtype in [torch.int32, torch.int64]:
crow_indices = torch.tensor([0, 2, 4], dtype=index_dtype, device=crow_indices_device)
col_indices = torch.tensor([0, 1, 0, 1], dtype=index_dtype, device=col_indices_device)
values = torch.tensor([1, 2, 3, 4], dtype=dtype, device=values_device)
if device is None and (crow_indices_device != col_indices_device or
crow_indices_device != values_device):
with self.assertRaises(RuntimeError):
torch.sparse_csr_tensor(crow_indices,
col_indices,
values,
size=(2, 10),
device=device)
else:
t = torch.sparse_csr_tensor(crow_indices,
col_indices,
values,
size=(2, 10),
device=device)
should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda'))
self.assertEqual(should_be_cuda, t.is_cuda)
t.crow_indices().dtype == index_dtype
t.col_indices().dtype == index_dtype
t.values().dtype == dtype
t.crow_indices().device == t.values().device
t.col_indices().device == t.values().device
def test_sparse_csr_print(self, device):
orig_maxDiff = self.maxDiff
self.maxDiff = None
shape_nnz = [
((10, 10), 10),
((100, 10), 10),
((1000, 10), 10)
]
printed = []
for shape, nnz in shape_nnz:
values_shape = torch.Size((nnz,))
col_indices_shape = torch.Size((nnz,))
crow_indices_shape = torch.Size((shape[0] + 1,))
printed.append("# shape: {}".format(torch.Size(shape)))
printed.append("# nnz: {}".format(nnz))
printed.append("# crow_indices shape: {}".format(crow_indices_shape))
printed.append("# col_indices shape: {}".format(col_indices_shape))
printed.append("# values_shape: {}".format(values_shape))
for index_dtype in [torch.int32, torch.int64]:
for dtype in floating_types():
printed.append("########## {}/{} ##########".format(dtype, index_dtype))
x = torch.sparse_csr_tensor(torch.tensor([0, 2, 4], dtype=index_dtype),
torch.tensor([0, 1, 0, 1], dtype=index_dtype),
torch.tensor([1, 2, 3, 4]), dtype=dtype, device=device)
printed.append("# sparse tensor")
printed.append(str(x))
printed.append("# _crow_indices")
printed.append(str(x.crow_indices()))
printed.append("# _col_indices")
printed.append(str(x.col_indices()))
printed.append("# _values")
printed.append(str(x.values()))
printed.append('')
printed.append('')
self.assertExpected('\n'.join(printed))
self.maxDiff = orig_maxDiff
@dtypes(*get_all_dtypes())
def test_sparse_csr_from_dense(self, device, dtype):
dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values())
dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values())
dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values())
@dtypes(*get_all_dtypes())
def test_sparse_csr_to_dense(self, device, dtype):
mn = [5, 2, 0]
for (m, n) in itertools.product(mn, mn):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
sparse = dense.to_sparse_csr()
self.assertEqual(sparse.to_dense(), dense)
crow_indices = torch.tensor([0, 3, 5])
col_indices = torch.tensor([0, 1, 2, 0, 1])
values = torch.tensor([1, 2, 1, 3, 4], dtype=dtype)
csr = torch.sparse_csr_tensor(crow_indices, col_indices,
values, dtype=dtype, device=device)
dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device)
self.assertEqual(csr.to_dense(), dense)
@coalescedonoff
@dtypes(torch.double)
def test_coo_to_csr_convert(self, device, dtype, coalesced):
with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"):
torch._convert_indices_from_coo_to_csr(
torch.randint(100, (5, 5), device=device),
size=100)
size = (5, 5)
sparse_dim = 2
nnz = 10
sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype)
sparse_csr = sparse_coo.to_sparse_csr()
self.assertTrue(sparse_csr.is_sparse_csr)
self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense())
vec = torch.randn((5, 1), dtype=dtype, device=device)
coo_product = sparse_coo.matmul(vec)
csr_product = sparse_csr.matmul(vec)
self.assertEqual(coo_product, csr_product)
vec = torch.randn((100, 1), dtype=dtype, device=device)
index = torch.tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
], dtype=torch.int32)
values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device)
