blob: b06f64802520ccf99d6b72e6a66ffd3262390231 [file] [log] [blame]
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.nn.modules.module import Module
from torch.nn.modules.linear import Linear as NNLinear
from torch._jit_internal import Optional
class Quantize(Module):
r"""Quantizes an incoming tensor
Args:
`out_scale`: scale of the output Quantized Tensor
`out_zero_point`: zero_point of output Quantized Tensor
`out_dtype`: data type of output Quantized Tensor
Attributes:
`out_scale`, `out_zero_point`, `out_dtype`
Examples::
>>> t = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> qt = qm(t)
>>> print(qt)
tensor([[ 1., -1.],
[ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
"""
def __init__(self, out_scale, out_zero_point, out_dtype):
super(Quantize, self).__init__()
self.register_buffer('_scale', torch.tensor([out_scale]))
self.register_buffer('_zero_point', torch.tensor([out_zero_point], dtype=torch.long))
self._dtype = out_dtype
def forward(self, X):
return torch.quantize_linear(X, float(self._scale),
int(self._zero_point), self._dtype)
@staticmethod
def from_float(mod):
assert hasattr(mod, 'observer')
qparams = mod.observer.calculate_qparams()
return Quantize(qparams[0].item(), qparams[1].item(), mod.observer.dtype)
class DeQuantize(Module):
r"""Dequantizes an incoming tensor
Examples::
>>> input = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> quantized_input = qm(input)
>>> dqm = DeQuantize()
>>> dequantized = dqm(quantized_input)
>>> print(dequantized)
tensor([[ 1., -1.],
[ 1., -1.]], dtype=torch.float32)
"""
def __init__(self):
super(DeQuantize, self).__init__()
def forward(self, Xq):
return Xq.dequantize()
@staticmethod
def from_float(mod):
return DeQuantize()
class Linear(torch.nn.Module):
r"""
A quantized linear module with quantized tensor as inputs and outputs.
We adopt the same interface as `torch.nn.Linear`, please see
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
Similar to :class:`~torch.nn.Linear`, attributes will be randomly
initialized at module creation time and will be overwritten later
Attributes:
weight (Tensor): the non-learnable quantized weights of the module of
shape :math:`(\text{out\_features}, \text{in\_features})`.
bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized to zero.
scale: `scale` parameter of output Quantized Tensor, type: double
zero_point: `zero_point` parameter for output Quantized Tensor, type: long
Examples::
>>> m = nn.quantized.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> input = torch.quantize_linear(input, 1.0, 0, torch.quint8)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
def __init__(self, in_features, out_features, bias_=True):
super(Linear, self).__init__()
# We don't muck around with buffers or attributes or anything here
# to keep the module simple. *everything* is simply a Python attribute.
self.in_features = in_features
self.out_features = out_features
if bias_:
self.bias = torch.jit.annotate(
Optional[torch.Tensor],
torch._empty_affine_quantized(
[out_features], scale=1, zero_point=0, dtype=torch.qint32))
else:
self.bias = torch.jit.annotate(Optional[torch.Tensor], None)
qweight = torch._empty_affine_quantized(
[out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8)
self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(qweight)
self.scale = 1.0
self.zero_point = 0
def forward(self, x):
return torch.ops.quantized.fbgemm_linear(
x, self._packed_weight, self.bias, self.scale, self.zero_point)
@staticmethod
def from_float(mod):
r"""Create a quantized module from a float module or qparams_dict
Args:
mod (Module): a float module, either produced by torch.quantization
utilities or provided by the user
"""
if hasattr(mod, 'weight_fake_quant'):
# assert type(mod) == QATLinear, 'training mode nnq.Linear.from_float only works for nn.qat.Linear'
weight_observer = mod.weight_fake_quant
else:
assert type(mod) == NNLinear, 'nnq.Linear.from_float only works for nn.Linear'
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
assert hasattr(mod, 'observer'), 'Input float module must have observer attached'
weight_observer = mod.qconfig.weight()
weight_observer(mod.weight)
activation_observer = mod.observer
act_scale, act_zp = activation_observer.calculate_qparams()
wt_scale, wt_zp = weight_observer.calculate_qparams()
bias_scale = (wt_scale * act_scale).float()
qweight = torch.quantize_linear(mod.weight.float(), wt_scale, wt_zp.long().item(), torch.qint8)
if mod.bias is not None:
qbias = torch.quantize_linear(mod.bias.float(), bias_scale, 0, torch.qint32)
else:
qbias = None
qlinear = Linear(mod.in_features, mod.out_features)
qlinear._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(qweight)
qlinear.bias = qbias
qlinear.scale = float(act_scale)
qlinear.zero_point = int(act_zp)
return qlinear