| #include <ATen/SparseTensorUtils.h> |
| |
| #include <ATen/ATen.h> |
| #include <ATen/SparseTensorImpl.h> |
| #include <ATen/Parallel.h> |
| |
| namespace at { namespace sparse { |
| |
| // NOTE [ Flatten Sparse Indices ] |
| // This helper function flattens a sparse indices tensor (a Tensor) into a 1D |
| // indices tensor. E.g., |
| // input = [[2, 4, 0], |
| // [3, 1, 10]] |
| // full_size = [2, 12] |
| // output = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 10 ] = [27, 49, 10] |
| // |
| // In other words, assuming that each `indices[i, :]` is a valid index to a |
| // tensor `t` of shape `full_size`. This returns the corresponding indices to |
| // the flattened tensor `t.reshape( prod(full_size[:indices.size(0)]), -1 )`. |
| // if forceClone is true, the result will forced to be a clone of self. |
| // if force_clone is true, the result will forced to be a clone of self. |
| Tensor flatten_indices(const Tensor& indices, IntArrayRef full_size, bool force_clone /*= false*/) { |
| int64_t sparse_dim = indices.size(0); |
| if (sparse_dim == 1) { |
| if (force_clone) { |
| return indices.squeeze(0).clone(at::MemoryFormat::Contiguous); |
| } else { |
| return indices.squeeze(0); |
| } |
| } else { |
| std::vector<int64_t> indices_mult_cpu_vec; |
| indices_mult_cpu_vec.reserve(sparse_dim); |
| int64_t mult = 1; |
| for (int64_t i = sparse_dim - 1; i >= 0; i--) { |
| indices_mult_cpu_vec[i] = mult; |
| mult *= full_size[i]; |
| } |
| auto indices_mult_cpu = at::from_blob( |
| indices_mult_cpu_vec.data(), |
| /*size=*/{sparse_dim, 1}, |
| indices.options().device(kCPU)); |
| // NB: must be blocking because this blob may be freed after this closure, |
| // and non_blocking copy will see garbage. |
| auto indices_mult = indices_mult_cpu.to(indices.device(), /*non_blocking=*/false); |
| // Ideally we want matmul but matmul is slow on CPU Long and not implemented |
| // on CUDA Long. So mul is faster. |
| return indices.mul(indices_mult).sum(0); |
| } |
| } |
| |
| // Flatten sparse tensor's indices from nD to 1D, similar to NOTE [ Flatten Sparse Indices ], |
| // except this one allows partial flatten: only flatten on specified dims. Note that |
| // the flatten indices might be uncoalesced if dims_to_flatten.size() < sparse_dim. |
| // Also if input indices is already coalesced, the flattened indices will also be sorted. |
| // |
| // args: |
| // indices: sparse tensor indices |
| // sizes: sparse tensor sizes |
| // dims_to_flatten: a list of dim index to flatten |
| // |
| // Ex1: |
| // indices = [[2, 4, 0], |
| // [3, 1, 3]] |
| // sizes = [2, 12] |
| // dims_to_flatten = [0, 1] |
| // new_indices = [ 2 * 12 + 3, 4 * 12 + 1, 0 * 12 + 3 ] = [27, 49, 3] |
| // |
| // Ex2: |
| // dims_to_flatten = [1] |
| // new_indices = [ 3, 1, 3 ] # uncoalesced |
| Tensor flatten_indices_by_dims(const Tensor& indices, const IntArrayRef& sizes, const IntArrayRef& dims_to_flatten){ |
| Tensor new_indices = at::zeros({indices.size(1)}, indices.options()); |
| for (auto d : dims_to_flatten) { |
| new_indices.mul_(sizes[d]); |
| new_indices.add_(indices.select(0, d)); |
| } |
| return new_indices; |
| } |
| |
| Tensor coo_to_csr(const int64_t* indices, int64_t dim, int64_t nnz) { |
| /* |
| Find the CSR representation for a row `indices` from the COO format |
| Inputs: |
| `indices` is the row pointer from COO indices |
| `dim` is the row dimensionality |
| `nnz` is the number of non-zeros |
| |
| Output: |
| `csr` is a compressed row array in a CSR format |
| */ |
| Tensor csr = native::zeros({dim + 1}, kLong); |
| |
| // TODO: eliminate this conditional when zero-size dims supported correctly |
| if (nnz > 0) { |
| auto csr_accessor = csr.accessor<int64_t, 1>(); |
| // Convert the sparse matrix to CSR format |
| at::parallel_for(0, nnz, 10000, [&](int64_t start, int64_t end) { |
| int64_t h, hp0, hp1; |
| for (auto i = start; i < end; i++) { |
| hp0 = indices[i]; |
| hp1 = (i+1 == nnz) ? dim : indices[i+1]; |
| if (hp0 != hp1) { |
| for (h = hp0; h < hp1; h++) { |
| csr_accessor[h+1] = i+1; |
| } |
| } |
| } |
| }); |
| } |
| return csr; |
| } |
| |
| }} // namespace at::sparse |