csr = coo.to_sparse_csr()
self.assertEqual(coo.matmul(vec), csr.matmul(vec))
col_indices = torch.tensor([
31, 92, 65, 50, 34, 62, 22, 56, 74, 89
], dtype=torch.int64, device=device)
self.assertEqual(csr.col_indices(), col_indices)
values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
self.assertEqual(csr.values(), values)
@onlyCPU
@unittest.skipIf(IS_MACOS or IS_WINDOWS, "MKL doesn't work on windows or mac")
@dtypes(torch.float, torch.double)
def test_mkl_matvec_warnings(self, device, dtype):
if torch.has_mkl:
for index_dtype in [torch.int32, torch.int64]:
sp = torch.sparse_csr_tensor(torch.tensor([0, 2, 4]),
torch.tensor([0, 1, 0, 1]),
torch.tensor([1, 2, 3, 4], dtype=dtype, device=device))
vec = torch.randn((2, 1), dtype=dtype, device=device)
with warnings.catch_warnings(record=True) as w:
sp.matmul(vec)
self.assertEqual(len(w), 2)
self.assertIn("Pytorch is compiled with MKL LP64 and will convert crow_indices to int32",
str(w[0].message))
self.assertIn("Pytorch is compiled with MKL LP64 and will convert col_indices to int32",
str(w[1].message))
@dtypes(*get_all_dtypes())
def test_sparse_csr_from_dense_convert_error(self, device, dtype):
size = (4, 2, 4)
dense = make_tensor(size, dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, "Only 2D"):
sparse = dense.to_sparse_csr()
# TODO: Support auto generation of device check for sparse tensors
# See: https://github.com/pytorch/pytorch/issues/59058
@onlyCUDA
@dtypes(torch.double)
def test_matmul_device_mismatch(self, device, dtype):
cpu = torch.rand((10, 10))
cuda = cpu.cuda()
for s, m1, m2 in itertools.product((cpu, cuda), repeat=3):
csr = m1.to_sparse()
if s.device == csr.device == m2.device:
torch.addmm(s, csr, m2)
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
torch.addmm(s, csr, m2)
@skipCUDAIfNoCusparseGeneric
@dtypes(*torch.testing.floating_types())
@dtypesIfCUDA(*get_all_complex_dtypes(),
*get_all_fp_dtypes(include_half=SM53OrLater, include_bfloat16=SM80OrLater))
def test_csr_matvec(self, device, dtype):
side = 100
for index_dtype in [torch.int32, torch.int64]:
csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype)
vec = torch.randn(side, dtype=dtype, device=device)
res = csr.matmul(vec)
expected = csr.to_dense().matmul(vec)
self.assertEqual(res, expected)
bad_vec = torch.randn(side + 10, dtype=dtype, device=device)
err_msg = "mv: expected"
# CUDA path now uses generic meta/structured implementation
# TODO: move CPU path to not use `mv_sparse` function
if self.device_type == 'cuda':
err_msg = "size mismatch, got"
with self.assertRaisesRegex(RuntimeError, err_msg):
csr.matmul(bad_vec)
@dtypes(torch.double)
def test_mm(self, device, dtype):
def test_shape(di, dj, dk, nnz):
for index_dtype in [torch.int32, torch.int64]:
x = self.genSparseCSRTensor((di, dj), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
t = torch.randn(di, dk, dtype=dtype, device=device)
y = torch.randn(dj, dk, dtype=dtype, device=device)
alpha = random.random()
beta = random.random()
# res = beta * t + alpha * (x @ y)
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
expected = torch.addmm(t, x.to_dense(), y, beta=beta, alpha=alpha)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, x.to_dense(), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res, expected)
for i in range(2, 5):
for j in range(2, 8):
for k in range(2, 8):
test_shape(i, j, k, i * j // 2)
test_shape(4, 4, 4, 0)
@dtypes(*floating_types())
@dtypesIfCUDA(*get_all_complex_dtypes(),
*get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
include_bfloat16=SM80OrLater and TEST_CUSPARSE_GENERIC))
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_sparse_mm(self, device, dtype):
def test_shape(d1, d2, d3, nnz, transposed, index_dtype):
if transposed:
D = torch.randn(d3, d2, dtype=dtype, device=device).t_()
else:
D = torch.randn(d2, d3, dtype=dtype, device=device)
S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
S_dense = S.to_dense()
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
for index_dtype in [torch.int32, torch.int64]:
test_shape(7, 8, 9, 20, False, index_dtype)
test_shape(7, 8, 9, 20, True, index_dtype)
@dtypes(*floating_types())
@dtypesIfCUDA(*get_all_complex_dtypes(),
*get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
include_bfloat16=SM80OrLater and TEST_CUSPARSE_GENERIC))
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_sparse_addmm(self, device, dtype):
def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None):
if alpha_beta is None:
alpha = random.random()
beta = random.random()
else:
alpha, beta = alpha_beta
if broadcast:
D1 = make_tensor((), dtype=dtype, device=device)
else:
D1 = make_tensor([n, p], dtype=dtype, device=device)
D2 = make_tensor([m, p], dtype=dtype, device=device)
S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype)
S_dense = S.to_dense()
Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
self.assertEqual(Y, Y_dense)
for index_dtype in [torch.int32, torch.int64]:
test_shape(7, 8, 9, 20, False, index_dtype, None)
test_shape(7, 8, 9, 20, True, index_dtype, None)
test_shape(7, 8, 9, 20, False, index_dtype, (1, 0))
test_shape(7, 8, 9, 20, True, index_dtype, (1, 0))
test_shape(7, 8, 9, 20, False, index_dtype, (1, 1))
test_shape(7, 8, 9, 20, True, index_dtype, (1, 1))
@onlyCUDA
@dtypes(torch.float)
def test_addmm_errors(self, device, dtype):
# test that the errors are the same for dense and sparse versions
import re
def test1(*, is_sparse):
# shapes must be compatible for matrix multiplication
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a, a_sparse, a)
else:
return torch.addmm(a, a, a)
def test2(*, is_sparse):
# mat2 must be a matrix
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a, a_sparse, a.unsqueeze(0))
else:
return torch.addmm(a, a, a.unsqueeze(0))
def test3(*, is_sparse):
# the first input needs to be 1D or 2D
a = make_tensor((3, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.addmm(a.unsqueeze(0), a_sparse, a)
else:
return torch.addmm(a.unsqueeze(0), a, a)
for test in (test1, test2, test3):
try:
test(is_sparse=False)
except RuntimeError as msg:
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
test(is_sparse=True)
@onlyCUDA
@dtypes(torch.float)
def test_mm_errors(self, device, dtype):
# test that the errors are the same for dense and sparse versions
import re
def test1(*, is_sparse):
# shapes must be compatible for matrix multiplication
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.mm(a_sparse, a)
else:
return torch.mm(a, a)
def test2(*, is_sparse):
# mat2 must be a matrix
a = make_tensor((2, 3), dtype=dtype, device=device)
if is_sparse:
a_sparse = a.to_sparse_csr()
return torch.mm(a_sparse, a.unsqueeze(0))
else:
return torch.mm(a, a.unsqueeze(0))
for test in (test1, test2):
try:
test(is_sparse=False)
except RuntimeError as msg:
with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
test(is_sparse=True)
@dtypes(torch.float, torch.double)
def test_add(self, device, dtype):
def _test_spadd_shape(nnz, shape):
x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
y = torch.randn(*shape, dtype=dtype, device=device)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * x.to_dense()
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = torch.randn(*s, dtype=torch.double, device=device)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * x.to_dense()
self.assertEqual(res, expected)
_test_spadd_shape(10, [100, 100])
_test_spadd_shape(0, [100, 100])
_test_spadd_shape(10, [100, 1])
_test_spadd_shape(10, [1, 100])
@dtypes(*get_all_dtypes())
def test_coo_csr_conversion(self, device, dtype):
for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
size = (m, n)
dense = make_tensor(size, dtype=dtype, device=device)
coo_sparse = dense.to_sparse()
csr_sparse = coo_sparse.to_sparse_csr()
self.assertEqual(csr_sparse.to_dense(), dense)
# e.g., TestSparseCSRCPU and TestSparseCSRCUDA
instantiate_device_type_tests(TestSparseCSR, globals())
if __name__ == '__main__':
run_tests()